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Abstract 

In the last few decades, many numerical methods have been developed and employed to solve for various types of linear and nonlinear 

equations due to challenges in the aspect of the implementation of governing equations and boundary conditions, computation time, 

algorithm complexity, accuracy, convergency, stability of the solution and so on. Of the numerical methods in the open literature, 

differential quadrature (DQM), differential transform (DTM), and finite difference (FDM) methods are expressed briefly with their 

algorithms and compared to each other for the modal analysis of beam and plate elements. For simplicity, shear strains effects are 

neglected for the chosen structural elements, and plate element is reduced to one-dimensional case up to chosen simply-supported 

boundary condition. Under these assumptions, computed non-dimensional natural frequencies by applying concerned methods are 

tabulated, and mode shapes are plotted. To understand the strength and accuracy of employed methods, numerical results in the high 

vibration modes are investigated, and it is seen that DTM gives faster and more accurate solutions while the results of DQM depend on 

chosen grid distribution and has less accurate than DTM.  However, the ease of implementation and accurate results for multi-

dimensional cases are pros properties of the DQM.  

Keywords: Dynamic Characteristics, Differential Quadrature, Differential Transform, Euler Beam, Finite Difference, Kirchhoff Plate.   

Kiriş ve Plak Elemanlarda Dinamik Karakteristiklerin Belirlenmesi 

için Kullanılan Bazı Sayısal Yaklaşımların Karşılaştırılması 

Öz 

Son yıllarda, temel denklemlerin ve sınır koşullarının kodlanması, hesaplama süresi ve algoritma karmaşıklığı azaltmak, çözümün 

doğruluğunu artırmak ve hızlı yakınsamasını sağlamak, çözümün kararlılığı artırmak vb. nedenlerden ötürü çeşitli türdeki doğrusal ve 

doğrusal olmayan denklemleri çözebilmek için birçok sayısal yöntem geliştirilmiştir. Bu çalışmada, literatürde sıkça kullanılan sayısal 

yöntemlerden; diferansiyel kareleme (DKY), diferansiyel dönüşüm (DDY) ve sonlu farklar (SFY) yöntemleri algoritmaları ile kısaca 

anlatılmış ve kiriş ve plakanın modal analizi için uygulanarak sonuçları birbirleriyle karşılaştırılmıştır. Seçilen yapısal elemanlarda 

kesme gerinmesi etkileri ihmal edilmiş, plaka elemanlar ise basit mesnetli sınır koşulu kullanılarak tek boyutlu duruma indirgenmiştir. 

Bu varsayımlar altında, anlatılmakta olan sayısal yöntemler uygulanarak boyutsuz doğal frekanslar hesaplanarak tablolaştırılmış ve mod 

şekilleri çizdirilmiş. Kullanılan yöntemlerin gücünü ve doğruluğunu anlamak için, yüksek titreşim modlarında sayısal sonuçlar 

irdelenmiş ve DDY'nin daha hızlı ve daha doğru çözümler verdiği, DQM'nin sonuçlarının ise seçilen düğüm noktaları dağılımına bağlı 

olduğu ve dolasyısıyla DDY'den daha az doğru olduğu görülmüştür. Ancak, uygulama kolaylığı ve çok boyutlu durumlar için doğru 

sonuçlar DKY'nin olumlu özellikleridir.  

Anahtar Kelimeler: Dinamik Karakteristikler, Diferansiyel Kareleme, Diferansiyel Dönüşüm, Euler Kiriş, Kirchhoff Plaka, Sonlu 

Farklar. 
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1. Introduction 

Solving partial and ordinary differential equations with 

satisfactory accuracy in structural mechanics or other fields of 

engineering is always a challenge for engineers in the last few 

decades. Therefore, numerous global and local numerical 

methods such as Adomian Decomposition, Differential 

Quadrature, Differential Transform, Finite Difference, Mesh Free 

Galerkin, Dynamic Stiffness, Transfer Matrix, Discrete Singular 

Convolution, Fourier Series, Rayleigh-Ritz, and Chebyshev-

Wavelet, etc. have been developed to solve a variety of 

complicated engineering problems in the literature. Of these 

numerical approaches, Bellman et al. (1972) firstly introduced the 

differential quadrature method (DQM) to solve various nonlinear 

partial differential equations accurately by transforming them into 

a set of algebraic expressions, and many researchers contributed 

to the development of this method in the following years. In this 

technique, approximate the derivatives of a differential function 

at a grid point are expressed by using weighting coefficients, and 

then weighted coefficients of all grid points in the discretized 

domain are summed to find a weighted linear sum of the function. 

For many problems discussed in the papers (Civan and 

Sliepcevich, 1984; Wang and Bert, 1993; Wang et al., 1993; Du et 

al., 1994; Du et al., 1995; Malik and Bert, 1996; Shu and Du, 

1997; Tornabene et al., 2009; Arikoglu and Ozkol, 2012; 

Tornabene et al., 2015; Yavuz and Ozkol, 2021), the technique 

gives satisfactory results in the case of chosen well-optimized 

spaces between grid points and well-determined weighting 

coefficients for suitable approximation functions. Ease of 

implementation of linear/nonlinear boundary conditions, less 

expensive computation methodology, low memory requests, 

simple algorithm scheme, solvability of complex geometries is a 

few of the prominent features. 

