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ABSTRACT

In this paper, an important integral equality is derived. Then, we establish several new inequalities for some
twice differentiable mappings that are connected with the celebrated Hermite-Hadamard type and Ostrowski
type integral inequalities. Some of the new inequalities are obtained by using Griiss inequality and Chebyshev
inequality. The results presented here would provide extensions of those given in earlier works

Keywords: Hermite-Hadamard inequality, Ostrowski inequality, Griiss inequality, CebySev inequality,
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1. INTRODUCTION

In 1938, Ostrowski established the integral inequality which is one of the fundamental
inequalities of mathematics as follows (see, [19]):

Let f Z[&,b]—)R be a differentiable mapping on(a,b) whose derivative
f :(ab)—>R is bounded on (a,b), ie, |f'], = sup|f'(t)<oo. Then, the
te(a,b)

inequality holds:
1 (x—2b)?
f(x)——jf(t)dt Rl (b—a)|f’

1
forall xin [@,D]. The constant 2 is the best possible.

Inequality (1.1) has wide applications in numerical analysis and in the theory of some special
means; estimating error bounds for some special means, some mid-point, trapezoid and Simpson
rules and quadrature rules, etc. Hence, inequality (1.1) has attracted considerable attention and
interest from mathematicians and researchers. Due to this, over the years, the interested reader is
also refered to ([1]-[4], [9], [12], [13], [15], [20]-[28]) for integral inequalities in several
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independent variables. In addition, the current approach of obtaining the bounds, for a particular
quadrature rule, have depended on the use of Peano kernel. The general approach in the past has
involved the assumption of bounded derivatives of degree greater than one.

Definition 1. The function f :[@,b]c R — R, is said to be convex if the following
inequality holds
f(AX+(L-A)y) <A (X)+1L-2)f(y)
forall X,y €[a,b] and 4 € [0,1]. We say that T is concave if (— f) is convex.

The following inequality is well known in the literature as the Hermite-Hadamard integral
inequality (see, [8]):

Tl PR TN PR G AR ) 12)
2 b—a-a 2
where T : 1 R — R is a convex function on the interval | of real numbers and

a,bel witha<hb.

A largely applied inequality for convex functions, due to its geometrical significance, is
Hadamard's inequality, (see [7], [29]-[33]) which has generated a wide range of directions for
extension and a rich mathematical literature.

Integration with weight functions is used in countless mathematical problems such as
approximation theory, spectral analysis, statistical analysis and the theory of distributions. Griiss
developed an integral inequality [14 in 1935. The integral inequality that establishes a connection
between the integral of the product of two functions and the product of the integrals is known in
the literature as the Griiss inequality. The Griiss inequality is as follows.

Theorem 1. Let f g [a,b] —> R be integrable functions such that @ < f(X)< D
and i < g(x)< Y forall X €[a,b], where @, D, ,"V are constants. Then

[ 09k [ f (X [ glx)a < 2 (@-p)(¥ )

where the constant % is sharp (see, [14]).

In [18, p.40], Cebysev's inequality is given by the following Theorem:
Theorem 2. Let f g - [a,b] — R be integrable and monotone functions on (a,b) and
let P be a positive and integrable function on the same interval. Then

[ p00 t(x)a(x)dx [ pe)dx= [ p(x)g(x)ax | p(x)g(x)ex

with equality if and only if one of the functions T, g reduces to a constant f and g are

monotone in the opposite sense, the reverse inequality holds.
In [5], Bullen proved the following inequality which is known as Bullen's inequality for
convex function.

Let T : 1 cR—R be a convex function on the interval | of real numbers and
a,b e | with a <b. The inequality

1 f(x)d <_{ (a+bj+f(a)+f(b)}
b-a 2 2 2
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In this study, using twice differentiable functions, we give new inequalities that are connected
with the celebrated Hermite-Hadamard type and Ostrowski type integral inequalities. The results
presented here would provide extensions of those given in earlier works.

2. MAIN RESULTS

In order to prove our main results we need the following lemma:
Lemmal. Let f: | © R — R be twice differentiable function on |° (the interior of the

interval | ) such that " e L[a,b] where a,b e |"with a<b. Then the following
identity holds:

@j K, (x.t) f(t)dt

_ %{(b—x);:gx—a)z +h(x—a%bﬂ f'(x) @.1)

(a-t)t-a-ht2) ,a<t<x
K,(x,t) =
(b-t)(t-b+h22) ,x<t<b

where h € [0,1] and &+ hb’TaS XSb—hb?a.
Proof . Firstly, we arrange the operations:

iKh(x,t) f"(t)dt
= E(a—t)(t ~a- hb;zaj f(t)dt +i(b —t)(t -b+ hb_TaJ f(t)dt

fe-af o2 fe-a) o

a a

_j‘(t “bP f(t)dt hb;za b (t—b)f"(t)dt.

