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ABSTRACT 

 
Cubic B-spline Galerkin method, based on second and fourth order single step methods for time integration is 

used to solve numerically the advection diffusion equation (ADE). Second order single step method is also 

known as Crank Nicolson method. Two numerical examples are used to validate the proposed method which 
is found to be accurate and efficient. The effects of the advection and diffusion terms on the solution domain 

and the absolute error of the numerical solution are studied with the help of graphs. The obtained results show 

that the proposed fourth order single step method has a high success as a numerical technique for solving the 
ADE. 

Keywords: Cubic B-spline, Galerkin method, fourth order single step method, Crank Nicolson method, 

advection-diffusion equation. 
 

 

1. INTRODUCTION 

 

ADE (sometimes called the convection-diffusion equation) is a one dimensional parabolic 

partial differential equation which describes the process of transport in a medium. Because of the 

growing surface and subsurface hydro-environment degradation and the air pollution, ADE has 

been studied especially by civil engineers, mathematical modelers and hydrologists as well as soil 

physicists, petroleum engineers, chemical engineers and bio-scientists [12]. Numerical methods 

have been used for many years for numerical solutions of various partial differential equations 

[7,8,17-19]. In addition to the existence of analytical solutions of ADE, many numerical solutions 

have been obtained by the finite difference approximations [3,4,13,16], the least-squares B-spline 

method [1], the differential quadrature method [9-11], Taylor-Galerkin method [2], linear B-

spline collocation method [5], cubic B-spline collocation method [4], extended cubic B-spline 

collocation method [6], trigonometric cubic B-spline collocation method [14]. 

Since the ADE is simple equation modelling advection and diffusion process, many scientists 

have proposed new numerical methods for the ADE. In this study, we present another new 

numerical method which has high order accurate in time. In section 2, firstly the time 

discretization of ADE is applied by using higher accuracy finite difference method, then a system 

of algebraic equation is obtained by using a finite element space discretization. In the numerical 
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experiment section, proposed methods are tested for two tests and in the last section, a summary 

of the study is given. 

We consider the following one dimensional ADE 
 

0,  t x xxu u u a x b + − =                                                                               (1) 
 

with the boundary and initial conditions  
 

( , ) ( , ) 0
    , [0, ]

( , ) ( , ) 0x x

u a t u b t
t T

u a t u b t

= =


= =
                                                                      (2) 

 

( ,0) ( ),  u x f x a x b=                                                                                (3) 
 

in a restricted solution domain over an space/time interval [ , ] [0, ]a b T . In Eq. (1),   and 

  denote the steady uniform fluid velocity and the constant diffusion coefficient, respectively. 

 

2. APPLICATION OF THE METHOD 

 

The solution domain is discretized by grid with the time step t  and space step h . The exact 

solution of ADE at the grid points is denoted by  
 

( , ) ,  k 0,1, , ;     0,1,2,n

k n ku x t u N n= = =  
 

where 
kx a kh= + , 

nt n t=  . The numerical value of n

ku  is denoted by n

kU . 

 

2.1. Time Discretization 

 

Consider the advection diffusion equation of the form 
 

t xx xu u u = −                                                                                      (4) 
 

and the following one-step method  
 

1 1 1

1 2 3 4 .n n n n n n n

t t tt ttu u u u u u   + + += + + + +                                                                (5) 
 

If we take 
1 2 / 2t = =  , 

3 4 0 = =  in (5), the method is of order 2 (M1) known as Crank-

Nicolson method (CN method) and then if we take 
1 2 / 2t = =  , ( )

2

3 / 12t = −  , 

( )
2

4 / 12t =   the method is of order 4 (M2). Using the (5) and ADE of the form (4), we obtain 

the following equation 

 

( ) ( )

( ) ( )

111 2 2

1 3

2

2 4

2

2

nnn

xx x xxxx xxx xx

nnn

xx x xxxx xxx xx

u u u u u u

u u u u u u

      

      

+++ − − − − +

= + − + − +

                                           (6) 

 

for the time discretization of the Eq. (1). Note that order of the proposed method M2 is higher 

than well known Crank-Nicolson method. 