The differential transformation method (DTM) is another 

technique frequently used in computational mechanics, which is 

first introduced through Zhou’s circuit analysis studies (1986). By 

using this technique, the governing differential equations are 

transformed into recurrence relations with the help of a 

differential transformation table, and boundary conditions are 

stated as algebraic equations. Then, semi-analytical and numerical 

solutions based on Taylor series expansion are obtained for 

interested differential equations. In recent years, voluminous 

studies, especially related to vibration analysis of one-

dimensional structures (Malik and Dang, 1998; Malik and Allali, 

200; Chen and Ho, 1996; Chen and Ho, 1999 

 Yeh et al., 2006; Yalcin et al., 2009; Jang et al., 2001; Arikoglu 

and Ozkol, 2010), have been published due to promising highly 

accurate or exact results in a short time. 

The last method presented in this study is the finite difference 

method (FDM), which is the oldest -but still very useful- 

numerical method for the solution of differential equations. In this 

technique, differential equations and boundary conditions are 

stated as finite differences at a set of interconnected nodes within 

the computational domain. Similar to DQM, governing 

differential equations are expressed by a set of simultaneous 

algebraic equations, so the solution can be calculated easily by the 

computers. 

The objective of this study is to present a benchmark between 

the concerned method used in the determination of dynamic 

characteristics of structural elements before solving more 

complicated engineering problems and share the algorithm 

schemes of these methods. 

The study is organized as follows. In section 2, the governing 

differential equations for beam and plate elements with no shear 

stress assumption are expressed. In Section 3, numerical methods 

used in the modal analysis with the algorithms and discretized 

differential equations up to the concerning methods are given. In 

section 4, mode shapes and non-dimensional natural frequencies 

of the structural elements are presented. Ultimately,  the effect of 

boundary conditions, aspect ratio on the frequencies are 

investigated, and methods are compared with each other in the 

aspect of error and computation time. 

2. Governing Differential Equations 

In this section, the governing differential equations and 

boundary conditions for classical beam and plate theory are given 

in a non-dimensional form. Under these theories, it is assumed 

that beam and plate have no shear strains, are made of 

homogenous material, and have plane symmetry after 

deformation. 

2.1. Euler-Bernoulli Beam 

In one dimensional case, the Euler-Bernoulli beam model is 

preferred due to being the simplest beam model in the literature 

and giving reasonable results to demonstrate one-dimensional 

application. The mathematical model of the beam for free 

vibration can be given as. 

2 4

2 4

( , ) ( , )
0

w x t w x t
A EI

t x


 
 

 
 (1) 

In a non-dimensional form, the governing differential equation of 

the Euler-Bernoulli beam with uniform cross-section and length 

L can be obtained by separating Equation (1) into two ODEs and 

given for free harmonic vibration as 

4

2

4

( )
( ) 0

d w x
w x

dx
   (2) 

where x  is the non-dimensional coordinate along the axis of the 

beam,  w(x) is non-dimensional deflection, and Ω  is the non-

dimensional frequency of vibration. The boundary conditions 

(BCs) at the edges of the beam may be one of the following; 

clamped (C), simply-supported (S), and free (F). These conditions 

in non-dimensional coordinates for the edges x = 0, and x = 1  can 

be given as 

Table 1. Boundary conditions at the edges of the beam 

BCs Edges Boundary Equations 

Clamped  x  =0, 1 0, 0
dw

w
dx

   

Simply-

supported  
x  =0, 1 

2

2
0, 0

d w
w

dx
   

Free  x  =0, 1 

2 3

2 3
0, 0

d w d w

dx dx
   
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2.2. Kirchoff-Love Plate 

In two dimensional case, the simplest plate model is 

Kirchoff-Love or classical plate theory. The mathematical model 

of the thin rectangular plate for free vibration can be given as 

2

4

2

( , , )
( , , ) 0

w x y t
h D w x y t

t



  


 (3) 

The governing differential equation of the plate in Equation (3) 

can be obtained by using the separation of variables method in a 

nondimensional form, and it can be given as 

4 4 4

2 4 2
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 
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 (4) 

where x and y are the non-dimensional coordinates,  w(x,y) is 

nondimensional deflection, λ = a/b is the length ratio, and   Ω is 

the non-dimensional frequency of vibration. In nondimensional 

coordinates, the boundary conditions at the edges of the plate are 

presented as 

Table 2. Boundary conditions at the edges of the plate 

BCs Edges Boundary Equations 

Clamped 

x=0,1 0, 0
w

w
x


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3. Numerical Approaches 

In this part of the study, concerned numerical methods are 

briefly discussed, and numerical solutions of beam and plate 

elements are given.  

