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Abstract. Designing a surface from a given curve under some special conditions is an important problem in
many practical applications. The purpose of this article is to design a generalized cylinder whose base curve is a
characteristic curve in Euclidean 3- space. The main results show that the generalized cylinder with geodesic, line
of curvature, or asymptotic base curve is a rectifying cylinder, a right cylinder, or a plane respectively.
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1. Introduction

A ruled surface is constructed by the continuous motion of a straight line called the ruling through a given curve
called the base curve. A generalized cylinder is a special type of ruled surface in which the ruling line moves in a
constant direction along the base curve. The generalized cylinders are a class of developable ruled surfaces that can be
produced from paper or sheet metal with no distortion. For this construction, the generalized cylinders have been used
in many applications including geometric modeling, computer graphic, architectural designing, and manufacturing
[10, 12–14].

Geodesic, asymptotic, and line of curvature are characteristic curves that lie on the surface and have been used in
surface analysis. The geodesic curve gives the shortest path between two given points on curved spaces. A curve is an
asymptotic or a line of curvature if its direction always points in a direction in which the surface does not bend or bend
extremely respectively.

There are several articles for designing the surface or the surfaces family that possess the given curve as a char-
acteristic curve. Wang et al. [23], Li et al. [18], and Bayram et.al [6] derived the necessary and sufficient condition
for a given curve to be a geodesic, a line of curvature, and an asymptotic on a surface respectively. Later, Bilici and
Bayram [5, 7] generalized this problem for the involute of a given curve. A developable surface that possesses a base
curve as a line of curvature and a geodesic has been studied in [19] and [1] respectively. Recently in [2], the author
studied and classified the ruled and developable surfaces whose base curve is a characteristic curve .

The purpose of this article is to design a generalized cylinder whose base curve is a characteristic curve in Euclidean
3- space. A ruled surface is parameterized by its base curve and director vector that is expressed by a linear combi-
nation of Frenet frame with angular functions as coefficients. A generalized cylinder parameterized by a ruled surface
parametrization with three conditions called the cylindrical conditions. After that, additional constraints are imposed
to make the base curve of the generalized cylinder is a characteristic curve. The main results show that the generalized
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cylinder with geodesic, line of curvature, and the asymptotic base curve is a rectifying cylinder, a right cylinder and a
plane respectively. Therefore, based on the type of characteristic base curve, the generalized cylinder is classified into
three types. This paper generalizes the recent work [4] dealt only with geodesic base curve and using Darboux frame.

The rest of this paper is organized as follows: In section 2, some basic notations, facts, and definitions of the
space curve, ruled surface, and a generalized cylinder are reviewed. The main results are studied in section 3, where
the generalized cylinder with a characteristic curve is constructed, the necessary and sufficient conditions for the base
curves to be geodesic, line of curvature, or asymptotic are derived. Examples to illustrate the main results are presented
in section 4. Finally, the conclusion is given in section 5.

2. Preliminaries

This section introduces some basic concepts on the classical differential geometry of space curves and ruled surfaces
in three-dimensional Euclidean space. More details can be found in such standard references as [9, 20, 22].

2.1. Curves in Euclidean 3-space. A smooth space curve in 3-dimensional Euclidean space is parameterized by a
map γ : I ⊆ R → E3, γ is called a regular curve if γ′ , 0 for every point of an interval I ⊆ R, and if |γ′(s)| = 1, where
|γ′(s)| =

√
⟨γ′(s), γ′(s)⟩, then γ is said to be of unit speed (or parameterized by arc-length s). For a unit speed regular

curve γ(s) in E3, the unit tangent vector t(s) of γ at γ(s) is given by t(s) = γ′(s). If γ′′(s) , 0, the unit principal normal
vector n(s) of the curve at γ(s) is given by n(s) = γ

′′(s)
∥γ′′∥

. The unit vector b(s) = t(s) × n(s) is called the unit binormal
vector of γ at γ(s). For each point of γ(s) where γ′′(s) , 0, we associate the Serret-Frenet frame {t, n, b} along the
curve γ. As the parameter s traces out the curve, the Serret-Frenet frame moves along γ and satisfies the following
Frenet-Serret formula: 

t′(s) = κ(s)n(s),
n′(s) = −κ(s)t(s) + τb(s),
b′(s) = −τ(s)n(s),

(2.1)

where κ = κ(s) and τ = τ(s) are the curvature and torsion functions. When the point moves along the unit speed curve
with non-vanishing curvature and torsion, the Serret-Frenet frame {t, n, b} is drawn to the curve at each position of the
moving point, this motion consists of translation with rotation and described by the following Darboux vector:

ω = τt + κb.