X X
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By integration by parts twice, we have

j’Kh(x,t)f"(t)dt

= —(x—af f'(x)+2(x-a)f(x)-2

O ) x¢
—h

22

+“(b;a)[<x a) (0)+ £(@)- 1]+ b xF 11(c)+ 20-0)1(x)
j (t)dt+ )[f(b)—f(x)—(b—x)f'(x)].

If we arrange the equality (2.2), then we obtain desired equality (2.1). Hence, the proof is
completed.

Remark 1. InLemmal,let h=21and X = a—zb Then, we have the equality

2(b1— a)iK{aZb ,t} £7(t)dt
:%{f[a;b} f(a)gf(b)}_(bia)if(t)dt

which is proved by Kirmaci and Dikici in [16] and Minculete et. al in [17].
Theorem 3. Let f : | © R — R be twice differentiable function on |, the interior of the

interval |, where a,bel® with a<b.1f f" : (a,b)—>R is bounded on [a,b],

< 00, then we have the inequality

te[a,b]

|Sh(f)|g"f,,||w{h3(b2;a)2+(x—a)3+(b—x)3 _(b-ay {1 (x—50)? }

6(b—a) 4 |4 (b-a)?

forall he[0,1] and a+h22 <x<b-hb2,

Proof. We take absolute value of (2.1). Using bounded of the mapping f", we find that
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b
th(x,t)f t)dt

T

K, (%, t)| f"(t) dt

a

I

a

”

Kh

dt+ﬂb flt—b+n22
2

X
26 [l
a

"

.

0

" 2b-a) -

Now, let us observe that

Jlt- plft—glt= [ p)(a—t)dt+ [ p)it-aet

p

_@-pf (r-p) (a-p)r-pf
3 3 2
forall I, P, suchthat P < Q < T. Then we get that

b-al, _ h*(b-a)’ +(x—a)3 _h(b—a)(x—a)2
2 24 3 4

I|t—a|t—a—h
and
te wh _ponb=al . hib-af (b-xf | (b—a)b-x)
[Jt=blt—b+h=—=dt + h .
2 | 24 3 4

Then, we have

L= h®(b—a)’ +(x—a)3+(b—x)3 —hb;a[(x—a)er(b—x)z]

12 3
and the proof is thus completed.
Remark 2. If we choose h=1 with X —a—+b in Theorem 3, then we have the following
inequality

0

b_a2 "
2ol

%{f(a;b} f(a);r f(b)}biaif(t)dt <

which is given by Dragomir and Sofo in [10].
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Remark 3. If we choose h=0 and X =aT+b in Theorem 3, then we have the following

midpoint inequality
a+b 1%
fl — |[-———| f(t)dt| <
( 2 j b—a! ()

which is given by Cerone et al. in [6].
Theorem 4. Let T I | © R = R be twice differentiable function on | °, the interior of the

b-a)f,.,
-2l

interval |, where a,bel” with a<b. If |f”

is belong to L, [a, b], p>1 and
% + % =1, then we have the inequality

‘f b b-a)" b-a b-a g (2.3)
S, (f)< 20-3) Z[th B(g+1q+1)+ ( — X j (hz b— xﬂ
h

for all he[Ol] and a+hb7£ X<b-

function.
Proof . We take absolute value of (2.1). Using Holder's inequality, we find that

|sh(f)|<2(b j|K X, )| f"(t) dt

bT, and where B(p q) is Euler's Beta

1 1

2(b 2 (£|f”(t)| dt] (£|Kh(x,t) dtJ o
LN )
_2(b—a)(£|K dtJ

n
L
We need to calculate the integral K to prove the theorem.