3.1. Differential Quadrature Method 

 In the differential quadrature method, values of approximate 

derivatives at any location of mesh are computed by summing 

linear weighted coefficients as follows 
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where first-order weighted coefficients are computed by Shu’s 

approach (Shu, 2000) as 
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(9) 

To find the weighted coefficients of the higher-order or hybrid 

derivatives, the following matrix multiplications can be done 

( ) ( ) ( ) , , ,a b cA A A a b c b c Z      (10) 

( ) ( ) ( ) , , ,d e fB B B d e f e f Z      (11) 

( ) ( ) ( ) , , ,g h iC A B g h i h i Z      (12) 

To obtain better results, the grid spacing of mesh can be done 

denser on boundaries by using Chebyshev-Gauss-Lobatto (CGL) 

grid distribution. 

3.1.1. Application of DQM to Beam Element 

As known, the DQM is a numerical computation technique 

based on discretization. Therefore, the equation of motion (EOM) 

can be discretized by using uniform or nonuniform (CGL) grid 

distribution. In this way, the continuous expression in Equation 

(2) turns into a combination of approximated functional values at 

grid points given in Equation (13). 

(4) 2( ) ( ) 0i iw x w x   (13) 
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Using the differential quadrature method, the discretized EOM 

can be written as 

(4) 2( ) ( ) 0i iw x w x   (14) 

In matrix form, discretized expression can be rewritten as  

(4) 2

1
( ) 0ij j NN N
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The discretized boundary conditions of the beam at the edges are 

presented in Table 3. To implement the boundary conditions on 

the discretized EOM, the direct substitution of boundary 

conditions into the discrete governing equation in Equation (15) 

Table 3. Discretized BCs at the edges of the beam 
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3.1.2. Application of DQM to Plate Element 

To illustrate the two-dimensional application of DQM, free 

vibration analysis of the thin rectangular plate under Kirchhoff’s 

assumptions is considered. Differently from the one-dimensional 

case, there are used two different weighted coefficients to the 

directions, because of different sizes and directions of grid 

distributions. These coefficients can be expressed as 
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Using the differential quadrature method, the EOM in Equation 

(4) can be discretized as 
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The discretized boundary conditions of the plate at the edges are 

presented in Table 4. 

 

 

Table 4. Discretized BCs at the edges of the plate   
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3.2. Differential Transform Method 

In the differential transform method (DTM), the kth derivative 

of function w(x) is defined as 
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where W(k) is the transformed function of w(x). Also, the inverse 

differential transform of the W(k) function is defined as 

     0
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



 
 

(19) 

According to definitions given above, any function can be 

written as Taylor series expansion  
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(20) 

From these definitions, fundamental theorems of DTM can be 

proved, which are given in Table 5. The algorithm flowchart of 

DTM is given in Figure 2. 

 

 

Figure 2.  DTM algorithm’s flowchart  
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3.2.1. Application of DTM to Beam Element 

Using the transform rules given in Table 6, the equation of 

motion in Equation (2) can be transformed into the following 

recurrence relation, 

2

( 4) ( )
( 4)( 3)( 2)( 1)

W k W k
k k k k


 

   
 (21) 

The boundary conditions are transformed into algebraic equations 

about a point x0 = 0 by using definitions of transformation 

technique in Equations (18) and (19), and presented in Table 7. 

Table 7. Transformed BCs for the beam 

BCs 0x    1x   

C 
(0) 0,

(1) 0

W

W




  

0
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N

k
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k k W k
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

 
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By substituting algebraic equations defined for boundary 

conditions into recurrence relation given in Equation (21), the 

solution can be found. 

3.2.2. Application of DTM to Plate Element 

Due to difficulties in obtaining simplified recurrence relations 

between boundary conditions and governing differential 

equations, the equation of motion (EOM) in Equation (4) is 

reduced to one-dimensional expression for simply-supported 

boundaries at both ends of the plate as following [16] 

 

4 2

4 2
2 ( ) 0

w w
w y

y y
 

 
  

 
 (22) 

where 

2 42

4
,

 
 

  


  
   
   
   

 

 

For the reduced governing equation, the boundary conditions of 

the plate are given in Table 8. According to these BCs, the 

solution is found by using DTM. 
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Table 8. BCs for the plate along y=0, and y=1 sides [16] 

BCs Boundary Equations 

Clamped  
( )

( ) 0 , 0
dw y

w y
dy

   

Simply-

supported  

2

2

( )
( ) 0 , 0

d w y
w y

dy
   

Free  

 

22

2

23

3

( )
( ) 0 ,

( ) ( )
0 , 2

d w y
w y

dy

d w y dw y

dy dy


  




  



  

   

 
 
 

 
 
 

 

 

Using the transformation rules given in Table 6, the equation of 

motion in Equation (22) can be transformed into the following 

equation, 

( 4)! 2 ( 2)!
( 4) ( 2) ( ) 0

! !

h h
W h W h W h

h h




 
      (22) 

The boundary conditions are transformed into algebraic equations 

about a point y0 by using definitions of a transformation 

technique, which are presented in Table 9. 