The direction of Darboux vector is the direction of rotational axis and its magnitude gives the angular velocity of
rotation. The unit Darboux vector field is defined by

ω̂ =
τ

√
τ2 + κ2

t +
κ

√
τ2 + κ2

b. (2.2)

A necessary and sufficient condition that a curve be of constant slope (or general helix ) is that the ratio of torsion
to curvature is constant ( τ

κ
= c ). The general helix lies on a general cylinder and also known as a cylindrical helix.

The circular helix ( a helix on a circular cylinder) is a special helix with both of κ(s) , 0 and τ(s) are constants. The
Darboux vector is constant for circular helix. For the cylindrical helix, the unit Darboux vector is constant as following:

ω̂ =
τ

√
τ2 + κ2

t +
κ

√
τ2 + κ2

b =
c

√
c2 + 1

t +
1

√
c2 + 1

b. (2.3)

For a regular curve on a surface, there exists another frame {t(s), g(s),N(s)} which is called Darboux frame. In this
frame t(s) is the unit tangent of the curve, N(s) is the unit normal of the surface and g is a unit vector given by g = N× t.
The relations between Frenet frame and Darboux frame can be given by the following matrix representation: t

g
N

 =
1 0 0
0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ


 tnb
 . (2.4)

Definition 2.1. A unit-speed curve on a surface is called :
(1) A geodesic if and only if its principal normal vector coincides (up to orientation) with the surface normal

N = ±n.
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(2) Asymptotic if and only if its binormal vector coincides (up to orientation) with the surface normal vector

N = ±b.
(3) A line of curvature if and only if the following condition is satisfied

τ +
dϕ
ds
= 0.

2.2. Ruled Surfaces. A ruled surface is generated by moving a straight line on a given curve and parameterized by

X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ ℓ, v ∈ R. (2.5)

A unit regular curve γ(s) is called a base curve, and the line passing through γ(s) that is parallel to D(s) is called the
ruling. D(s) is a unit director vector field that gives the direction of the ruling. The unit normal vector field (shortly
surface normal) of the ruled surface is defined by

N(s, v) =
Xs × Xv

|Xs × Xv|
=

(γ′ × D) + v(D′ × D)
|(γ′ × D) + v(D′ × D)|

.

In particular and using (2.4), the surface normal along the base curve γ(s) is given by

N(s, 0) = − sin ϕ(s)n(s) + cos ϕ(s)b(s). (2.6)

The ruled surface parameterized by (2.5) is a generalized cylinder if and only if the unit director vector D(s) has
constant direction, or equivalently if and only if the following condition is satisfied:

D′(s) = 0. (2.7)

D(s) is a unit vector field lies in the space formed by the frame {t, n, b} and can be written using (2.4) as following:

D(s) = cos θ(s)t(s) + sin θ(s)g(s), where g(s) = cos ϕ(s)n(s) + sin ϕ(s)b(s).

Therefore D(s) can be decomposed as the following [21]

D(s) = cos θ(s)t(s) + sin θ(s)(cos ϕ(s)n(s) + sin ϕ(s)b(s)), (2.8)

where θ(s) and ϕ(s) are two scalar functions called the first and second angular functions [16].

Definition 2.2. The ruled surface with base curve γ(s) and a unit director vector D(s) (2.8) is defined by{
X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, v ∈ R, where
D(s) = cos θ(s)t(s) + sin θ(s)(cos ϕ(s)n(s) + sin ϕ(s)b(s)). (2.9)

In the following theorem, we give the necessary and sufficient conditions to construct a generalized cylinder as
special class of ruled surface (2.9), we call them the cylindrical conditions.

