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ABSTRACT 

 

In this paper, we have used the Variational Iteration Method (VIM) to study micropolar fluid flow and heat 
transfer in a two-dimensional permeable channel. To check the precision of the obtained results, they have 

been compared with the results of Runge-Kutta Fourth-Order Method, Akbari-Ganji's Method (AGM), 

Collocation Method (CM), and Flex-PDE software. The influences of various parameters including 
microrotation/angular velocity, Peclet number (Pe), and Reynolds number (Re) on the flow, concentration, 

and heat transfer distribution are studied. Based on the results, Nusselt number (Nu) has a direct relation with 

Reynolds number and Sherwood number (Sh), while it has a reverse relation with Peclet number. In addition, 
by increasing Peclet number, concentration and temperature profiles increase as well. It is concluded that both 

VIM and AGM are powerful methods to solve nonlinear differential equations. 

Keywords: Micropolar fluid, permeable channel, Variational Iteration Method (VIM), Akbari-Ganji's Method 
(AGM), heat transfer. 

 

 

1. INTRODUCTION 

 

In the field of fluid mechanics, researchers are studying the particles behavior at various 

physical conditions. In most issues, particularly in engineering, mathematical models have been 

widely used to describe scientific phenomena for a variety of fluids like non-Newtonian and 

Newtonian fluids. There are many non-Newtonian fluids such as micropolar fluids and 

nanofluids. Micropolar fluids have special structures in which the velocity field and the 

macroscopic rotation of each particle are coupled. A hydrodynamical framework is appropriate 

for granular systems which consist of particles on a macroscopic scale. Micropolar fluids include 
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rigid and randomly oriented particles that spin and have microrotation velocity and are suspended 

in a viscous medium. The theory of a micropolar fluid derives from a requirement to model the 

flow of fluids that have rotating micro-constituents. Eringen [1] was the first pioneer of 

formulating the  theory of micropolar fluids. His idea introduced modern material parameters, 

microrotation velocity, an additional independent vector field and new constitutive equations for 

Newtonian fluid flow which must be solved simultaneously via the usual equations. He [2] 

extended the theory of thermos micropolar fluids and derived the constitutive laws for fluids 

having microstructure. The popularity of micropolar fluids might be because of the fact that they 

are a simple and impressive generalization of Navier-Stokes equation. Micropolar fluid problems 

can be studied in different applications like solidification of human and animal blood (Ariman et 

al. [3]), liquid crystals (Lockwood et al. [4]) cooling of a metallic sheet in a bath, flow of low 

concentration suspensions, production of paper and glass, lubrication components, colloidal fluids 

etc. Moreover, micropolar fluids are used to model the fluid flow at micro scales in systems 

including micropumps, accelerometers, microsensors, and microresonators, which have various 

applications in the fields of aerospace, biomechanics, petrochemicals, and medicine. The 

widespread uses of micropolar fluids have been presented in the books of Eringen [5] and 

Lukaszewicz [6].  Most scholars have studied different issues in micropolar fluids, such as Gorla 

[7], Rees and Bassom [8] who studied the flow of a micropolar fluid over a flat sheet. In addition, 

Kelson and Desseaux [9] investigated the micropolar fluids flow on stretching surfaces. Bhargava 

et al. [10] presented finite element solutions for a mixed convective micropolar flow in a porous 

plate. Stagnation point of a micropolar fluid towards a stretching plate was studied by Nazar et al. 

[11]. Joneidi et al. [12] studied the behavior of micropolar fluid flow in a porous channel with the 

high mass transfer. Heat transfer issues in micropolar fluids flow have been analyzed by Perdikis 

and Raptis [13,14] who also investigated the impacts of heat radiation. Balaram and Sastry [15] 

examined the fully extended free convection flow of a micropolar fluid. Mohanty et al. [16] 

investigated mass and heat transfer effects of a micropolar fluid over stretching plate numerically. 

The impact of Hall effect and thermal radiation on mass and heat transfer of a 

Magnetohydrodynamic (MHD) flow of a micropolar fluid in a porous medium was studied by 

Oahimire and Olajuwa [17]. Based on iterative power series solutions, Al Sakkaf et al. [18] 

studied the unsteady viscous flow over a contracting cylinder. It found to be that the new method 

is powerful for systems that are defined by nonintegrable nonlinear differential equations. An 

investigation on the free convective micropolar fluid over a shrinking sheet was carried out by 

Mishra et al. [19] considering a heat source/sink. It was concluded that using heat source resulted 

in a decrease in the boundary layer and a considerable influence on the velocity profile (See also 

[20, 21]). 