 

Table 9. Transformed BCs for the plate [16]  

BC 0y    1y   

C (0) 0, (1) 0W W   
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h h

W hW
 

    

S (0) 0, (2) 0W W   
0 0

0, ( 1) 0
M M

h h

W h h W
 

     

F 
2 (2) (0) 0

6 (3) (1) 0

W W

W W





 

 
 

 

 

0

0

( 1) 0

( 1) ( 2) 0

M

h

M

h

h h W

h h h W









  

   





 

 

In a similar way to the solution of the beam, the solution can be 

found for S-F, C-C, C-S, S-S, C-F, and F-F boundary conditions 

along y sides. To simplify the EOM of the plate, the boundaries 

along x sides are assumed as simply-supported boundaries so that 

the partial differential equation of EOM in Equation (4) can be 

reduced to the ordinary differential equation. 

 

3.3. Finite Difference Method 

Stating approximate derivatives by the means of finite 

differences is the key point of the finite difference method (FDM), 

which is given for one-dimensional case as follow 

1
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 (25) 

where forward, backward, and central differences are given, 

respectively. i denotes any arbitrary point on the curve, Δ forward 

difference operator, and   backward difference operator. Of 

them, the central difference gives a more accurate approximation 

of derivatives due to grid points symmetrically distributed around 

the xi. Therefore, structural elements are solved by using central 

difference and the following algorithm in Figure 3.  

 

Figure 3.  FDM algorithm’s flowchart  

 

3.3.1. Application of FDM to Beam Element 

Using the finite difference method, the discretized EOM for the 

beam can be written as  
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 (26) 

Similarly, the boundary conditions are written via central 

difference, and implement into Equation (26) by updating stencil 

points. 

3.3.1. Application of FDM to Plate Element 

The discretized EOM of the thin isotropic rectangular plate 

for transverse vibration is expressed as follows 
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(27) 

Similarly, the boundary conditions are written via central 

difference, and implement into Equation (26) by updating 

algebraic equations in the matrix form. 

4. Results and Discussion 

To determine the dynamic characteristics of one and two-

dimensional structural elements, mesh-free methods i.e. DQM 

and DTM, and meshed method i.e. FDM are employed, and then 

numerical solutions are compared for different boundary 

conditions, aspect ratios, term sizes used in computations, and 

absolute errors in this study. Meanwhile, short formulations of the 

methods and governing differential equations are given, and 

algorithm schemes of the employed methods are presented in 

Figures 1-3. Furthermore, convergence analysis in Figure 4 is 

given for different methods to understand which method is more 

efficient for computer memory usage, faster, and so on. 

Ultimately, non-dimensional natural frequencies for the beam and 

plate elements are tabulated, and the mode shapes are plotted in 

Figures 5-6. 

In the last few years, DQM and DTM are two of the popular 

mesh-free methods attracting the interest of many researchers. On 

the other hand, FDM is one of the oldest but still useful global 

methods. In all methods, the governing differential equations of 

structural elements are transformed into algebraic equations, and 

then written in matrix format. Discretized boundary conditions 

according to concerning methods’ algorithm are implemented to 

the system matrix by updating the rows. The difference between 

them is the approximation methodology to derivative terms. In 

Table 10, the non-dimensional natural frequencies of the beam are 

presented. According to this table, DTM gives the closest solution 

to analytical results in [26], so the absolute error of DTM is 

smaller than other two methods. According to boundaries at the 

ends of the beam, the highest non-dimensional natural frequencies 

are seen C-C and F-F boundaries, which are equal to each other, 

but mode shapes of them are different as seen in Figure 5. In two 

dimensional case, the effect of aspect ratio and boundary 

conditions are investigated. Up to the increasing aspect ratio in 

Table 11, the non-dimensional natural frequencies increase. 

Similarly, the smallest absolute error is seen for the solution 

realized by DTM for the special case mentioned above. Finally, 

convergence analysis in high mode is realized to understand 

which method is faster and needs less memory requirement. To 

results in Figure 6, DTM is the fastest method. 

 

 

 

Figure 4. Convergence analysis of the non-dimensional natural 

frequencies of various beam elements for the 9th mode.  
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Figure 5. Mode shapes of the beam elements for different boundary conditions
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Table 10. Nondimensional natural frequencies of the beam elements for different boundary cases 

 

Boundary 

Conditions

 Blevins
DQM 

(Uniform)

DQM     

(CGL)
FDM DTM  Blevins

DQM 

(Uniform)

DQM     

(CGL)
FDM DTM

Mode

1
st 22,3733 22,3733 22,3733 22,3732 22,3733 9,8696 9,8696 9,8696 9,8696 9,8696

2
nd 61,6728 61,6728 61,6728 61,6723 61,6728 39,4784 39,4784 39,4784 39,4783 39,4784

3
rd 120,9034 120,9034 120,9034 120,9015 120,9034 88,8264 88,8264 88,8264 88,8258 88,8264

4
th 199,8594 199,8607 199,8594 199,8547 199,8594 157,9137 157,9141 157,9137 157,9116 157,9137

5
th 298,5555 298,3357 298,5555 298,5455 298,5555 246,7401 246,6215 246,7399 246,7350 246,7401