Theorem 2.3. The ruled surface parameterized by (2.9) is a generalized cylinder if and only if the following conditions
are satisfied:

κ(s) cos ϕ +
dθ
ds
= 0,

cos θ(s)(κ(s) + cos ϕ
dθ
ds

) − sin θ(s) sin ϕ(s)(
dϕ
ds
+ τ) = 0,

sin ϕ(s) cos θ(s)
dθ
ds
+ sin θ(s) cos ϕ(

dϕ
ds
+ τ) = 0.

(2.10)

Proof. From (2.8) we have D(s) = cos θ(s)t(s) + sin θ(s)(cos ϕ(s)n(s) + sin ϕ(s)b(s)), by taking the derivative of D(s)
and using the Frenet-Serret formula of γ(s), we get D′(s) = − sin θ(s)[κ(s) cos ϕ + dθ

ds ]t(s) + [cos θ(s)(κ(s) + cos ϕ dθ
ds ) −

sin θ(s) sin ϕ(s)( dϕ
ds +τ)]n+[sin ϕ(s) cos θ(s) dθ

ds +sin θ(s) cos ϕ( dϕ
ds +τ)]b. According to (2.7), the ruled surface parameter-

ized by (2.9) is a cylinder if and only if D′(s) vanishes, this condition is satisfied provided that (2.10) are satisfied. □

Hence, a ruled surface defined by (2.9) satisfying (2.10) is a generalized cylinder as given in the following definition.

Definition 2.4. The generalized cylinder with base curve γ(s) is defined by

X(s, v) = γ(s) + v[cos θ(s)t(s) + sin θ(s)(cos ϕ(s)n(s) + sin ϕ(s)b(s))], 0 ≤ s ≤ L, v ∈ R, (2.11)

where the conditions (2.10) are satisfied.
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The main result of this paper is the following main theorem which is proved in the next section.

Theorem 2.5. Let X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, v ∈ R be a ruled surface, where γ(s) is a unit speed regular
curve with non vanishing curvature , and D(s) is a unit director vector defined by (2.8), then the generalized cylinder
with geodesic base curve is a rectifying cylinder, the generalized cylinder with line of curvature base curve is a right
cylinder, and the generalized cylinder with asymptotic base curve is a plane.

3. Generalized Cylinder with Characteristic Base Curve

In the preceding section, we proved that three conditions (2.10) are needed to construct a generalized cylinder (2.11)
from a ruled surface parametrization (2.9). To make the base curve of the generalized cylinder (2.11) is a characteristic
curve (geodesic, line of curvature, or asymptotic) we need other conditions that are investigated in this section.

3.1. Generalized Cylinder with Geodesic Base Curve.

Theorem 3.1. A base curve γ(s) of the generalized cylinder parameterized by (2.11) is a geodesic if and only if the
following conditions are satisfied:

cos ϕ(s) = 0,
dθ
ds
= 0,

cos θ(s)κ(s) − sin θ(s)τ = 0.

(3.1)

Proof. By using definition (2.1), a base curve γ(s) of the generalized cylinder parameterized by (2.11) is a geodesic
if and only if N = ±n, from (2.6), this happens if and only if cos ϕ(s) = 0 which is the first condition of (3.1). By
substitution it in the cylindrical conditions (2.10), we get the other conditions of (3.1). □

Definition 3.2. A generalized cylinder with geodesic base curve is defined by{
X(s, v) = γ(s) + v[cos θ(s)t(s) + sin θ(s)b(s)], 0 ≤ s ≤ L, v ∈ R, where,
τ(s) sin θ(s) − κ(s) cos θ(s) = 0, and θ′(s) = 0.

Proposition 3.3. [3] Suppose that D(s) = cos θ(s)t(s) + sin θ(s)b(s) is a unit rectifying vector defined along a unit
speed curve γ(s) with non vanishing curvature and torsion, then D(s) is a unit Darboux vector field if and only if
κ cos θ − τ sin θ = 0.

Proof. Let D(s) = cos θ(s)t(s) + sin θ(s)b(s) be a unit Darboux vector. From (2.2),

cos θ =
τ

√
κ2 + τ2

, sin θ(s) =
κ

√
κ2 + τ2

, and cot θ =
τ

κ
.

This implies that κ cos θ − τ sin θ = 0, and vice versa. □

Theorem 3.4. The ruled surfaces parameterized by (2.9) is a generalized cylinder with geodesic base curve if and only
if D(s) is a unit constant Darboux vector.