Moreover, in recent years some scholars have examined micropolar fluid, nanofluid and their 

effects [22-29]. Because of the nonlinear nature of micropolar fluids, solving problems related to 

these fluids has been a controversial challenge for engineers, physicists, and mathematicians. 

Many methods have been presented to study the nonlinear problems including Optimal Homotopy 

Analysis Method (OHAM) [30], Exp-Function Method (EFM) [31,32], Since-Cosine Function 

Method (SCFM) [33,34], Homotopy Analysis Method (HAM) [35,36], F-Expansion Method 

(FEM) [37,38], Tanh-Coth Method (TCM) [39,40], Control Volume based Finite Element 

Method (CVFEM) [41,42], Akbari-Ganji’s Method (AGM) [43-45], and He's Frequency–

amplitude Formulation Method (HFFM) [46], etc. In recent years, Variational Iteration Method 

(VIM), which is actually the modified form of Lagrange multipliers, has been widely used to 

solve nonlinear problems. The basic idea of the method is based on Inokuti-Sekine-Mura method 

[47] developed by He [48]. This method was considered interesting due to its simplicity and high 

accuracy and efficiency in finding analytical solutions for linear and nonlinear problems. After 

that, some modifications were applied in order to overcome the disadvantages resulting from 

solution steps by several researchers. For example, Abassy et al. [49,50] proposed modification 

by using Padé approximant and Laplace tran sform. In addition, Soltani and Shirzadi [51] applied 
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new modifying procedures on VIM which provided great freedom in choosing linear operators for 

various nonlinear equations. Such technology was also suggested by He [52-54] for nonlinear 

oscillators.  

Therefore, VIM is a strong manner for solving nonlinear differential equations like a 

presented equation in this study. In this paper, we have applied VIM to find the approximate 

solutions of nonlinear differential equations governing the micropolar fluid flow and heat transfer 

in a permeable channel. As well as, the concentration, velocity, and temperature profiles are 

shown and the impact of Peclet number, microrotation/angular velocity and Reynolds numbers on 

the flow, concentration, and heat transfer distribution are studied. To check the precision of the 

obtained results of VIM, they have been compared with the results of the numerical method 

(Runge-Kutta fourth-order method), Akbari-Ganji's Method (AGM), Collocation Method (CM), 

and Flex-PDE software. Furthermore, the timings of the aforementioned methods are presented in 

this paper for better use of the methods for solving nonlinear problems. 

 

2.  MATHEMATICAL FORMULATION OF THE PROBLEM 

      

We have considered the steady laminar flow of a micropolar fluid along with a two-

dimensional channel with porous walls in which fluid is uniformly removed or injected with 

speed V0. The upper wall has a temperature T2 and solute concentration C2 while the lower wall 

has a temperature T1 and solute concentration C1 as shown in Fig. 1. 

Using Cartesian coordinates, the channel walls are parallel to the 𝑥-axis and located at y=±h 

where 2h is the channel width. The relevant equations governing the flow are as follows [55]: 
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Figure 1. Schematic representation of the considered problem. (a) y-z view and (b) x-y view. 

 

Where v and u are the velocity components along the y- and x-axis, respectively. μ is the 

dynamic viscosity, ρ is the fluid density, P is the fluid pressure, N is the angular or microrotation 

velocity, C is the species concentration, cp and T are the specific heat at a constant pressure and 

temperature of the fluid, respectively. j is the microinertia density, k1 and D* are the thermal 

conductivity and molecular diffusivity, respectively. Also, ( 2)vs k j= +  is the microrotation 

viscosity and k is a material parameter. The appropriate boundary conditions are as follows: 
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Where 𝑠 represents a degree in which the microelements are free to rotate near the channel 

walls. The case  1s =  represents the turbulent flow. Other interesting cases that have been 

considered in the present study include 0.5s =  which represents weak concentrations as well as 

vanishing condition of the anti-symmetric part of the stress tensor, and 0s =  which represents 

concentrated particle flows in which microelements are close to the wall and unable to rotate. We 

have introduced the following dimensionless variables [56]: 
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Where 2 1= −C C Bx , 2 1= −T T Ax  with B and A as constants. The stream function is 

defined in a usual way: 
 