6
th 416,9908 413,7238 416,9894 416,9720 416,9908 355,3058 353,2592 355,3022 355,2952 355,3058

7
th 555,1652 557,6415 555,1977 555,1330 555,1652 483,6106 491,1128 483,7155 483,5911 483,6106

8
th 713,0789 557,6415 713,3467 713,0269 713,0791 631,6547 491,1128 632,5268 631,6214 631,6546

9
th 890,7318 628,9425 889,0825 890,6522 890,7296 799,4380 560,2755 793,1577 799,3846 799,4388

10
th 1088,1239 628,9425 1077,2822 1088,0070 1088,0228 986,9604 560,2755 955,8531 986,8791 986,9305

 Blevins
DQM 

(Uniform)

DQM     

(CGL)
FDM DTM  Blevins

DQM 

(Uniform)

DQM     

(CGL)
FDM DTM

Mode

1
st 15,4182 15,4180 15,4182 15,4182 15,4182 3,5160 3,5158 3,5160 3,5172 3,5160

2
nd 49,9648 49,9649 49,9649 49,9646 49,9649 22,0345 22,0345 22,0345 22,0418 22,0345

3
rd 104,2477 104,2477 104,2477 104,2465 104,2477 61,6972 61,6972 61,6972 61,7174 61,6972

4
th 178,2697 178,2699 178,2697 178,2665 178,2697 120,9019 120,9016 120,9019 120,9409 120,9019

5
th 272,0310 271,8292 272,0307 272,0237 272,0310 199,8595 199,8459 199,8594 199,9226 199,8595

6
th 385,5314 383,7956 385,5299 385,5171 385,5314 298,5555 300,0946 298,5655 298,6472 298,5555

7
th 518,7711 516,2124 518,8931 518,7456 518,7711 416,9908 429,3601 417,1064 417,1145 416,9908

8
th 671,7499 516,2124 672,2265 671,7079 671,7499 555,1652 429,3601 553,1932 555,3233 555,1652

9
th 844,4680 603,9060 837,7557 844,4023 844,4714 713,0789 591,1642 702,9631 713,2723 713,0796

10
th 1036,9253 603,9060 1018,5084 1036,8272 1036,7831 890,7318 591,1642 933,4812 890,9598 890,7162

 Blevins
DQM 

(Uniform)

DQM     

(CGL)
FDM DTM  Blevins

DQM 

(Uniform)

DQM     

(CGL)
FDM DTM

Mode

1
st 15,4182 15,4182 15,4182 15,4233 15,4182 22,3733 22,3733 22,3733 22,3882 22,3733

2
nd 49,9649 49,9649 49,9649 49,9814 49,9649 61,6728 61,6776 61,6728 61,7138 61,6728

3
rd 104,2477 104,2476 104,2477 104,2817 104,2477 120,9034 120,9028 120,9034 120,9833 120,9034

4
th 178,2697 178,2605 178,2697 178,3269 178,2697 199,8594 199,8309 199,8592 199,9903 199,8594

5
th 272,0310 272,3689 272,0339 272,1162 272,0310 298,5555 302,1213 298,5756 298,7489 298,5555

6
th 385,5314 411,3388 385,6189 385,6487 385,5314 416,9908 427,4586 417,2233 417,2570 416,9908

7
th 518,7711 411,3388 518,1270 518,9234 518,7711 555,1652 440,5495 551,3529 555,5138 555,1653

8
th 671,7499 529,8806 663,0258 671,9389 671,7499 713,0789 440,5495 692,6267 713,5178 713,0791

9
th 844,4680 529,8806 849,2064 844,6937 844,4697 890,7318 593,5509 962,1214 891,2676 890,7264

10
th 1036,9253 626,7816 1039,1441 1037,1862 1036,9181 1088,1239 593,5509 962,1214 1088,7614 1086,1715

Clamped-Clamped Simply Supported-Simply Supported

Boundary 

Conditions
Clamped-Simply Supported Clamped-Free 

Boundary 

Conditions
Simply Supported-Free Free-Free
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Table 11. Nondimensional natural frequencies of the plate elements for different boundary cases and aspect ratios 

 

 

Boundary 

Conditions

2/5 2/3 1.0 3/2 5/2 2/5 2/3 1.0 3/2 5/2 2/5 2/3 1.0 3/2 5/2

Mode

Leissa 11,4487 14,2561 19,7392 32,0762 71,5564 12,1347 17,3730 28,9509 56,3481 145,4839 11,7502 15,5783 23,6463 42,5278 103,9227

DQM 11,4487 14,2561 19,7392 32,0762 71,5546 12,1347 17,3730 28,9509 56,3481 145,4839 11,7502 15,5783 23,6463 42,5278 103,9227

FDM 11,4426 14,2484 19,7285 32,0589 71,5159 12,1347 17,3730 28,9509 56,3481 145,4839 11,7502 15,5783 23,6463 42,5278 103,9227

DTM 11,4487 14,2561 19,7392 32,0762 71,5546 12,1347 17,3730 28,9509 56,3481 145,4839 11,7502 15,5783 23,6463 42,5278 103,9227

