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ABSTRACT 

 

In this paper, we introduce some new Fibonacci difference sequence spaces
0

ˆ( , )Ic M F , ˆ( , )Ic M F , 

ˆ( , )I M F
 and ˆ( , )M F

 by using the idea of Orlicz function and the Fibonacci difference matrix F̂  

defined by Fibonacci sequence. We study some topological and algebraic properties on these spaces. 

Furthermore, we study some inclusion relations concerning these spaces. 

Keywords: Fibonacci difference matrix, Fibonacci I − convergence, Fibonacci I −  Cauchy, Fibonacci 

I − bounded, Orlicz function.  

 

 

1. INTRODUCTION 

 

Let ℕ and ℝ, denote the sets of all natural and real numbers, respectively. By  , we denote 

the vector space of all real sequences. Any vector subspace of   is called a sequence space. 

Recall that in [18], let X  be a nonempty set, then a family 2XI   (the class of all subsets of 

X ) is said to be an ideal in X  if and only if (i) Ø I , (ii) for each ,A B I  we have 

A B I  , (iii) for each A I  and B A  we have B I . An ideal 2XI   is said to be 

nontrivial if I Ø  and X I  and a nontrivial ideal I  is said to be an admissible ideal in X  

if   :I x x X  . A nonempty of sets 2XF  is a filter on X  if and only if  (i) 

ØF , (ii) ,BA F  implies that BA F , (iii) for each A F  and B A  we 

have BF . For each ideal I   there is a filter ( )IF  corresponding to I  (filter associate with 

 
* Corresponding Author: e-mail: vakhanmaths@gmail.com, tel: (+) 9411803618  

 

Sigma Journal of Engineering and Natural Sciences 

Sigma Mühendislik ve Fen Bilimleri Dergisi 

 



144 

 

ideal I ), that is, ( ) { : }cI K X K I=  F , where \cK X K= . Depending on the  

structure of admissible ideals of subsets ℕ, Kostyrko et al. [18] defined the notion of I −   

convergence as generalization of the notion of statistical convergence  which was introduced by 

Fast [8] and Steinhaus [26] independently. Later on, the notion of I −  convergence was further 

investigated from the sequence space point of view and linked with the summability theory by 

Salat et al. [24]. Throug hout the paper, by 
0

Ic , 
Ic  and 

I


 we denote for the spaces of all I −

null, I − convergent and I − bounded sequences, respectively. 

The Fibonacci sequence ( )nf  for {0,1,...}n defined by the linear recurrence equalities 

0 1 1f f= =  and
1 2n n nf f f− −= + , 2n  . Some basic properties of Fibonacci numbers are 

given in [17]. The Fibonacci sequence was firstly used in the theory of sequence spaces by Kara 

and Basarir [9]. Later, Kara [10] has introduced a new band matrix ( )ˆ
nkF f=  by using the 

Fibonacci sequence ( )nf  and defined the sequence space 

 

( ) ( ) 1
1

1

ˆ : sup
n

n n
n n n

n n

f f
F x x x x

f f




+
 −

+

  
= =  −   
    

 

which is derived by the matrix domain of F̂  in the sequence space 


 (the class of all 

bounded sequence), where the matrix ( )ˆ
nkF f=  defined as follows: 

 

( )

( )

( )

1

1

, 1

ˆ ,

0, 0 1or ,

n

n

n
nk

n

f
k n

f

f
F f k n

f

k n k n

+

+


− = −



= = =

   − 

  

 

for all ,n k ℕ. Afterward, the Fibonacci matrix  F̂  was used to define some spaces of 

Fibonacci difference null and convergent sequence by Basarir et al. [1]. Quite recently, Khan et 

al. [15] have introduced and examined the new Fibonacci difference sequence spaces by means of 

the infinite Fibonacci matrix domain of F̂  and the notion of I − convergence. That are, 
 

  
( ) ( ) ( ) ˆ ˆ:n nX F x x F x X= =  

 
 

for  0, ,I I IX c c= where the sequence ( )( )ˆ
nF x  for {0,1,...}n  which is frequently 

used as the F̂ − transform of a sequence ( )nx x =  , defined as follows: 
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( ) ( )

0
0 0

1

1
1

1

, 0

ˆ 1.2

, 1 for all .

n

n n
n n

n n

f
x x n

f
F x

f f
x x n n

f f

+
−

+


= =


= 
 −  


 

 

 

In order to give a fuller knowledge to the readers on the Fibonacci sequence spaces see the 

references [2,3,5,7,11,16]. Recall in [20] that an Orlicz function is a function 

:[0, ) [0, )M  →  , which is continuous, convex and non-decreasing with 

( ) ( )0 0, 0M M x=  ,  and ( )M x →  as x→ . If the convexity of an Orlicz function 

is replaced by ( ) ( ) ( )M x y M x M y+  +  then this function is called Modulus function, 

which was introduced by Nakano [22] and it was further investigated with applications to 

sequences by Maddox [27]. 
 