,
 

= = −
 

u v
y x

 
                                                                                                              (9) 

 

Eqs. (1)-(8) are reduced to a coupled system of nonlinear differential equations: 
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The parameters of primary interest are Grashof number (Gr), and Reynolds number (Re), 

where for injection Re 0  and for suction Re 0 . Peclet numbers for the diffusion of mass 

m
Pe  and heat 

h
Pe  are given, respectively: 
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where Pr is Prandtl number, Sc is the generalized Schmidt number, N2 is the spin-gradient 

viscosity parameter and N1 is the coupling parameter. In technological processes, the parameters 

of primary interest are the local Nusselt and Sherwood numbers. These are defined as follows: 
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Where m  and q  are local mass flux and heat flux, respectively. 

 

3. APPLICATION OF VARIATIONAL ITERATION METHOD (VIM) 

 

The Variational Iteration Method (VIM) gives the possibility to solve many types of nonlinear 

equations. To clarify its primary idea, we consider following differential equation: 
 

( ) ( ) ( ), ,+ =L U N U g x t                                                                                                     (18) 
 

Where N is a nonlinear operator, L is a linear operator and g(t) is a given continuous function. 

According to this method, we can have a correction function as follows: 
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Where λ is a Lagrange multiplier which can be identified optimally via variational theory [57–

59], Un is the nth approximate solution, and 
n

U  denotes a restricted variation, i.e., 0
n

U = . 

VIM is applied to solve the nonlinear differential equation (Eqs. (10)- (13)) with the selected 

boundary condition (Eq. (14)).  In order to solve these equations using VIM, we have considered 

a correction function as follows: 
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where λ(s) is Lagrange multipliers, which can be identified optimally via the variational 

theory. The stationary conditions can be obtained as follows: 
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The Lagrange multipliers can be identified as 
3
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2 3 4( ) ( ) ( ) ( )= = = −s s s s x   and the following variational iteration formula can be 
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Now, we begin with arbitrary initial approximations: 
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Where , ,i i ia b c , and id  are constant in x-axis to be determined by using the boundary 

conditions. By using Eq. (31), we can obtain the following successive approximations: 
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In the same manner, the rest of the components of the iteration formula can be obtained. 

Furthermore, we have solved this system for different values of 
1 2 3, , ,Re, hN N N Pe , and 

mPe

determined 0 3 0 1 0 1 0 1... , , , , , ,a a b b c c d d  in each case. For example, when 
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4. SOLUTION BY FLEX-PDE SOFTWARE 

 

Flex-PDE software is a modeling software based on the finite element method for coding. 

This software has the capability to analyze the wide range of engineering problems like chemical 

reaction kinetic, tension and modeling of real mathematical and engineering issues. 

 

4.1. Precision control in Flex-PDE software 

      

The advantage of this software is its precision control. Flex-PDE checks the compatibility of 

partial differential equations (PDEs) with the grid cells which results in estimating the relative 

error in the response variables and comparing it with the allowable limits of precision. If each one 

of the grid cells exceeds the allowable limit of error, that cell can be split and the solution process 

will be re-applied. Allowable limit of error is called ERRLIM in this software and its default 

value is 0.002. This means that Flex-PDE corrects the grid when the estimation error in each 

variable (in the range of changes of that variable) is less than 0.2 percent per cell. This shows that 

this software has excellent compatibility with numerical solutions. This software has rarely been 

used in the field of fluid mechanics and heat transfer so far. On the other hand, as this is open-

source software, there is easy access to the dominant equations and it is possible to apply the 
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desired changes to the equations or the material properties. In fact, the main capacity of this 

simple software is solving the complex nonlinear equations,  which happens abundantly in the 

field of fluid mechanics and heat transfer. In this study, we have compared the outcomes of Flex-

PDE software with outcomes of VIM, CM, and AGM by writing Flex-PDE codes for Eqs. (10)- 

(13). 

 

5. RESULTS AND DISCUSSION 

    

The comparison of the results  of VIM with AGM, CM, Flex-PDE software, and numerical 

method (Runge-Kutta fourth-order method) has been carried out. Also, this investigation indicates 

that VIM and AGM are strong manners to solve nonlinear differential equations. 