" 2(b-a)

b
K = [IK, (xt)'dt
¢ (2.5)

t b-al

—tf'ft-a- t—b+h—Z
2

dt

a
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a+ht3:E
2

= (t—a)q[a+hb;2a—tjth+

a
X
arhlZ

(t—a)q(t—a—hb_a)th

2

o
[+

b-a

S q

(b—t)q(b—hb_Ta—tj dt+

b q
(b—t)q(t—b+hb;2aj dt

b-a

2

b-h

b
+

=L+, +1,+1,
Now, we calculate four integrals above . For integral |1, using the change of variable

t—-a= h%au and from dt = hb;zadu, we write

a+h9:g
2

L= (t—a)“(a+ hb;za—tjth

a

2q+1 1
=( b;zaj .[uq(l—u)qdu (2.6)
0

2q+1
- (hb;zaj B(q+1q+1)

and, for integral |,, using the change of variable t—b + hb;za = hb*Tau and from

dt = hb;zadu, we write

b b—a q b—a 20+1 1
= (b—t)q(t—b+h2j dt:(hzj [-u)u'du

b-a 0
b-n=2 2.7)

2g+1
- (hb;aj B(q+1q+1)

1
where B(p,q)=Ju"*(1-u)*"du, (p,q>0)
0

Before calculating the other integrals, let us define that
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d
M(c,d)=fuq(u—c)qdu.
C
If we use the change of variable t —a = U for |2 and b—t=u for |3, then we get

l, = j (t- a)(t a- hbTajdt

ew—hkF—a
2
= Xr uq[u _ hﬁjqdu (2.8)
b-a 2
h—=
2
- M(h—b_a,x—a)
2

and

uq(u —hﬁjqdu (29)
a 2

Substituting (2.6- (2.9) in (2.5), we obtain the equality

b b—a 2q+1
[IK, (. t) dt = 2(h2j B(q+1,q+1)

+M[h“,x—a)+M(hb_a,b—xJ.
2 2

If we substitute the equality (2.10) in (2.4), then we easily deduce the required inequality (2.3)
which completes the proof.

Corollary 1. Let f be asin Theorem 4. If we use the equality

M(c,d)zi Jdu = Zq

where  >1 and € N, then we obtain

(2.10)

) I,.q—k dq+k+1 _Cq+k+1

(q-kJk! qgq+k+1
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£ 20
5.(1)< Al {4ﬁb aj B(g+1q+1)

2(b—a) 2

q q|(_1)k (@)q—k (X _ a)q+k+1 " (b _ X)q+k+1 _ z(h(bz_a))q+k+l %
R RA T i -

Corollary 2. Under the same assumptions of Theorem 4 with X = aT”’ and h =1, then the

following inequality holds:

;{f(a;b}rf() } 1 if

(b—a)*:[B(q+Lq+1)]

8 -
Remark 4. If we choose X —aT”’ and h=0 in Theorem 4, then we have the following
midpoint inequality
1
a+b 1 b—a)"
f(———j———— () < 0=y
2 b-a 8(2q+1) °

which is proved by Dragomir et al. in [11].
Theorem 5. Let f : | © R — R be twice differentiable function on |° (the interior of the

interval | ) suchthat " e L[a,b] where @,b € 1" with a <b. If the mappings
(@-t)t-a-h22)f"(t)  ,telax)
olt)=
b-t){t-b+h22)f"(t)  ,te[xb]

is convex on [a, b], then we have the inequality

(:3:5)2)3 S,(f)< zg)(i(l)+%(b—x)(x b+hb7a)f '(x) 2.11)

F&)_(x—af(a—x+hb—ajf(x+a)+(b—xT(x—b+hb—ajf(x+b)
L2 2 2 2 2 2 2 2
forall he[0,] and a+h22 < x<b-hb2,

Proof. If we use left hand side of Hermite-Hadamard's inequality for the mappings ¢, then we
get

1 7 X+a x—a)a-x ,b-a X+a
—— | olt)dt > = +h f” 2.12
alot ¢[ 2 j ( 2 J( 2 "2 ) ( 2 j @1

a
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and

.[90 (x+bJ (b x)(x—b+hb—a]f”(x+b) 213)
2 2 2 2

The inequality (2.12) and (2.13) are multiplied by X—a and b—x, respectively. Then,
these two inequalities are added, we have

< [olt)dt = 2(60-a)s, (1) et

Applying the Bullen's inequality for the mappings @ , we get

X

ij(p(t)dt < qp[ag Xj+ o(a)+p(x)

X—a 2

:(x—a)[a—x+hb—a)f,,(x+a] (2.15)
2 2 2 2

+%(b—x)(x b+hb_2"")f )

and

biiw(t)dt < (p[x;b}r o(b)+¢(x)

2

:(x—bj[x—b+hb—ajf,,ﬂx+bj (2.16)
2 2 2 2

1 b-a

—(b- b+h——| f"(x).

2o x-ben®22 ()

The inequality (2.15) and (2.16) are multiplied by (x—a)/2 and (b—X)/Z,
respectively. Then, these two inequalities are added, we have

i(p(t)dtsF(x)+%(b—a)(b—x)(x o +h22 (0 e

Because of (2.14) and (2.17), we easily the deduce required inequality (2.11) which completes
the proof.