Remark.1.1: 

It is well known if M  is a convex function and ( )0 0M = , then ( ) ( )M x M x   for all 

  with 0 1  . 

An Orlicz function M  is said to satisfy 
2 − condition for all values of u  if there exists a 

constant 0K   such that ( ) ( )M Lu KLM u  for all values 1L   (see [20]). Lindenstrauss 

and Tzafriri [21] used the idea of Orlicz function to define the sequence space 
 

( )
1

: for some 0
n

M n

n

x
l x x M 





=

   
= =     
   

 ,

 

 

which is called an Orlicz sequence space. This space is a Banach space with the norm 

1

inf 0, 1
n

n

x
x M





=

   
=    

   


 

and the space 
Ml  is closely related to the space pl  which is an Orlicz sequence space with 

( ) pM t t=  for 1 p  . Orlicz function was used to define sequence spaces by Parashar and 

Choudhary [23], Khan et al. [12]. Later on, with the help of the notion of I − convergence, 

Tripathy and Hazarika [28] introduced some new sequence spaces defined by Orlicz function and 

further studied by Khan et al. [4,13,14] and many others.  
 

Now, we recall some definitions and lemmas that will be used throughout the article. 
 

Definition.1.1: [8,26] A sequence ( )nx   is said to be statistically convergent to a number 

 ℝ if, for every 0  , the natural density of the set  : nn x  −  ℕ equal zero. 

And we write lim nst x− = . In case 0=  then ( )nx   is said to be st − null. 
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Definition.1.2: [24] A sequence ( )nx   is said to be I −  convergent to a number  ℝ 

if, for every 0  , the set ℕ : nn x I −   . And we write lim nI x− = . In case 

0=  then ( )nx   is said to be I − null.  
 

Definition.1.3: [18] A sequence ( )nx   is said to be I − Cauchy if, for every 0  , there 

exists a number ( )N N =  such that the set ℕ : n Nn x x I −   . 
 

Definition.1.4: [14] A sequence ( )nx   is said to be I − bounded if there exists 0K  , 

such that, the set ℕ : nn x K I   . 
 

Definition.1.5: [14] Let ( )nx   and ( )nz   be two sequences. We say that n nx z=  for 

almost all n  relative to I  (in short . . . .a a n r I ) if the set ℕ :n x z I   . 
 

Definition.1.6: [24] A sequence space E  is said to be solid or normal, if ( )n nx E   

whenever ( )nx E   and for any sequence of scalars ( )n   with 1n  , for every 

n . 
 

Definition.1.7: [14] A sequence space E  is said to be sequence algebra, if 

( ) ( ) ( )*n n n nx z x z E=    whenever ( ) ( ),n nx z E . 
 

Definition.1.8: [24]  Let  1 2: ...iK n n n=     ℕ  and E  be a sequence space. A 

K − step space of E  is a sequence space 
 

( ) ( ) :
i

E

K n nx x E =    

 

A canonical preimage of a sequence ( )
i

E

n Kx   is a sequence ( )ny   defined as 

follows:

 
  

,if

0,otherwise.

n

n

x n K
y


= 
  

 

A canonical preimage of a step space
E

K   is a set of canonical preimages of all elements in

E

K . i.e., y  is in canonical preimage of 
E

K  iff y  is canonical preimage of some element

E

Kx  . 
 

Definition.1.9: [24] A sequence space E  is said to be monotone, if it is contains the canonical 

preimages of it is step space. (i.e., if for all infinite K  ℕ and ( )nx E  the sequence 

( )n nx E  , where 1n =  for n K  and 0n =  otherwise, belongs to E ). 
 

Lemma.1.1: [24] Every solid space is monotone. 
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Lemma.1.2:  [25] Let ( )K IF  and M  ℕ. If M I , then 
 

M K I  . 
 

Lemma.1.3: [19] If 2I  ℕ and M  ℕ. If M I , then M K I  . 

 

2. MAIN RESULTS 

 

In this section, by using the idea of Orlicz function and the Fibonacci matrix F̂  we introduce 

some new Fibonacci difference sequence spaces. Further, we present some inclusion theorems 

and study some topological and algebraic properties on these resulting. Throughout the article, we 

suppose that the sequence ( )nx x =   and  ( )( )ˆ
nF x  are connected with the relation ( )1.2  

and I  be an admissible ideal of subset of ℕ.   
 