 

2.2. Space Discretization 

 

Space domain [ , ]a b  of the problem is divided into N  equal sized elements as 
 

0 1 Na x x x b=    =  
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where 
1i ih x x −= − , 1, ,i N= . Then, the cubic B-splines 

k , 1, , 1k N= − +  have the 

following form: 
 

( )

( ) ( ) ( )

( ) ( ) ( )

( )

3

2 2 1

2 33 2

1 1 1 1

2 33 2
3 1 1 1 1

3

2 1 2

,  

3 3 3 ,  
1

( ) 3 3 3 ,  

,  

0 ,  otherwise

k k k

k k k k k

k
k k k k k

k k k

g x x x x

h h g x hg x g x x x x

x h h g x hg x g x x x x
h

g x x x x



− − −

− − − −

+ + + +

+ + +

  

 + + −  


=  − + +  

−  



                            (7) 

 

where ( )k kg x x x= − .  

The set of cubic B-splines ( )k x  forms a basis over the space interval a x b   [13]. The 

approximate solution ( , )U x t  can be written as 
 

( )
1

1

, ( , ) ( ) ( ).
N

j j

j

u x t U x t t x 
+

=−

 =                                                                        (8) 

 

Since function (7) and its first two derivatives are continuous, trial solutions (8) have 

continuity up to second order. Using Eqs. (7) and (8), approximation U , U   and U   at the knots 

can be computed as 
 

( )

( )

1 1

1 1

1 12

( ) 4 ,

3
( ) ,

6
( ) 2 .

k k k k k

k k k k

k k k k k

U U x

U U x
h

U U x
h

  

 

  

− +

+ −

− +

= = + +

 = = −

 = = − +

                                                                (9) 

 

Using transformation 
kx x = − , 

1k kx x x +  , the cubic B-spline shape functions in terms of 

  over the element  0,h  can be written by  
 

3

1

2 3

2 3

2 3

1 2 3

3

2 3

( ) 1 ,

( ) 4 6 3 ,

( ) 1 3 3 3 ,

( ) .

k

k

k

k

h

h h

h h h

h


 

 
 

  
 


 

−

+

+

 
= − 
 

= − +

= + + −

=

                                                                    (10) 

 

Combination of the element shape functions j  together with element time parameters j , 

1, , 1j k k= − +  gives an approximation for the typical element  0,h  
 

( )
2

1

( , ) ( ) .
k

e

j j

j k

U U t t   
+

= −

= =                                                                            (11) 

 

Applying Galerkin method to Eq. (6) with weight function ( )W x  leads to the equation: 
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( ) ( ) )(
( ) ( ) )(

111 2 2

1 3

2

2 4

( ) 2

( ) 2 .

b
nnn

xx x xxxx xxx xx
a

b
nnn

xx x xxxx xxx xx
a

W x u u u u u u dx

W x u u u u u u dx

      

      

+++ − − − − +

=  + − + − +

                           (12) 

 

If we integrate by parts and use boundary conditions, we find that: 
 

( ) ( ) )(

( ) ( ) )(

111 2 2

1 3

2

2 4

( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) 2 ( ) ( ) .

b
nnn

xx x xx xx xx

a

b
nnn

xx x xx xx xx

a

W x u W x u u W x u W x u W x u dx

W x u W x u u W x u W x u W x u dx

      

      

+++  − − − + +

 = + − + + +





      (13) 

 

The weight function ( )W x  and exact solution in (13) are replaced with cubic B-splines shape 

functions (10) and approximation given by (11), respectively. 

Thus we obtain a fully discrete approximation is obtained over the element [0, ]h  as 
 

( ) ( )( )

( ) ( )( )

2
2 2 1

1 3

1 0

2
2

2 4

1 0

2

2

hk
n

i j i j j i j i j i j j

j k

hk
n

i j i j j i j i j i j j

j k

d

d

            

           

+
+

= −

+

= −

 
      − − − + + 

 

 
      = + − + + + 

 

 

 

                    (14) 

 

where i  and j  take only the values 1, , 2k k− +  and 0,1, , 1k N= −  for the typical 

element [0, ]h . 

(14) can be written matrix form as 
 

( ) ( ) ( )

( ) ( ) ( )

2 2 1

1 3

2 2

2 4

2

2

e
e e e e e e n

e
e e e e e e n

      

      

+ − − − + +
 

 = + − + + +
 

C DA B E B

A B C D E B




                                        (15) 

 

where 
 

( ) ( )

0 0

0 0

1

1 1 2
0

, ,

, ,

, , , , .

h h
e e

ij i j ij i j

h h
e e

ij i j ij i j

h
e Te n

ij i j j k k k k

A d B d

C d D d

E d

   

   

      +

− + +

=  = 

  =  = 

 =  =

 

 

Assembling contributions from all elements, (15) leads to the following linear system for the 

time evolution of  : 
 

( ) ( )

( ) ( )

2 2 1

1 3

2 2

2 4

2

2

n

j

n

j

      

