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Abstract
This paper deals with the existence, uniqueness, and energy decay of solutions for a degenerate hyperbolic
equation given by

K(x, t)u′′−M
(∫

Ω

|∇u|2 dx
)

∆u−∆u′ = 0,

with operator coefficient K(x, t) satisfying suitable properties and M( ·) ∈C1([0,∞)) is a function such that the
greatest lower bound is zero. For global weak solutions and uniqueness, we apply the Faedo-Galerkin method.
For the exponential decay, we use a theorem due to M. Nakao.
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1. Introduction
In this work, we will be focused on the existence, uniqueness, and exponential decay of global weak solution to the problem
associated with the degenerate hyperbolic equation

K(x, t)u′′−M
(∫

Ω

|∇u|2 dx
)

∆u−∆u′ = 0, in Q = Ω× (0,T ), (1.1)

u(x, t) = 0, on Σ = ∂Ω× (0,T ), (1.2)
u(x,0) = u0(x), u′(x,0) = u1(x), x ∈Ω, (1.3)

where Ω is a bounded open set of Rn (n≥ 1), with smooth boundary ∂Ω and T > 0 is a fixed but arbitrary real number. u(x, t)
represents the transversal displacement of a spacial variable x = (x1,x2, · · ·,xn) ∈ Rn at time t > 0, u′ denotes the derivative
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of u with respect to time. M( ·) is a C1([0,∞)) function such that M(λ ) ≥ 0, for all λ ∈ [0,∞) and the operator coefficient
K(x, t) ∈C1([0,T ], L∞(Ω)) satisfying suitable properties. By standard notation,

|∇u(x, t)|2 =
n

∑
i=1

∣∣∣∂u(x, t)
∂xi

∣∣∣2 and ∆u(x, t) =
n

∑
i=1

∂ 2u(x, t)
∂x2

i
is the Laplace operator.

Equation (1.1) with K(x, t) = 1 has its origin in the nonlinear vibration of an a stretched string and was considered in [1].
Existence of global solution was proved for K(x, t)≥ 0 and M = 1 in [2], see also [3]. For a background and physical properties
of this model we refer the reader to [4]-[7].

In fact,

u′′−M
(∫

Ω

|∇u|2 dx
)

∆u+αu′ = 0 in Q = Ω× (0,T ), (1.4)

when M(λ )≥m0 > 0 is known as non-degenerate, and for α = 0, global solutions have been obtained by several authors under
various assumption, see [8]-[13].

The operator coefficient K(x, t) plays an important role in the asymptotic behaviour for equation (1.1). The energy of the
equation (1.1) is given by

E(t) =
1
2

[
|K1/2 u′(t)|2 + M̂(a(u(t)))

]
being

M̂(t) =
∫ t

0
M(s)ds (1.5)

and

a(u,v) =
∫

Ω

∇u∇vdx the Dirichlet’s form, for which we write a(u) instead of a(u,u).

When K(x, t) = 1, for non-degenerate case, with α > 0, exponential decay properties was studied in [23]-[26]. However,
the decay rate of the solutions is not so fast in the degenerate case. In fact, in [1], for example was showed that the problem
(1.4) was a polynomial rate of decay given by E(t)≤Ct−(

α+1
α ).

Another example presented by J. G. Dix [27], fully transcribed here, shows that decay of solutions is not necessarily
exponential. Consider for Ω = (0,2π) ∈ R,

u′′−M
(
‖ux‖2)uxx +u′ = 0, x ∈Ω, t ≥ 1+

√
2,

u
(

x,1+
√

2
)
=

1√
π

e1/(1+
√

2) sin(x),

u′
(

x,1+
√

2
)
=

1
9
√

π
e1/(1+

√
2) sin(x),

u(0, t) = 0, u(2π, t) = 0, for t ≥ 1+
√

2,

where M is the non-negative and continuous function defined as

M(r) =

{ 1
16

ln2(r)(4−4ln(r)− ln2(r)), if 1≤ r ≤ e2/(1+
√

2),

0, otherwise.

Then u(x, t) =
1√
π

e1/t sin(x) is a solution. Since

u′ =− 1
t2 u, u′′ =

(
1
t4 +

2
t3

)
u, ux =

1√
π

e1/t cos(x), uxx =−u,
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‖ux‖2 = e2/t , and M(e2/t) =
1
t2 −

2
t3 −

1
t4 for t ≥ 1+

√
2, it follows that u satisfies the initial-value problem. Notice that ‖u′‖

decays polynomially rather than exponentially as t→ ∞. In fact, ‖u′‖2 =
1
t4 e2/t .

Moreover, when is considered the nonhomogeneous equation u′′−M
(
‖ux‖2

)
uxx +u′ = f (x, t), and a general non-constant

function M, in spite of the convergence of ‖u′‖ to zero remains illusive, that is, was not verified it and was not presented a
counter-example, was proved in [27] that if || f (x, t)|| is square integrable on [0,∞) then ‖u′‖ is square integrable on [0,∞).