Leissa 16,1862 27,4156 49,3480 61,6850 101,1634 18,3647 35,3445 54,7431 78,9836 164,7387 17,1872 31,0724 51,6743 69,0031 128,3382

DQM 16,1862 27,4156 49,3480 61,6850 101,1634 18,3647 35,3445 54,7431 78,9836 164,7387 17,1872 31,0724 51,6743 69,0031 128,3382

FDM 16,1672 27,3723 49,2574 61,5877 101,0448 18,3647 35,3445 54,7431 78,9836 164,7387 17,1872 31,0724 51,6743 69,0031 128,3382

DTM 16,1862 27,4156 49,3480 61,6850 101,1634 18,3647 35,3445 54,7431 78,9836 164,7387 17,1872 31,0724 51,6743 69,0031 128,3382

Leissa 24,0818 43,8649 49,3480 98,6960 150,5115 27,9657 45,4294 69,3270 123,1719 202,2271 25,9171 44,5644 58,6464 116,2671 172,3804

DQM 24,0818 43,8649 49,3480 98,6960 150,5115 27,9657 45,4294 69,3270 123,1719 202,2271 25,9171 44,5644 58,6464 116,2671 172,3804

FDM 24,0075 43,7772 49,2574 98,4987 150,0467 27,9657 45,4294 69,3270 123,1719 202,2271 25,9171 44,5644 58,6464 116,2671 172,3804

DTM 24,0818 43,8649 49,3480 98,6960 150,5115 27,9657 45,4294 69,3270 123,1719 202,2271 25,9171 44,5644 58,6464 116,2671 172,3804

Leissa 35,1358 49,3480 78,9568 111,0330 219,5987 40,7500 62,0544 94,5853 146,2677 261,1053 37,8317 55,3926 86,1345 120,9956 237,2502

DQM 35,1358 49,3480 78,9568 111,0330 219,5987 40,7500 62,0544 94,5853 146,2677 261,1052 37,8317 55,3926 86,1345 120,9956 237,2502

FDM 34,9126 49,1509 78,7862 110,5896 218,2038 40,7500 62,0544 94,5853 146,2677 261,1053 37,8317 55,3926 86,1345 120,9956 237,2502

DTM 35,1358 49,3480 78,9568 111,0330 219,5987 40,7500 62,0544 94,5853 146,2677 261,1053 37,8317 55,3926 86,1345 120,9956 237,2502

Leissa 41,0576 57,0244 98,6960 128,3049 256,6097 41,3782 62,3131 102,2162 170,1112 342,1442 41,2070 59,4627 100,2698 147,6353 320,7921

DQM 41,0576 57,0244 98,6960 128,3049 256,6097 41,3782 62,3131 102,2162 170,1112 342,1470 41,2070 59,4627 100,2698 147,6353 320,7921

FDM 40,9714 56,9011 98,2593 128,0276 256,0712 41,3782 62,3131 102,2162 170,1112 342,1456 41,2070 59,4627 100,2698 147,6353 320,7921

DTM 41,0576 57,0244 98,6960 128,3049 256,6097 41,3782 62,3131 102,2162 170,1112 342,1442 41,2070 59,4627 100,2698 147,6353 320,7921

Leissa 45,7950 78,9568 98,6960 177,6529 286,2185 47,0009 88,8047 129,0955 189,1219 392,8746 46,3620 83,6060 113,2281 184,1006 322,9642

DQM 45,7950 78,9568 98,6960 177,6529 286,2185 47,0009 88,8047 129,0955 189,1219 392,8746 46,3620 83,6060 113,2281 184,1006 322,9672

FDM 45,6960 78,6798 98,2593 177,0295 285,6000 47,0009 88,8047 129,0955 189,1219 392,8746 46,3620 83,6060 113,2281 184,1006 322,9657

DTM 45,7950 78,9568 98,6960 177,6529 286,2185 47,0009 88,8047 129,0955 189,1219 392,8746 46,3620 83,6060 113,2281 184,1006 322,9642

Leissa 49,3480 80,0535 128,3049 180,1203 308,4251 56,1782 94,2131 140,2045 212,8169 415,6906 52,9007 88,4384 133,7910 193,8025 346,7382

DQM 49,3485 80,0534 128,3049 180,1203 308,4283 56,1782 94,2131 140,2045 212,8169 415,6906 52,9014 88,4384 133,7910 193,8025 346,7382

FDM 48,8119 79,4430 127,7881 178,7467 305,0742 56,1782 94,2131 140,2045 212,8169 415,6906 52,9010 88,4384 133,7910 193,8025 346,7382

DTM 49,3480 80,0535 128,3049 180,1203 308,4251 56,1782 94,2131 140,2045 212,8169 415,6906 52,9007 88,4384 133,7910 193,8025 346,7382

Leissa 53,6906 93,2129 128,3049 209,7291 335,5665 56,6756 97,4254 154,7757 276,0012 444,9682 54,8720 93,6758 140,8456 243,4964 391,0659