      

+ − − − + +
 

 = + − + + +
 

C

A B C D E B

A B D E B




                                               (16) 

 

The linear system (16) consists of 3N +  linear equations in 3N +  unknowns 

( )1 1

1 1, , .n n

N + +

− +  After the first and last equations are deleted in the system (16), imposition of the 

boundary conditions ( , ) ( , ) 0U a x U b x= =  at the both ends of the region yields to eliminate 1

1

n +

−
 

and 1

1

n

N
+

+
 from the above system. Therefore the solution of the linear system with the dimensions 
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( ) ( )1 1N N+  +  is obtained by way of Gauss elimination algorithms. To carry on the iteration of 

the system (16), the initial parameters 0 0

1 1, , N − +
 must be obtained from the initial condition and 

the derivatives of the boundary conditions at both ends: 
 

0 0 0

1 1

0

( ,0) 4 ,  k 0, , ,

( ,0) ( ,0) 0.

k k k k

N

U x N

U x U x

  + −= + + =

 = =
 

 

3. TEST PROBLEMS 

 

For the test problems, accuracy of the proposed two algorithms is worked out by measuring 
error norm L

 
 

max ,m m
m

L u U = −                                                                                   (17) 

 

and the order of convergence is computed by the formula 
 

( ) ( )
1

1

log
order= ,

log

i ih h

i i

L L

h h

+
 

+

                                                                     (18) 

 

where ( )
ih

L  is the error norm L
 for space step 

ih . 

 

3.1. First Test Problem 

 

By choosing 0 = in ADE, the pure advection equation has the exact solution  
 

2

0

2

( )
( , ) 10exp .

2

x x t
u x t





 − −
= − 

 
                                                                    (19) 

 

The numerical simulation is accomplished with flow velocity 0.5 /m s = , initial peak 

location 
0 2x km=  and 264 =  by the terminating time 9600t s= . After the program run up to 

time 9600t s= , initial solution and waves are depicted in Figure 1 for the M2 with 1h t=  = . It 

can be seen from the figure that the wave keeps its initial profile while propagating without any 

change in its shape with speed 0.5 /m s = . Therefore the initial condition ( ,0)u x  is spread out 

in a long channel with no change in shape or size by the time because of the advection effect. 

Thus, the initial state travels at a distance of 4.8km  from the initial position, and the peak value 

of the solution remains constant 10  over time. 

Absolute error distribution at time 9600t s=  is also depicted in Figure 2. Since the maximum 

error appears at about peak value of the wave at time 9600t s= , the effect of boundary 

conditions can be ignored.  
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Figure 1. Wave profiles. 

 

 
 

Figure 2. Absolute error for M2 with 1h t=  =  

 

The error norms L
 and order of convergence are listed in Table 1. According to the Table 1, 

when time and space steps are reduced from 200  to 1 , the error norms decrease for the both 

algorithms. It can also be seen that the order of convergence is almost two for M1 and almost four 

for M2. Therefore, the proposed methods especially M2 are quite satisfactory. To compare with 

the other studies, the error norms L
 of the proposed methods are given together with the error 

norms of the least-squares and the extended cubic B-spline collocation methods in Table 2. It can 

be seen from Table 2, M2 has more accurate results than the other methods. 
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Table 1. Error norms L
 and rate of convergence at time 9600t s=  with 0 9000x   for M1 

and M2. 
 

 M1 M2 

h t=   L
 Order L

 Order 

200 2.32 1.66 1.05×10-1 5.87 

100 7.34×10-1 1.95 1.88×10-3 4.01 

50 1.90×10-1 2.00 1.17×10-4 4.00 

20 3.01×10-2 2.00 3.00×10-6 4.00 

10 7.51×10-3 2.00 1.88×10-7 4.00 

5 1.88×10-3 2.00 1.17×10-8 4.00 

2 3.00×10-4 2.00 3.01×10-10 3.79 

1 7.50×10-5  2.21×10-11  

 

Table 2. Error norms L
 at time 9600t s=  with 0 9000x  . 

 

h t=   M1 M2 [6] [1] 

200 2.32 1.05×10-1 1.29 5.18×10-1 

100 7.34×10-1 1.88×10-3 3.25×10-1 3.76×10-1 

50 1.90×10-1 1.17×10-4 1.98×10-1 3.73×10-1 

10 7.51×10-3 1.88×10-7 7.51×10-3  

1 7.50×10-5 2.21×10-11 7.50×10-5  

 

 3.2. Second Test Problem 

 

The exact solution of ADE is  
 

( )

( )

2

01
( , ) exp

4 14 1

x x t
u x t

tt





 − −
 = −
 ++  

                                                       (20) 

 

modelling fade out of an initial bell shaped concentration of height 1. This solution 

corresponds to a wave of magnitude 1 4 1t + , initially centered on the position 
0x  propagating 

towards the right across the interval [ , ]a b  over the up to the time T  with a steady velocity .  