  
 

We write 
 

( ) ( ) ( ) ( )0 0
ˆ ˆ ˆ, : , , , 2.5I Im M F c M F M F= 

 
 

and 
 

( ) ( ) ( ) ( )ˆ ˆ ˆ, : , , . 2.6I Im M F c M F M F= 

 
 

Theorem.2.1: For any Orlicz function M , the classes of sequences ( )ˆ,Ic M F , ( )0
ˆ,Ic M F

( )ˆ,Im M F  and ( )0
ˆ,Im M F  are linear spaces. 

 

Proof: We shall prove the result only for the space ( )ˆ,Ic M F . The others can be treated 

similarly. Let ( )nx x= , ( )ny y=  be two arbitrary elements of the space ( )ˆ,Ic M F
 
and 

,   are scalars. Then for given 0  , there exist positive numbers 1  and 2  such that 
  

  

 

 

(2.1) 

 

 

 

(2.2) 

 

 

 

(2.3) 

 

 

 

(2.4) 
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                               (2.7) 
 

and 
 

                               (2.8) 
 

Let  3 1 2max 2 ,2    = . Since M  is non- decreasing and convex function, we 

have 
 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 1 2

3 3 3

1 2

1 2

ˆ ˆ ˆ ˆ

ˆ ˆ

.

n n n n

n n

F x F y F x F y
M M

F x F y
M M

     

  

 

 

   − − − − −
    +
   
   

   − −
    +
   
     

 

Now, from ( )2.7  and ( )2.8 , we have 

Therefore, 

( ) ( )ˆ,I

n nx y c M F +  . Hence ( )ˆ,Ic M F  is a linear space. 

 

Theorem.2.2. The spaces ( )0
ˆ,Im M F  and ( )ˆ,Im M F  are Banach spaces normed by 

 

( )
( )

( )
1

ˆ
ˆ inf 0 :sup 1 , 2.9

n

n
n n

F x
F x M





=

  
  =   

    

  

 

Proof: The proof of this result is easy, so omitted. 
 

Theorem.2.3: Let 1M , 2M
 
be Orlicz functions that satisfy the 

2 - condition. Then 
 

(a). ( ) ( )2 1 2
ˆ ˆ, ,W M F W M M F  , 

(b).  ( ) ( ) ( )1 2 1 2 0 0
ˆ ˆ ˆ, , , for , , ,I I I IW M F W M F W M M F W c c m m = + =

.
 

 

Proof: (a).  Let ( ) ( )0 2
ˆ,I

nx c M F . Then there exists 0   such that 
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                                                                  (2.10) 
 

Let 0   and choose   with 0 1   such that ( )1M t   for 0 t   . Write 
 

( )
( )

2

1

ˆ
ˆ n

n

n

F x
F y M





=

 
 =
 
 


 

 

and consider 
 

 
 

By the Remark 1.1, we have 
 

                                                              (2.11) 
 

For ( )F̂ y
n

 , we have 

( )
( ) ( )ˆ ˆ

ˆ 1
F y F y
n nF y

n  
  +

 
 

Since 1M  is non decreasing and convex, it follows that 
 

( )( )
( )

( )
( )

1 1 1 1

ˆ ˆ21 1ˆ 1 2 .
2 2

n n

n

F y F y
M F y M M M

 

   
 +  +   

   
     

 

Since 1M  satisfies 2 − condition, we have 

 

 

Hence  
 

                                                (2.12) 
 

From above equations ( )2.10 , ( )2.11  and ( )2.12 , we have ( ) ( )0 1 2
ˆ,I

nx c M M F  . 

Thus ( ) ( )0 2 0 1 2
ˆ ˆ, ,I Ic M F c M M F  . The other cases can be proved similarly. 

 

(b)  Let ( ) ( ) ( )0 1 0 2
ˆ ˆ, ,I I

nx c M F c M F  . Then there exists 0   such that 

 

 

( )( )
( )

( )
( )

( )
( )

( )1 1 1 1

ˆ ˆ ˆ1 1ˆ 2 2 2 .
2 2

n n n

n

F y F y F y
M F y K M K M K M

  
 + =
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and 
 

 
 

The rest of the proof follows from the following equality 
 

 
 

Let be take ( )2M x x=  and ( )1M x x=  for all [0, )x   in the Theorem ( )2.3  (i). 

We have the following result. 
 

Corollary: ( ) ( )ˆ ˆ,W F W M F  for 
0 0, , , .I I I IW c c m m=  

 

Proof: The proof of the result easy, so omitted. 
 

Theorem.2.4: The spaces ( )0
ˆ,Ic M F  and ( )0

ˆ,Im M F  are solid and monotone. 

 

Proof: We will prove the result for ( )0
ˆ,Ic M F  and for ( )0

ˆ,Im M F  the result can be proved 

similarly. Let ( ) ( )0
ˆ,I

nx x c M F=  , then for given 0    there exists 0   such that 

 

                                                                                 (2.13) 
 

Let  ( )n =  be a sequence of scalars with 1   for all n ℕ. 