DQM 53,6906 93,2129 128,3049 209,7291 335,5665 56,6758 97,4254 154,7757 276,0047 445,0107 54,8720 93,6758 140,8456 243,4964 391,0659

FDM 53,5363 92,7791 127,7881 208,7530 334,6019 56,6757 97,4254 154,7757 276,0030 444,9894 54,8720 93,6758 140,8456 243,4964 391,0659

DTM 53,6906 93,2129 128,3049 209,7291 335,5665 56,6756 97,4254 154,7757 276,0012 444,9682 54,8720 93,6758 140,8456 243,4964 391,0659

Leissa 66,7185 106,3724 167,7833 239,3379 416,9908 68,7486 101,0788 170,3465 276,0125 455,3054 66,6637 108,1069 168,9585 260,2020 429,2420

DQM 64,7446 106,3724 167,7832 239,3379 404,6538 68,7486 110,0788 170,3464 276,0125 455,3054 66,6637 108,1069 168,9585 260,2020 429,2860

FDM 64,4414 105,9030 166,4164 238,2818 402,7590 68,7487 110,0788 170,3464 276,0125 455,3054 66,6637 108,1069 168,9585 260,2020 429,2640

DTM 64,7446 106,3724 167,7833 239,3379 404,6538 68,7487 110,0788 170,3465 276,0125 455,3054 66,6637 108,1069 168,9585 260,2020 429,2420

  a/b

S-C-S-S S-S-S-S S-C-S-C  

  a/b
Aspect Ratio 

  a/b

9
th

8
th

7
th

2
nd 

1
st 

6
th

5
th

4
th

3
rd
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Table 11. Nondimensional natural frequencies of the plate elements for different boundary cases and aspect ratios (cont’) 

 
 

Boundary 

Conditions

2/5 2/3 1.0 3/2 5/2 2/5 2/3 1.0 3/2 5/2 2/5 2/3 1.0 3/2 5/2

Leissa 10,1888 10,9752 12,6874 16,8225 30,6277 10,1259 10,6712 11,6845 13,7111 18,8009 9,7600 9,6983 9,6314 9,5582 9,4841

DQM 10,1485 10,9011 12,5569 16,6003 30,2740 10,0889 10,6083 11,5816 13,5359 18,4640 9,7280 9,6507 9,5676 9,4777 9,3879

FDM 10,1686 10,9381 12,6221 16,7114 30,4508 9,7277 10,0728 11,8270 23,9206 63,5380 9,8829 9,9988 10,2012 10,4804 10,1883

DTM 10,1888 10,9752 12,6874 16,8225 30,6277 10,1259 10,6712 11,6845 13,7111 18,8009 10,0378 10,3469 10,8348 11,4830 10,9887

Leissa 13,6036 20,3355 33,0651 45,3024 58,0804 13,0570 18,2995 27,7563 43,5723 50,5405 11,0368 12,9813 16,1348 21,6192 33,6228

DQM 13,5500 20,2229 32,8924 44,9543 57,3722 13,0087 18,1977 27,5917 43,2840 49,9897 10,9589 12,8314 15,8799 21,2000 32,8788

FDM 13,5768 20,2792 32,9788 45,1284 57,7263 12,0663 17,0357 28,1930 56,2547 92,0352 10,7866 12,4334 15,2098 20,3168 32,6301

DTM 13,6036 20,3355 33,0651 45,3024 58,0804 13,0570 18,2995 27,7563 43,5723 50,5405 10,6142 12,0355 14,5397 19,4336 32,3814

Leissa 20,0971 37,9552 41,7019 61,0178 105,5470 18,8390 33,6974 41,1967 47,8571 100,2321 15,0626 22,9535 36,7256 38,7214 38,3629

DQM 20,0296 37,8421 41,4952 60,7948 104,6398 18,7755 33,5854 41,0126 47,6284 99,4954 14,9557 22,7458 36,4173 38,5132 38,0701

FDM 20,0634 37,8987 41,5986 60,9063 105,0934 17,4793 32,3386 41,6736 79,3076 124,4366 15,1461 23,1100 36,9313 40,1830 41,4213

DTM 20,0971 37,9552 41,7019 61,0178 105,5470 18,8390 33,6974 41,1967 47,8571 100,2321 15,3365 23,4742 37,4453 41,8528 44,7725

Leissa 29,6219 40,2717 63,0148 92,3073 149,4569 27,5580 40,1307 59,0655 81,4789 110,2259 21,7064 39,1052 38,9450 54,8443 75,2037

DQM 29,5515 40,1378 62,7128 91,7877 149,1969 27,4891 40,0055 58,7953 81,0037 109,9391 21,5778 38,9939 38,7925 54,1434 73,8562

FDM 29,5867 40,2047 62,8638 92,0475 149,3269 26,0747 38,9956 59,8569 107,4724 132,8902 21,5319 39,4607 39,6754 52,2596 70,5994

DTM 29,6219 40,2717 63,0148 92,3073 149,4569 27,5580 40,1307 59,0655 81,4789 110,2259 21,4860 39,9276 40,5583 50,3758 67,3425