After the program run up to time 5t =  with 0.8 /m s = , 20.005 /m s =  and 0 9x  , error 

norms L
 and order of convergence for both methods are listed in Table 3. 

 

Table 3. Error norms L
 and rate of convergence at time 5t =  with 0 9x  for M1 and M2. 

 

 M1 M2 

h t=   L
 Order L

 Order 

0.1 5.36×10-2 1.93 4.11×10-3 7.81 

0.05 1.41×10-2 2.05 2.83×10-5 4.00 

0.02 2.17×10-3 2.01 7.32×10-7 4.00 

0.01 5.38×10-4 2.00 4.60×10-8 4.00 

0.005 1.34×10-4 2.00 2.87×10-9 4.00 

0.002 2.15×10-5 2.00 7.36×10-11 3.67 

0.001 5.37×10-6  5.80×10-12  
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Table 4. Error norms L
 at time 5t =  with 0 9x  . 

 

h t=   M1 M2 [10] [10] 

0.1 5.36×10-2 4.11×10-3 6.96×10-3 1.46×10-2 

0.05 1.41×10-2 2.83×10-5 1.25×10-1 1.36×10-1 

 

It can be seen from the Table 3 that, when time and space steps are reduced from 0.1  to 

0.001 , the error norms decrease for the both algorithms. According to the error norms and order 

of convergence in the table, the M2 generates better results than the M1. Table 4 shows that the 

numerical solutions obtained by M2 is better than the results existed in [10]. Initial and numerical 

solutions for the M2 are drawn in Figure 3 for visual view of the solution up to time 5t =  with 

0.001h t=  = . Because of the advection term effect, initial wave is propagating and due to the 

diffusion term, the wave decreases and its width increases with time. 

 

 
 

Figure 3. Wave profiles. 

 

The graph of absolute error at time 5t =  is plotted for M2 with 0.001h t=  =  in Figure 4. 

Maximum error is observed near the peak of the amplitude of the final wave. 

 

 
 

Figure 4. Absolute error for M2 with 0.001h t=  = . 
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4. CONCLUSION 

 

Whereas the first method M1 known as Crank-Nicolson method is of order two in time, our 

proposed new method known as M2 is of order four in time. For the both methods cubic B-spline 

Galerkin method is used for space discretization. Two test problems including advection effect in 

the first problem and advection-diffusion effect in the second problem were simulated well with 

the proposed two algorithms. According to test problems, the proposed two algorithms especially 

the M2 have produced outstanding results for solving ADE. It is clear from Tables 2 and 4 that 

the method is of order 4 in time has higher accuracy than other studies in the literature. Thus, the 

proposed methods are suitable methods for similar physically important equations. Also it can be 

used for nonlinear problems. 

 

Acknowledgments 

 

This paper was presented at International Congress on Fundamental and Applied Sciences 

2016 (ICFAS2016) in Istanbul. 

 

REFERENCES 

 

[1] Dag I., Irk D. and Tombul M. (2006). “Least-squares finite element method for the 

advection diffusion equation”, Appl. Math. Comput., Elsevier, Vol. 173, No. 1, pp. 554-

565, DOI: 10.1016/j.amc.2005.04.054. 

[2]  Dag I. Canivar A. and Sahin A. (2011). “Taylor-Galerkin method for advection-diffusion 

equation”, Kybernetes, Emerald Group Publishing Limited, Vol. 40, No. 5/6, pp. 762-777, 

DOI: 10.1108/03684921111142304. 

[3]  Dehghan M. (2004). “Weighted finite difference techniques for the one-dimensional 

advection-diffusion equation”, Appl. Math. Comput., Elsevier, Vol. 147, No. 2, pp. 307-

319, DOI: 10.1016/S0096-3003(02)00667-7. 

[4]  Dhawan, S., Kapoor, S. and Kumar, S. (2012). “Numerical method for advection diffusion 

equation using FEM and B-splines”, Journal of Computational Science, Elsevier, Vol. 3, 

No. 5, pp. 429-437, DOI: 10.1016/j.jocs.2012.06.006. 