Remark 5. In Theorem 5, let h=1 and X = aT”’ Then we have the inequality

196



On the Generalized Integral Inequalities for ... / Sigma J Eng & Nat Sci 37 (1), 187-205, 2019

2
(b—a) f,[3a+bj+f,,(a+3bj
64 4 4
1l ¢(a+h f() f(b)]
2 2 2 (b
2
S(b—a) (o3a+b) - (a+3p
128 4 4
which is proved by Kirmaci and Dikici in [16] and Minculete et. al in [17]
Corollary 3. Under assumptions of Theorem 5 with h=0 and X=22, we have the

inequality
2
(b—a) f,,(3a+bj+f,,(a+3bj+4f,,(a+bj
128 4 4 2
1 7 a+b
<—— | f(t)dt-f
b—a! () ( 2 j

< (bgj)2 {f,,(BaIb}L f"(atfbﬂ.

Theorem 6. Let T : | c R — R be twice differentiable function on |° such that

y<t"<ponla,x)ad y <f"<u on[X,Db], where a,be I with a<b.if
f"is integrable on [a,b] , then we have the inequality

[a+b—2x]f’(x)+{4—hﬁ} f(x)

[ |~
QD

N—"

D e T
—
—

2(x—a)(b-x)

X b
hb‘a{f(a) } 1) dt—i f(t)dt
2 | x-a X—-as b—

(2.18)

X
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[

forall he[0,1] and a+h22 <x<b-hb2,
Proof . Using Griiss inequality, we ﬁnd that

éi(a t)[t a— hbTajf '(t)dt
+bfxf(b t)(t b+hb;2ajf”(t)dt

( ! I(a t)[t a- hb—aJdtjf @19

x—a)

ﬁj(b t)(t b+h—jdtj
_Z[m—n Ju=)+(m =0~ )]

Here, we have that

X%aj(a t(t a- hbTajf '(t)dt

= () 0+ 2102 [ 10t @20)

h(b-a)

" 2x—a) [(x—a) £'(x)+ f (@)~ f (x)]

and
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b-x
2 ¢ 2.21)
=(b-x)f'(x)+2f(x)-—— | f
(b—x) f()+ 21 (x)- = I (t)dt
h(b-a)
f(b)— f(x)—(b—x)f'(x)}
+2(b_x)[ (b)~ f (x)=(b—x) £'(x)]
Now, we calculate bounds m, N, m' and n'
2 2
m= sup (a—t)[t—a—hb_a) _h (b-a) , (2.22)
tela, x) 2 16

tefa, x 2

m = sup {(b—t)(t—b-f-hb_aJ}: h*(b—a) : (2.24)

n=inf ){(a—t)(t—a—hﬁ]}z(a—x)(x—a—hb;za], (2.23)

te[x,b] 2 16
C b-a b-a

n = inf {(b—t)(t—b+h—j}=(b—x)(x—b+h—j. (2.25)

te[x,b] 2 2

On the other hand,

X 2 3
j(a—t)(t—a—hb_ajdtzh(b_a)(x_a) _(x-a) , (2.26)
) 2 4 3
b 2 3
j(b—t)(t—b+hgjdt=h(b_a)(b_x) by 2.27)
) 2 4 3
X b
[fr)dt=f(x)- () [f(t)dt=f(b)- f'(x) (2.28)

If we substitute (2.20)-(2.28) in (2.19), then we obtain the inequality (2.18) which completes
the proof.

Corollary 4. In Theorem 6, let h=1 and X = aT”’. Then we have the inequality

1{f£a+b)+f(a)+f(b)} 1 if(t)dt_ﬂ[f'(b)_f'(a)]

2 2 2 " b-a 48

a
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Corollary 5. Under assumption of Theorem 6 with h=0 and X=aT+b, we have the
inequality

f(“bj_ljf(t)dt_m[ff(b)_ f’(a)i

24

(b-a)’
64

(=)l =7 )]

“For convenience, we give the following notations used to simplify the details of the next
theorem,