 

 

 
 

Figure 2. Comparison between the results of VIM, AGM, CM, and Flex-PDE software for (a) 

stream function (f ), (b) temperature (θ), and (c) microrotation velocity (g). 
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Figure 3. Impact of (a) N1 and (b) Re on stream function (f). 

 

  
 

Figure 4. Impact of Re on microrotation velocity (g). 
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Figure 5. Impact of (a) N1, (b) N2, and (c) N3 on microrotation velocity (g). 
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Figure 6. Impact of Peclet number on (a) concentration and (b) temperature distribution. 

 

   
 

Figure 7. Impact of Peclet number and Reynolds number on (a) Nusselt number and (b) 

Sherwood number. 
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Figure 8. Contours of f (Right) and g (Left) when 
1 2 3 1h mN N N Pe Pe= = = = = . 

 

   
 

Figure 9. Contours of θ (Left) and ϕ (Right) when 
1 2 3 Re 1N N N= = = = . 
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Table 1. Comparison between the results of AGM and numerical method for g (Left) and f 

(Right) at various Re and N1 when 
2 3 1h mN N Pe Pe= = = = . 

 

 N1=Re=1 N1=Re=0.5 

𝛈 NUM AGM Error NUM AGM Error 

-1 0.000000 0.000000 0.000000 -0.113e-3 -0.112e-3 -1.00e-06 

-0.8 0.039387 0.038443 0.000944 0.017765 0.017810 -4.50e-05 

-0.6 0.055363 0.052544 0.002819 0.063331 0.063317 1.40e-05 

-0.4 0.060045 0.054882 0.005163 0.124830 0.124516 3.14e-04 

-0.2 0.064873 0.057259 0.007614 0.190446 0.190373 7.30e-05 

0.0 0.081810 0.071950 0.009860 0.248294 0.248324 -3.00e-05 

0.2 0.124656 0.113092 0.011564 0.286419 0.286380 3.90e-05 

0.4 0.210663 0.198378 0.012285 0.292790 0.292525 2.65e-04 

0.6 0.362623 0.351256 0.011367 0.255296 0.255723 -4.27e-04 

0.8 0.611554 0.603761 0.007793 0.161747 0.161912 -1.65e-04 

1 1.000000 1.000000 0.000000 -0.137e-5 -0.134e-5 -3.00e-08 

 

Table 2. Comparison between the results of VIM and numerical method for θ (Left) and ϕ (Right) 

at various Pem and Peh when 
1 2 3 Re 1N N N= = = = . 

 

 Pem= Peh=1 Pem= Peh=2 

𝛈 NUM VIM Error NUM VIM Error 

-1 1.000000 1.000000 0.000000 1.000000 1.000000 0.000000 

-0.8 0.934459 0.936369 -0.001910 0.968954 0.962738 0.006216 

-0.6 0.863599 0.866875 -0.003276 0.927782 0.923751 0.004031 

-0.4 0.784287 0.787958 -0.003671 0.870261 0.875916 -0.005655 

-0.2 0.695150 0.698154 -0.003004 0.793383 0.796308 -0.002925 

0.0 0.596019 0.597650 -0.001631 0.696386 0.695300 0.001086 

0.2 0.487637 0.487834 -0.000197 0.580317 0.575669 0.004648 

0.4 0.371566 0.370844 0.000722 0.447988 0.441688 0.006300 

0.6 0.250031 0.249117 0.000914 0.303810 0.298234 0.005576 

0.8 0.125499 0.124939 0.000560 0.152995 0.149879 0.003116 

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
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Figure 10. Comparison between the errors of VIM, AGM, and numerical (NUM) method for f 

(η), g (η), ∅ (η), and θ (η) when Re=1.5, N1,2,3=0.5, Pem = Peh =0.7. 
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Figure 11. Comparison between the timing of VIM, AGM, and Differential 

Transform Method (DTM) [60] solutions at various values of active parameters. 