Definition 3.5. A generalized cylinder with geodesic base curve is defined by X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, v ∈ R ,where
D(s) = τ(s)

√
κ2+τ2

t(s) + κ(s)
√
κ2+τ2

b(s), D′(s) = 0.

As discussed in (2.3), the condition for unit Darboux vector to be constant is equivalent to the base curve is a helix.
As well known, the base curve and director vector are responsible to build the generalized cylinder, so the following
theorem gives the conditions that can be applied on the base curve and director vector at the same time to generate a
generalized cylinder with geodesic base curve.

Theorem 3.6. Let X(s, v) = γ(s)+vD(s), 0 ≤ s ≤ L, v ∈ R, where γ(s) is a unit speed regular curve with non vanishing
curvature and torsion, D(s) is a unit direction vector defined by (2.8). Then, X(s,v) is a cylinder whose base curve is a
geodesic if and only if γ(s) is a helix and D(s) is a unit Darboux vector.
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Definition 3.7. A generalized cylinder with geodesic base curve is defined by X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, v ∈ R, where,
D(s) = τ(s)

√
κ2+τ2

t(s) + κ(s)
√
κ2+τ2

b(s), and γ(s) is a helix. (3.2)

The developable ruled surface whose director vector is a unit Darboux vector has been studied by many researchers
and it has been called the rectifying developable surface, see for example [8, 15, 17, 22]. The generalized cylinder
defined by (3.2) is a special case where the unit Darboux vector is a constant and we call it the rectifying cylinder. The
rectifying cylinder inherits this property from the rectifying developable, where the classical result stated that ”Every
space curve is a geodesic on its rectifying developable” as given in the classical book of Struik [22, p.161].

Corollary 3.8. A generalized cylinder with geodesic base curve parameterized by (3.2) is a rectifying cylinder.

Theorem 3.9. Among all generalized cylinders parameterized by (2.11), the rectifying cylinder (3.2) can be equipped
with geodesic base curve.

In fact, the rectifying cylinder not only has geodesic base curve, but it can be equipped with geodesic coordinates
among all developable surfaces, this result is proved recently by the author [3].

3.2. Generalized Cylinder with Line of Curvature Base Curve.

Theorem 3.10. A base curve γ(s) of the generalized cylinder parameterized by (2.11) is a line of curvature if and only
if the following conditions are satisfied:

τ +
dϕ
ds
= 0,

κ(s) cos ϕ +
dθ
ds
= 0,

cos θ(s)(κ(s) + cos ϕ
dθ
ds

) = 0,

sin ϕ(s) cos θ(s)
dθ
ds
= 0.

(3.3)

Proof. By using the definition (2.1), a base curve γ(s) of the generalized cylinder parameterized by (2.11) is a line of
curvature if and only if τ + dϕ

ds = 0, which is the first condition of (3.3), substituting it in the cylindrical conditions
(2.10), we get the other conditions of (3.3). □

Definition 3.11. A generalized cylinder with line of curvature base curve is defined by{
X(s, v) = γ(s) + v[cos θ(s)t(s) + sin θ(s)(cos ϕ n(s) + sin ϕ b(s))], 0 ≤ s ≤ L, v ∈ R, where,
τ + dϕ

ds = 0, κ(s) cos ϕ + dθ
ds = 0, cos θ(s)(κ(s) + cos ϕ dθ

ds ) = 0 and sin ϕ(s) cos θ(s) dθ
ds = 0.

(3.4)

The conditions (3.3) have been analyzed and interpreted in the following theorem.

Theorem 3.12. For a generalized cylinder whose base curve γ(s) is a line of curvature and parameterized by (3.4).
The conditions (3.3) are satisfied if and only if γ(s) is a plane curve and D(s) is the binormal unit vector.

Proof. Let γ(s) be a plane curve and D(s) is the binormal unit vector, then τ(s) = 0 and D(s) = b(s), by using (2.8),
this implies that cos θ = 0 and cos ϕ = 0, so dθ

ds = 0 and dϕ
ds = 0. By substituting, the conditions (3.3) are satisfied.