[5] Goh, J., Abd Majid, A. and Ismail, A. I. M. (2012). “Cubic B-spline collocation method 

for one-dimensional heat and advection-diffusion equations”, Journal of Applied 

Mathematics, Hindawi Publishing Corporation, Vol. 2012, DOI: 10.1155/2012/458701. 

[6] Irk D., Dag I. and Tombul M. (2015), “Extended Cubic B-Spline Solution of the 

Advection-Diffusion Equation”, KSCE Journal of Civil Engineering, Springer, Vol. 19, 

No. 4, pp. 929-934, DOI: 10.1007/s12205-013-0737-7. 

[7]  Jiwari R. (2012), “A Haar wavelet quasilinearization approach for numerical simulation 

of Burgers’ equation”, Computer Physics Communications, Elsevier, Vol. 183, No. 11, 

pp. 2413-2423, DOI: 10.1016/j.cpc.2012.06.009. 

[8]  Jiwari R. (2015), “A hybrid numerical scheme for the numerical solution of the Burgers’ 

equation”, Computer Physics Communications, Elsevier, Vol. 188, pp. 59-67, DOI: 

10.1016/j.cpc.2014.11.004. 

[9]  Kaya, B. (2010). “Solution of the advection-diffusion equation using the differential 

quadrature method”. KSCE Journal of Civil Engineering, Springer, Vol. 14, No. 1, pp. 69-

75, DOI: 10.1007/s12205-010-0069-9. 

[10]  Korkmaz A. and Dag I., (2012). “Cubic B‐spline differential quadrature methods for the 

advection‐diffusion equation”, Int. J. Numer. Method. H., Vol. 22, No. 8, pp.1021-1036, 

DOI: 10.1108/09615531211271844. 

[11]  Korkmaz A. and Dag I. (2016). “Quartic and quintic B-spline methods for advection 

diffusion equation”, Appl. Math. Comput., Elsevier, Vol. 274, pp.208-219, DOI: 

The Galerkin Finite Element Method for Advection …      /   Sigma J Eng & Nat Sci 37 (1), 119-128, 2019 



128 

 

10.1016/j.amc.2015.11.004.  
[12]  Kumar, A., Jaiswal, D. K. and Kumar, N. (2009). “Analytical solutions of one-

dimensional advection-diffusion equation with variable coefficients in a finite domain”, J. 

Earth Syst. Sci., Springer India, in co-publication with Indian Academy of Sciences, Vol. 

118, No. 5, pp. 539-549. 

[13]  Mohebbi A. and Dehghan M. (2010). “High-order compact solution of the one-

dimensional heat and advection-diffusion equations”, Appl. Math. Model., Elsevier, Vol. 

34, No. 10, pp. 3071-3084, DOI: 10.1016/j.apm.2010.01.013. 

[14]  Nazir, T., Abbas, M., Ismail, A. I. M., Majid, A. A. and Rashid, A. (2016). “The 

numerical solution of advection–diffusion problems using new cubic trigonometric B-

splines approach”, Appl. Math. Model., Elsevier, Vol. 40, No. 7, pp. 4586-4611, DOI: 

10.1016/j.apm.2015.11.041. 

[15]  Prenter, P.M. (1975). Splines and variational methods, John Wiley& Sons, Inc., New 

York, pp. 87-107. 

[16]  Sari M., Guraslan G. and Zeytinoglu A. (2010). “High-Order finite difference schemes for 

solving the advection-diffusion equation”, Math. Comput. Appl., Multidisciplinary Digital 

Publishing Institute, Vol. 15, No. 3, pp. 449-460, DOI:10.3390/mca15030449. 

[17]  Sharma, D., Jiwari, R. and Kumar, S. (2012). “Numerical Solution of Two Point 

Boundary Value Problems Using Galerkin-Finite Element Method”, International journal 

of nonlinear science, Vol. 13, No. 2, pp. 204-210. 

[18]  Yadav, O.P. and Jiwari, R. (2017), “Finite element analysis and approximation of 

Burgers’‐Fisher equation”, Numerical Methods for Partial Differential Equations, Wiley 

Online Library, Vol. 33, No. 5, pp. 1652-1677, DOI: 10.1002/num.22158. 

[19]  Verma, A., Jiwari, R. and Koksal, M.E. (2014), “Analytic and numerical solutions of 

nonlinear diffusion equations via symmetry reductions”, Advances in Difference 

Equations, Springer International Publishing, Vol. 2014, No. 229, DOI:10.1186/1687-

1847-2014-229. 

M. Zorsahin Gorgulu, D. Irk     / Sigma J Eng & Nat Sci 37 (1), 119-128, 2019 