 

In this paper, an analytical study on micropolar fluid flow in a two-dimensional channel with 

porous walls has been done  using Variational Iteration Method (VIM), Akbari-Ganji’s Method 

(AGM), and Collocation Method (CM) to acquire an exact solution of mass and heat transfer 

equation of steady laminar flow. In order to verify the accuracy of the present study, we have 

compared the results of VIM with AGM, CM, and numerical methods as well as Flex-PDE 

software. Figs. (2a-c) demonstrate the comparison between the outcome of VIM, CM, AGM, and 

Flex-PDE software. Based on these figures, the differences between the profiles are very small 

that means there is good compatibility between the Flex-PDE, VIM, CM, and AGM solutions. 

Fig. 2a indicates the variation of stream function f with η. From the lower wall to upper one, 

stream function increases to its maximum value and afterward it decreases. Figs. (2b) and (2c) 

show the variation of temperature θ and microrotation velocity g with η. As it is clear from the 

figures, although temperature is decreased from lower wall to the upper one, microrotation 

velocity is increased. Fig. 3a shows the effect of N1 on the stream function. According to this 

figure, by increasing N1, stream function increases as well. The influences of the Reynolds 

number (Re) on stream function is illustrated in Fig. 3b.  It is observed that stream function 

decreases due to an increasing in Reynolds number. Fig. 4 demonstrates the impact of Reynolds 

number on microrotation velocity. In this figure, velocity boundary layer thickness decreases as 

Reynolds number increases. This is because of the fact that the Reynolds number shows the 

relative importance of inertia effect compared to the viscous effect. Figs. 5 (a-c) show the impact 

of N1, N2, and N3 on microrotation velocity profiles. It is obvious that microrotation velocity 

profiles decrease by increasing N1 and N3, while they increase by increasing N2. However, when 
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N1>1 and N2<1, the behavior of angular velocity is irregular and oscillatory. The impact of Peclet 

number (Pe) on concentration (ϕ) and temperature (θ) profiles is indicated in Figs. (6a) and (6b), 

respectively. It can be seen that by increasing Peclet number, concentration and temperature 

profiles increase, too. In addition, it is worth noting that with increasing Peclet number, 

fluctuations of temperature and concentration profiles will increase. Fig. 7a illustrates the 

influence of Reynolds number and Peclet number on Nusselt number (Nu). Results show that 

Nusselt number has a direct relation with Reynolds number, while it has a reverse relation with 

Peclet number. Fig. 7b indicates the impact of Reynolds number and Peclet number on Sherwood 

number (Sh). According to this figure, by increasing Reynolds number, Sherwood number 

increases, but it decreases by increasing Peclet number. Furthermore, contours of stream function, 

microrotation velocity, temperature, and concentration are demonstrated in Figs. (8-9). 

Comparison between the errors of VIM, AGM, and numerical (NUM) method for 

( ), ( ), ( )f g    , and ( )   at various values of active parameters is shown in Tables (1), (2), 

and Fig. (10). It can be seen that the error rate is very small at various values of η which are in the 

range of [-1, 1]. Moreover, comparison between the timing of VIM, AGM, and Differential 

Transform Method (DTM) [60] solutions at various values of active parameters is illustrated in 

Fig. (11). Regarding minor errors of VIM and AGM and their appropriate timing, as shown in 

Tables (1), (2), and Fig. (11), it can be said that both VIM and AGM have high accuracy in 

solving nonlinear differential equations. 

 

5. CONCLUSION 

 

In the present paper, we have used Variational Iteration Method (VIM) to study micropolar 

fluid flow and heat transfer in a two-dimensional permeable channel.  To check the precision of 

the obtained results of VIM, they have been compared with the results of the numerical method 

(Runge-Kutta fourth-order method), Akbari-Ganji's Method (AGM), Collocation Method (CM), 

and Flex-PDE software. The influence of various parameters like microrotation/angular velocity, 

Peclet number and Reynolds number on the flow, concentration, and heat transfer distribution are 

studied.  The main outcomes are presented in the following:  
 

• Nusselt number (Nu) has a direct relation with Reynolds number (Re) and Sherwood 

number (Sh), while it has a reverse relation with Peclet number (Pe).  

• Microrotation velocity profiles decrease by increasing N1 and N3, while they increase by 

increasing N2. 

• By increasing Peclet number, concentration and temperature profiles increase. 

• VIM and AGM have high accuracy in solving nonlinear differential equations. 

 

Appendix A. 