<

o, = [(t—a)(F(0)—K)dt = (x—a) F(x) f(x)+ F(a UL (2.29)
[(t-a)(f(t)-K)dt=(x—a) ' (x)- f(x)+ f(@) -k
az=j[a+hu—tj(f"(t) k)dt
= hb%a f’(a)—(x—a—hb_Taj f(x) (230)
b-a) k(_.b-a)
+f(x)- f(a)+—(x—a—h7j _E(th ,
a, = i(f "(t)-k)dt = f'(x)- f'(a)-k(x-a), (2.31)
.= [0 0 -at=—b-0) 10+ 10)- 1)k L e
o, = T(t—mhb;""j(f"(t)—k)dt
- (hb;a] f’(b)—(x—b+ hb_zaj f'(x) (2.33)
+f(x)—f(b)—;(x—b+hm)2+;[hb;a)2
a, =T(f"(t)—k)dt= f'(b)— f'(x)—k(b-x), (2:34)
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o, = f(t “a)(K - £r0)dt = k = (x_a) ()4 £(0)- (a), 2.35)

- ﬁ(hb—_ajz_ﬁ(x_a_hb—ajz (2.36)

+(x—a— hb;zaj f'(x)+ hb;zal f'(a)- f(x)+ f(a),

O3

(K = £(0)dt = K (x—2) + () - £'(x), @)

o, f(b (K = £)dt =—Fb)+ £ (x)+ (b—x) £/(x)+ K © - Ji 2.39)

X

o= f(t_m hb;za)(K o))t

X

[ x—brn2=2 ) fi()-n2=2 ¢ (2.39)
_[x b+h 5 jf(x) h - f'(b)
K b-a ? K b-a 2
+1(0)- 100+ (0252 - K fx-pn222,
06 = jl(K - f"(t))dt =K(b-x)+ 1”(X)— f,(b) (2.40)

Theorem 7. Let T 1 | © R —= R be twice differentiable function on |°,a,b € |° with
a<b.if f"e L[a,b] and K< "< K forall Xe [a, b],then we have the inequality

0y ) T ] 1 o o

b-a| 8 6 “2(b-a)| o, o,

(2.41)
<S,(f)

<
2(b-a)| a, o

1 {alaua‘tas}r k {h(b—a)((x_a)z+(b_x)z)_(x—a)3+(b—x)3}
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Proof. From Lemma 1, we have that
I, + 1, =2(b—a)S,(f)

where

|5

D C— <

(t- a)(a +h bTa —t] f"(t)dt

and

x'—,c’

= ((b- t)( b+ hb‘Taj £7(t)dt.
By integration by parts, we obtain

Et a(a+h tj( "(t)-k)dt = I, _k{(x—ga)s_h(b—a)(x—a)z}

4

and

i(t—a)(a+hb_2a—t)(K— f7(0)t = K{(X—a)"’ _h(b—a)(x—a)z}.s,

3 4
Also. we have
j: (t b+h2](f”(t)_k)dt: |6—k[(b_3x)3_h(b—a)gb—x)z}
and
i(b_ (t b+hb2aJ(K‘f”(t))dt=k[(b‘sxf_h(b—a)gb—x)z}_le_

Using Chebychev integral inequality, we find that

j‘(t_a)(a+hb;z""_tj(f"(t)_k)dt

a

<£(t a)(f"(t)—k)dti(aJrhb*Ta—t)(f”(t)—k)dt
) i(170) K)ot |

202
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j(t—a)(a+ hb;za—tj(K — £"(t))dt
i(t—a)(K "(t))dt [ (a+hb 2 _t)(K - f"(t))dt

<i< )(1°6)- k)dtia b+ ) (1) -k)at
) i(f”(t)—k)dt
and

i(b—t)[t b+hb—2aj(K—f”(t))dt
(b—t)(K - f"(t))dtJ(t—b+h252)(K — £"(t))dt
f( - (o)ot |

Substituting equalities (2.29)-(2.31) in inequality (2.47) and from (2.43), we have
[ (b-a)(x-af (x-a)]| aa
< pbabea) (x-a)], e,
4 3 oy
Substituting equalities (2.32)-(2.34) in inequality (.49) and from (2.45), we have

| <k'h(b—a)(b—x)2_(b—x)3 | Falts.
° 4 3 a,

X —T
o

>

<

Adding (2.51) and (2.52), we obtain

I+ 1 < k{h(bT_a)((x_a)2+(b_X)2)_ (x—a)

3 o, o

In a similar way, if we use equalities (45)-(50) and inequalities (32), (34), then we get

+(b—x)’ }_ N, | 04

3

o+ 1, > K{h(bT_a)((X—a)er(b_x)z)— (x—af

O3 Os

+(b—x) }_ 0,0, 0,05

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

. (253)

(2.54)

Using the inequalities (2.53), (2.54) and the equality (2.42), we obtain the inequality (2.41)

which completes the proof.
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a+h

Remark 6. If we choose h=1 and X =22 in Theorem 7, then Theorem 7 reduces to
Theorem 4 in [16].

2
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