On the other hand, when the greatest lower bound for M(λ ) is zero, the equation (1.4) is known as degenerate, see [14]-[16].
The degenerate equation (1.1) studied in this manuscript has been considered in just a few publications, see for instance [17, 18]
and references therein.

It is well known that the Cauchy problem is well-posed for strictly hyperbolic differential equations. However, in dimension
one, the Cauchy problem associated with degenerate hyperbolic equations is not well-posed. See [19]. Despite this, nonlinear
degenerate hyperbolic equations are one of the most important classes of partial differential equations. We present some results
in the literature in several contexts. For linear and semilinear equations of Tricomi type, existence, uniqueness, and qualitative
properties of weak solutions to the degenerate hyperbolic Goursat problem, which play a very important part in applied
and engineering sciences, was established in [20]. In [21] was considered the generalized Riemann problem for the Suliciu
relaxation system in Lagrangian coordinates. The Suliciu relaxation system can be considered as a simplified viscoelastic
shallow fluid model. Recently, the mixed Cauchy problem with lateral boundary condition for noncharacteristic degenerate
hyperbolic equations was analyzed in [22], where, unlike other works on mixed Cauchy that the problems under consideration
are obtained in weighted spaces, authors obtained all solutions in classical Sobolev spaces. Then, in the context above, the
degenerate equation gives us a feature yield several striking phenomena that require new mathematical ideas, approaches, and
theories.

The outline of this manuscript is the following. In Section 2 we introduce the notation, necessary assumptions and the main
results. The proof of the existence theorem is performed in section 3, in three steps: approximate problem, a priori estimates
and passage to the limit in the approximated equation. The uniqueness of the solution is given in section 4. Finally in section 5
the asymptotic behaviour is studied where we prove the exponential decay by using the Nakao method.

2. Preliminaries and Main Results
Let Ω⊂ Rn be a bounded open set with sufficiently smooth boundary ∂Ω. By Hm(Ω), m a non-negative integer, we denote
the Sobolev space of order m. For m = 0, H0(Ω) = L2(Ω). Further, we set Hm

0 (Ω) = the closure of D(Ω) in Hm(Ω), where
D(Ω) is the space of infinitely continuously differentiable functions with compact support contained in Ω. The inner product
and norm in L2(Ω) and H1

0 (Ω) are represented by ( · , ·), | · | and (( · , ·)), || · || respectively. The space H1
0 (Ω)∩H2(Ω) is

equipped with the norm |∆u|.
As in [29] for T > 0 a real number and B a Banach space, we denote

Lp(0,T,B) =

 u mensurable from [0,T] into B

(∫ T

0
||u(t)||pB dt

) 1
p

< ∞, if 1≤ p < ∞,

supess
0<t<T

||u(t)||B < ∞, if p = ∞.

 .

From now and on, let us assume that the volume density function K(x, t) satisfies:

(H.1) K(x, t) ∈C1([0,T ] , L∞(Ω)), K(x, t)≥ 0 and K(x,0)≥C0 > 0 for some C0 ∈ R.

(H.2)
∣∣∣∂K(x, t)

∂ t

∣∣∣≤ γ +C(γ)K(x, t), for all γ > 0.

In this manuscript, we deal with a degenerate case, then we consider that M(λ ), λ > 0, a real function satisfying

(H.3) M(λ ) ∈C1([0,∞)) with M(λ )≥ 0, for all, λ > 0.

The well-posedness of problem (1.1) is ensured by
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Theorem 2.1. For u0, u1 ∈ H1
0 (Ω)∩H2(Ω) there exists a unique function u : [0,T ]→ L2(Ω) with the following regularity

u ∈ L∞(0,T ;H1
0 (Ω)∩H2(Ω)), (2.1)

u′ ∈ L2(0,T ;H1
0 (Ω)∩H2(Ω)), (2.2)

u′′ ∈ L2(0,T ;H1
0 (Ω)), (2.3)

such that

K(x, t)u′′−M (a(u(t))∆u−∆u′ = 0 in L2(Q), (2.4)
u(x, t) = 0 on Σ = ∂Ω× (0,T ), (2.5)

u(x,0) = u0(x), u′(x,0) = u1(x), x ∈Ω. (2.6)

Remark 2.2. From (2.1), (2.2), (2.3) we have that u ∈C0([0,T ],H1
0 (Ω)∩H2(Ω)) and u′ ∈C0([0,T ],H1

0 (Ω)) so the initial
conditions (2.6) are well set.

For asymptotic behaviour the exponential stability is given by

Theorem 2.3. Under the hypothesis of Theorem 2.1, the energy E(t) associated to equation (1.1) satisfies

E(t)≤C0e−α t , for all t ≥ 0, where C0 and α are positive constants.