Conversely, suppose that the conditions (3.3) are satisfied, from the third and fourth equations we get cos θ = 0 and
so dθ

ds = 0, where the second equation becomes κ(s) cos ϕ = 0, since κ(s) , 0 then cos ϕ = 0, and so dϕ
ds = 0 which

implies that the first equation becomes τ(s) = 0, by definition γ(s) be a plane curve. Also by substituting cos θ = 0 and
cos ϕ = 0 in (2.8), it follows that D(s) is the binormal unit vector. □

As known, the plane curve has no binormal unit vector b(s), therefore, the binormal of plane curve coincides with
the unit normal vector to the plane of the curve.

Theorem 3.13. Let X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, v ∈ R, where γ(s) is a unit speed regular curve with non
vanishing curvature, D(s) is a unit direction vector defined by (2.8). Then, X(s,v) is a generalized cylinder whose base
curve is a line of curvature if and only if γ(s) is a plane curve and D(s) is a unit normal vector to the plane of γ(s) .
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Definition 3.14. A generalized cylinder with line of curvature base curve is defined by{
X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, v ∈ R, where,
D(s) = (0, 0, 1) and γ(s) is a plane curve. (3.5)

The generalized cylinder whose base curve is a plane curve and the director vector is a unit normal vector to the
plane of the base curve is called a right generalized cylinder [11] or shortly right cylinder.

Corollary 3.15. A generalized cylinder with line of curvature base curve parameterized by (3.5) is a right cylinder.

Theorem 3.16. Among all generalized cylinders parameterized by (2.11), only the right cylinder (3.5) can be equipped
with line of curvature base curve.

3.3. Generalized Cylinder with Asymptotic Base Curve.

Theorem 3.17. A base curve γ(s) of the generalized cylinder parameterized by (2.11) is an asymptotic if and only if
the following conditions are satisfied:

sin ϕ(s) = 0.
dθ
ds
+ κ = 0.

τ = 0.

(3.6)

Proof. By using the definition (2.1), a base curve γ(s) of the generalized cylinder parameterized by (2.11) is an asymp-
totic if and only if N = ±b, from (2.6), this happens if and only if sin ϕ(s) = 0 which is a first condition of (3.6). By
substituting it in the cylindrical conditions (2.10), we get the other conditions of (3.6). □

It is noted that in the above proof, neither cos θ = 0 nor sin θ = 0, because they are lead to dθ
ds = 0 and hence κ = 0,

which is a contradiction with γ(s) is non vanishing curvature.

Definition 3.18. A generalized cylinder with asymptotic base curve is defined by{
X(s, v) = γ(s) + v[cos θ(s)t(s) + sin θ(s)n(s)], 0 ≤ s ≤ L, v ∈ R, where,
dθ
ds + κ = 0, and τ = 0. (3.7)

The condition κ + dθ
ds = 0 can be written as θ(s) = θ0 −

∫ s
s0
κds. If we choose s0 = 0, hence θ0 = θ(0), then the

condition becomes θ(s) = θ(0)−
∫ s

0 κds. For simplification we suppose that θ(0) = 0 as given in the following definition.

Definition 3.19. A generalized cylinder with asymptotic base curve is defined by{
X(s, v) = γ(s) + v[cos(

∫ s
0 κds)t(s) − sin(

∫ s
0 κds)n(s)], 0 ≤ s ≤ L, v ∈ R, where,

γ(s) is a plane curve.
(3.8)

Theorem 3.20. Let X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, v ∈ R, where γ(s) is a unit speed regular curve with non
vanishing curvature, D(s) is a unit direction vector defined by (2.8). Then, X(s,v) is a generalized cylinder whose base
curve is an asymptotic if and only if γ(s) is a plane curve and D(s) = cos(

∫ s
0 κds)t(s) − sin(

∫ s
0 κds)n(s).

Corollary 3.21. A generalized cylinder with asymptotic base curve parameterized by (3.8) is a plane.

Theorem 3.22. Among all generalized cylinders parameterized by (2.11), only the plane can be equipped with asymp-
totic base curve.

Finally, using Theorems (3.9), (3.16) and (3.22), this section ended with the following theorems that classify the
generalized cylinders according to the type of characteristic base curve.