Therefore, 
 

 
( ) ( ) ( )ˆ ˆ ˆ

n n nF x F x F x
M M M




  

     
      
     
     

 for all n ℕ. 

 

Thus, from the above inequality and ( )2.13 , we have 
 

 
 

implies that 
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Therefore, ( ) ( )0
ˆ,I

nx c M F  . The monotone of the spaces follows from the Lemma1.1 . 

 

Proposition 2.5: The spaces ( )ˆ,Ic M F  and ( )ˆ,Im M F  are neither monotone nor solid in 

general. 
 

Proof: The proof of this result follows from the following example. 
 

Example 2.1.   Let 
fI I=  and  ( ) 2M x x=  for all [0, )x  . Consider the K– step space 

KE  of E  defined as follows: 

Let ( )nx E  and ( )n Ky E  be such that 
 

, if is even

0, otherwise.

n

n

x n
y


= 


 

 

Consider the sequence ( )nx  as 1nx =  for all n ℕ. Then ( ) ( )ˆ,I

nx c M F  but its 

K– step space  preimage does not belong to ( )ˆ,Ic M F . Thus ( )ˆ,Ic M F  is not monotone. 

Hence ( )ˆ,Ic M F  is not solid by Lemma1.1 . 

 

Proposition.2.6: The spaces ( )ˆ,Ic M F  and ( )0
ˆ,Ic M F  are not convergent free in general. 

 

Proof: The proof of this result follows from the following example. 
 

Example 2.2.   Let 
fI I=  and  ( ) 3M x x=  for all [0, )x  . Consider the sequences ( )nx  

and ( )ny  defined by  
1

nx
n

= and ny n=  for all n ℕ. Then ( )nx  belongs to 

( )ˆ,Ic M F  and  ( )0
ˆ,Ic M F , but ( )ny  does not belongs to  ( )ˆ,Ic M F  and ( )0

ˆ,Ic M F . 

Hence the spaces are not convergence free. 
 

Theorem.2.7: The spaces ( )0
ˆ,Ic M F  and  ( )ˆ,Ic M F  are sequence algebra. 

 

Proof: We prove that  ( )0
ˆ,Ic M F  is sequence algebra. For the space   ( )ˆ,Ic M F  the result 

can be proved similarly. Let ( ) ( ) ( )0
ˆ, ,I

n nx x y y c M F= =  . Then 

 

 
 

and 
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Let 1 2 0  =  . Then we can show that 
 

 
 

Thus, ( ) ( )0
ˆ,I

n nx y c M F  . Hence, ( )0
ˆ,Ic M F  is sequence algebra. 

 

Theorem.2.8: Let M  be an Orlicz function. Then ( ) ( ) ( )0
ˆ ˆ ˆ, , ,I I Ic M F c M F M F   

and the inclusion are proper. 
 

Proof: Let ( ) ( )ˆ,I

nx c M F . Then there exists  ℝ and 0   such that 

 
 

We have 
 

( ) ( )ˆ ˆ
1 1

.
2 2 2

n nF x F x
M M M

  

   −  
    +  
        

 

 

Taking supremum over n  on both sides we get ( ) ( )ˆ,I

nx M F . The inclusion 

( ) ( )0
ˆ ˆ, ,I Ic M F c M F  is obvious. The inclusion is proper follows from the following 

example. 
 

Example 2.3.   Let dI I=  and  ( ) 2M x x=  for all [0, )x  . 

 

(a). Consider the  sequence  ( )nx  defined by  1nx =  for all 

n ℕ. Then ( )nx  belongs to ( )0
ˆ,Ic M F , but ( ) ( )0

ˆ,I

nx c M F . 

(b).  Consider the  sequence  ( )ny  defined as 
 

if  is even

otherwis0, e

,

.

2
ny

n
= 


 

 

Then ( ) ( )ˆ,I

ny M F , but ( ) ( )ˆ,I

ny c M F . 

 

 

V.A. Khan, K.M.S. Alshlool, A.H. Makharesh, et. al.,            / Sigma J Eng & Nat Sci 37 (1), 143-154, 2019 



153 

 

3. CONCLUSIONS 

 

In this present paper, we have introduced and studied some new Fibonacci difference 

sequence spaces, ( )0
ˆ,Ic M F , ( )ˆ,Ic M F , ( )ˆ,I M F

 and ( )ˆ,M F
 generated by 

Fibonacci difference matrix F̂  and Orlicz function. Some inclusion relations concerning these 

spaces are studied. Further, some topological and algebraic properties on these spaces are 

investigated. These definitions and results provide new tools to deal with the convergence 

problems of sequences occurring in many branches of science and engineering.  
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