 
Nomenclature Greek symbols 

C Species concentration (mol/m3) η Similarity variable 

k1 Thermal conductivity (W/m.k) μ Dynamic viscosity (Pa.s) 

g Dimensionless microrotation velocity 𝜓 Stream function (m2/s) 

(u,v) Cartesian velocity components (m/s) D* Molecular diffusivity (m2/s) 
N1,2,3 Dimensionless parameters h Half of channel width (m) 

Sh Sherwood number j Microinertia density (m2) 

Pe Peclet number N  Microrotation/angular velocity (m/s) 

Re Reynolds number k Coupling coefficient (Pa.s) 

Nu Nusselt number   

(x,y) 
Cartesian coordinate components parallel 

and normal to channel axis, respectively 
  

VIM Variational Iteration Method   
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AGM Akbari-Ganji’s Method   

CM Collocation Method   

 

Appendix B. 

 

Parts of Flex-PDE software codes: 

𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠     𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛1     𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠      𝐹    𝜃    𝜙   𝑔    ℎ        𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠     1             𝑁1 =
1 𝑁2 = 1   𝑁3 = 4    𝑅𝑒 = 0.1    𝑃𝑒ℎ = 1   𝑃𝑒𝑚 = 1   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠      ℎ:    ℎ = −𝑑𝑥𝑥 (𝐹)      

𝐹:    (1 + 𝑁1)  ×  (𝑑𝑥𝑥 (ℎ)) − 𝑁1 × 𝑔 − 𝑅𝑒 ×  (𝐹 × 𝑑𝑥 (ℎ) − 𝑑𝑥 (𝐹)  × 𝑑𝑥𝑥 (𝐹))  = 0                

𝐺:   𝑁2 ×  (𝑑𝑥𝑥 (𝑔)) + 𝑁1 × (𝑑𝑥𝑥 (𝐹) − 2 × 𝑔) − 𝑁3 × 𝑅𝑒 ×  (𝐹 × 𝑑𝑥 (𝑔) − 𝑑𝑥 (𝐹)  × 𝑔)  = 0  

𝑇ℎ𝑒𝑡𝑎:   𝑑𝑥𝑥 (𝜃)  + 𝑃𝑒ℎ ×  (𝑑𝑥 (𝐹)  ×  𝜃) − 𝑃𝑒ℎ ×  (𝐹 × 𝑑𝑥 (𝜃))  = 0                 

𝑃ℎ𝑖:     𝑑𝑥𝑥 (𝜙)  + 𝑃𝑒𝑚 × (𝑑𝑥 (𝐹)  ×  𝜙) − 𝑃𝑒𝑚 ×  (𝐹 × 𝑑𝑥 (𝜙))  = 0                       

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠      𝑅𝑒𝑔𝑖𝑜𝑛 1            𝑠𝑡𝑎𝑟𝑡 (−1)      𝑃𝑜𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 (𝐹) = 0    𝑃𝑜𝑖𝑛𝑡 𝑙𝑜𝑎𝑑 (ℎ) = 0 

𝑃𝑜𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 (𝑔) = 0         𝑃𝑜𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 (𝜃)  = 1   𝑃𝑜𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 (𝜙) = 1  𝑃𝑜𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 (𝜃) = 0 

𝐿𝑖𝑛𝑒 𝑡𝑜 (1)     𝑃𝑜𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 (𝐹) = 0     𝑃𝑜𝑖𝑛𝑡 𝑙𝑜𝑎𝑑 (ℎ) = −1   𝑃𝑜𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 (𝑔)  = 1 

𝑃𝑜𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 (𝜙)  = 0       𝑃𝑙𝑜𝑡𝑠    𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 (𝜙)𝑓𝑟𝑜𝑚 (−1)𝑡𝑜 (1)        
𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 (𝜃)𝑓𝑟𝑜𝑚 (−1)𝑡𝑜 (1)   𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 (𝑔)𝑓𝑟𝑜𝑚 (−1)𝑡𝑜 (1)           

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 (𝑓) 𝑓𝑟𝑜𝑚 (−1) 𝑡𝑜 (1)    𝑇𝑒𝑐𝑝𝑙𝑜𝑡(𝜙)      𝑇𝑒𝑐𝑝𝑙𝑜𝑡(𝜃)   𝑇𝑒𝑐𝑝𝑙𝑜𝑡(𝑔)    𝑇𝑒𝑐𝑝𝑙𝑜𝑡(𝑓)  

𝐸𝑛𝑑. 
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