Theorem 3.23. (Classification of generalized cylinder ) Let X(s, v) be a generalized cylinder parametrized by (2.11),
where the base curve is a characteristic curve. Then, X(s, v) is either a rectifying cylinder, a right cylinder or a plane.

The explicit classification can be obtained in the following equivalent theorem.

Theorem 3.24. Let X(s, v) be a generalized cylinder parametrized by (2.11) whose base curve is a geodesic, a line of
curvature, or an asymptotic. Then, X(s, v) is either a rectifying cylinder, a right cylinder or a plane, respectively.
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According to the above classification theorems, the generalized cylinder whose base curve is a characteristic curve
can be classified into three different types based on the type of base curve.

Corollary 3.25. Let X(s, v) be a generalized cylinder of type a rectifying cylinder, a right cylinder or a plane. Then,
the base curve is a geodesic, a line of curvature or an asymptotic respectively.

The existence of such types can be ensured via the Theorems (3.9), (3.16), and (3.22) as the following.

Corollary 3.26. Given a unit speed regular curve γ(s) with non vanishing curvature. Then, there exists a rectifying
cylinder, a right cylinder or a plane in which γ(s) its a geodesic, a line of curvature or an asymptotic base curve,
respectively.

4. Examples

In this section, we give an example of a generalized cylinder whose base curve is a geodesic, a line of curvature or
an asymptotic curve and draw their pictures by using Mathematica.

Example 4.1. Let γ(s) = ( 1
√

2
sin(s), s

√
2
, 1
√

2
cos(s)) be a unit speed helix curve. By direct calculation we get t =(

1
√

2
cos(s), 1

√
2
,− 1
√

2
sin(s)

)
, n = (− sin(s), 0,− cos(s)), b = (− 1

√
2

cos(s), 1
√

2
, 1
√

2
sin(s)), κ = 1

√
2
, and τ = 1

√
2
. Accord-

ing to definition (3.2), the generalized cylinder whose base curve is a geodesic can be parameterized by

X(s, v) = γ(s) + v[
τ(s)
√
κ2 + τ2

t(s) +
κ(s)
√
κ2 + τ2

b(s)], 0 ≤ s ≤ L, v ∈ R.

By substituting, τ
√
κ2+τ2

= 1
√

2
and κ

√
κ2+τ2

= 1
√

2
, and for 0 ≤ s ≤ 2π, 0 ≤ v ≤ π, the constructed cylinder is a rectifying

cylinder with geodesic base curve (blue) as shown in Figure 1.

Figure 1. Rectifying cylinder with geodesic base curve.

Example 4.2. Let γ(s) = (cos(s), sin(s), 0) be a unit speed plane curve. According to definition (3.5), the generalized
cylinder whose base curve is a line of curvature can be parameterized by

X(s, v) = γ(s) + v (0, 0, 1) , 0 ≤ s ≤ π, 0 ≤ v ≤ π/2.

The constructed cylinder is a right cylinder with line of curvature base curve (blue) as shown in Figure 2.
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Figure 2. Right cylinder with line of curvature base curve.

Example 4.3. Let γ(s) = (cos(s), sin(s), 0) be a unit speed circular plane curve, where t = (− sin(s), cos(s)), n =
(− cos(s),− sin(s)) and κ = 1. From definition (3.8), the generalized cylinder with asymptotic base curve is given by

X(s, v) = γ(s) + v[cos(s)t(s) − sin(s)n(s)], 0 ≤ s ≤ π/2, 0 ≤ v ≤ π/2.

The constructed cylinder is a plane with asymptotic base curve (blue) as shown in Figure 3.

Figure 3. Generalized cylinder (plane ) with asymptotic base curve.

5. Conclusion

In this paper, using a generalized cylinder parametrization (2.11), we constructed three types of a cylinder whose
base curve is a characteristic. The main results asserted that the generalized cylinder with geodesic, line of curvature,
or asymptotic base curve is a rectifying cylinder(3.2), a right cylinder (3.5), or a plane (3.8) respectively. Also, the
base curve must be a helix as a first condition to generate a generalized cylinder with geodesic base curve, but the base
curve must be a planer as a first condition to generate a generalized cylinder with line of curvature or asymptotic base
curve. Among all types of generalized cylinders, only three cylinders can be equipped with characteristic base curve.
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