Leissa 39,6382 49,7317 72,3976 93,8293 173,1060 39,3377 48,4082 61,8606 92,6925 147,6317 31,1771 40,3560 46,7381 65,7922 86,9684

DQM 39,5521 49,5704 72,2579 93,3642 172,0157 39,2712 48,2611 61,7156 92,2784 146,8273 31,0433 40,1448 46,3264 65,3906 86,4624

FDM 39,5952 49,6511 72,3278 93,5968 172,5608 37,7263 46,7280 62,8647 118,6069 174,0607 31,1908 40,0804 45,3157 65,9847 90,8630

DTM 39,6382 49,7317 72,3976 93,8293 173,1060 39,3377 48,4082 61,8606 92,6925 147,6317 31,3384 40,0161 44,3050 66,5788 95,2636

Leissa 42,2425 64,1889 90,6114 141,7834 182,8110 39,6118 57,5929 90,2941 124,5635 169,1026 39,2387 42,6847 70,7401 87,6262 130,3576

DQM 42,1763 64,0914 90,3100 141,1038 182,0009 39,5285 57,4931 90,0123 124,3978 168,1679 39,1623 42,4333 70,1583 87,2832 128,5459

FDM 42,2094 64,1402 90,4607 141,4436 182,4059 38,5982 56,2897 91,2438 173,1190 207,0340 39,3938 41,9350 71,1953 89,2697 123,6711

DTM 42,2425 64,1889 90,6114 141,7834 182,8110 39,6118 57,5929 90,2941 124,5635 169,1026 39,6252 41,4367 72,2323 91,2562 118,7962

Leissa 42,9993 67,8993 103,1617 149,6055 235,0155 42,6964 64,7281 94,4837 132,8974 203,7304 40,5035 54,2400 75,2834 103,9665 155,3211

DQM 42,9233 67,6895 102,8104 149,4512 233,7042 42,6245 64,5319 94,1471 132,2895 202,5149 40,3561 53,9117 75,0180 103,0219 154,5960

FDM 42,9613 67,7944 102,9860 149,5284 234,3599 41,5187 62,2175 95,9204 177,4279 240,7948 40,1528 54,4897 74,9561 101,3541 155,5274

DTM 42,9993 67,8993 103,1617 149,6055 235,0155 42,6964 64,7281 94,4837 132,8974 203,7304 39,9495 55,0678 74,8941 99,6863 156,4589

Leissa 49,5740 89,3571 111,8964 162,2413 260,6371 48,7745 89,1859 108,9185 158,9180 257,4791 43,6698 66,2301 87,9867 105,1608 156,1248

DQM 49,4798 89,1464 111,5334 161,6387 259,3490 48,6852 88,9607 108,5875 158,4272 256,3328 43,5425 66,0428 87,7363 104,2345 155,6431

FDM 49,5269 89,2518 111,7149 161,9400 259,9930 46,8259 86,1713 110,1721 195,0900 283,7807 43,5460 66,2422 88,7866 105,2666 160,1529

DTM 49,5740 89,3571 111,8964 162,2413 260,6371 48,7745 89,1859 108,9185 158,9180 257,4791 43,5495 66,4417 89,8370 106,2987 164,6628

Leissa 58,0019 94,5150 131,4287 181,1868 305,2218 54,2497 89,2725 115,6857 161,4205 277,4280 44,9416 73,1982 96,0405 152,7784 199,8452

DQM 57,9243 94,2819 131,3195 180,6983 303,5642 54,1829 89,0697 115,5711 160,8636 275,9363 44,7843 72,7908 95,4750 152,4784 198,3966

FDM 57,9631 94,3984 131,3741 180,9425 304,3930 52,3282 87,1324 117,4084 236,2535 325,0646 45,0341 72,6419 94,3539 152,4481 193,3998

DTM 58,0019 94,5150 131,4287 181,1868 305,2218 54,2497 89,2725 115,6857 161,4205 277,4280 45,2838 72,4930 93,2327 152,4177 188,4029
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Figure 6. Mode shapes of the plate elements for SSSS and SSSF boundary conditions 
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Figure 6. Mode shapes of the plate elements for SCSS and SCSC boundary conditions (cont’) 
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Figure 6. Mode shapes of the plate elements for SCSF and SFSF boundary conditions (cont’)
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4. Conclusion 

This paper has computed the dynamic characteristics of the 

Euler-Bernoulli beam and Kirchhoff-Love plate by employing 

different numerical methods. Of these methods, DTM converges 

to analytical results faster than the other two methods for simply-

supported boundary conditions. Also, it can be seen from Tables 

10 and 11 that absolute error is smaller than other methods. On 

the other hand, the term size of DQM is smaller than FDM (see 

Figure 4), so it converges faster than FDM. In other words, it is 

computationally more efficient due to its small term size and 

requires less computer memory than FDM. As a result, DTM can 

be preferred for any type of one-dimensional differential equation. 

On the other hand, DQM can be preferred for multi-dimensional 

engineering problems, complicated geometries. 
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