3. Existence of Solution
The aim of this section is to prove the theorem (2.1). For this goal, we use the Faedo-Galerkin method, a standard technique
well described in the book by Temam [30].

3.1 Step 1. Perturbed approximate problem
Let (wν)ν∈N be a basis of H1

0 (Ω)∩H2(Ω) consisting of eigenvectors of the operator −∆, that is,

−∆w j = λ j w j, j = 1,2, · · ·,n, · · ·

where 0 < λ1 < λ2 ≤ · · · ≤ λn ≤ · · ·, λn→ ∞ as n→ ∞, w j
∣∣
∂Ω

= 0, j = 1,2, · · ·, and Vm = [w1, · · ·,wm] is the H1
0 (Ω)∩H2(Ω)

subspace generated by the first m eigenfunctions.
For all w ∈Vm, let

uεm(t) =
m

∑
j=1

g jεm(t)w j, 0 < ε < 1,

be a local solution of the approximated problem

((K + ε)u′′εm,v)+M(a(uεm))a(uεm,v)+a(u′εm,v) = 0, ∀v ∈Vm (3.1)

uεm(0) = u0m −→ u0 strongly in H1
0 (Ω)∩H2(Ω), (3.2)

u′εm(0) = u1m −→ u1 strongly in H1
0 (Ω)∩H2(Ω), (3.3)

which exists in a interval [0,Tεm), 0 < Tεm ≤ T , by virtue of Carathéodory’s theorem, see [28]. The extension of the solution to
the whole interval [0,T ] is a consequence of the following priori estimates.

3.2 Step 2. Priori estimates
(I) Replacing w = u′εm(t) in perturbed approximate equation (3.1), we get

1
2

d
dt
(K,u′2εm)+

ε

2
d
dt
|u′εm|2 +

1
2

M(a(uεm))
d
dt

a(uεm)+ ||u′εm||2 =
1
2
(

∂K
∂ t

,u′2εm). (3.4)

From (1.5) we get

d
dt

M̂(a(uεm)) = M(a(uεm))
d
dt

a(uεm),
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then, (H.2), (3.4) leads to

d
dt

[
(K,u′2εm)+ ε|u′εm|2 + M̂(a(uεm))

]
+2||u′εm||2 ≤ γµ||u′εm||2 +C(γ)(K,u′2εm),

where µ1/2 is the Poincaré constant. Performing integration from 0 to t, 0 < t ≤ Tεm we obtain

(K,u′2εm)+ε|u′εm|2 + M̂(a(uεm))+(2− γµ)
∫ t

0
||u′εm||2 ds≤ (K(0),u2

1m)+ ε|u1m|2 + M̂(a(u0m))+C(γ)
∫ t

0
(K,u′2εm)ds.

(3.5)

Since K(0) ∈ L∞(Ω), by using (3.2), (3.3) and choosing γ < 2/C we obtain

(K,u′2εm)+ε|u′εm|2 + M̂(a(uεm))+(2− γµ)
∫ t

0
||u′εm||2 ds≤C1 +C(γ)

∫ t

0
(K,u′2εm)ds, (3.6)

being C1 > 0 a real constant independent of ε,m and t. Now, applying Gronwall’s inequality in (3.6), we come to

(K,u′2εm)+ε|u′εm|2 + M̂(a(uεm))+(2− γµ)
∫ t

0
||u′εm||2 ds≤C2,

with C2 > 0 a real constant independent of ε,m and t. Therefore,

(K1/2u′εm) is bounded in L∞(0,T ;L2(Ω)),

(
√

ε u′εm) is bounded in L∞(0,T ;L2(Ω)),

(u′εm) is bounded in L2(0,T ;H1
0 (Ω)). (3.7)

From (3.7) and of Fundamental Theorem of Calculus, that is, uεm(t) = uεm(0)+
∫ t

0
u′εm(s)ds, we have

(uεm) is bounded in L∞(0,T ;H1
0 (Ω)). (3.8)

(II) Replacing v = u′′εm(t) in equation (3.1), we get

(K,u′′2εm)+ ε|u′′εm|2 +M(a(uεm))a(uεm,u′′εm)+
1
2

d
d t
||u′εm||2 = 0. (3.9)

Note that

M(a(uεm))a(uεm,u′′εm) = M(a(uεm))

[
d
d t

a(uεm,u′εm)−a(u′εm)

]
=

d
d t

[
M(a(uεm))a(uεm,u′εm)

]
−2M′(a(uεm))a(uεm,u′εm)a(uεm,u′εm)−M(a(uεm))a(u′εm).

Thereby∣∣∣∣∫ t

0
M(a(uεm))a(uεm,u′′εm)ds

∣∣∣∣≤ ∣∣M(a(uεm))a(uεm,u′εm)
∣∣+ ∣∣M(a(u0m))a(u0m,u′1m)

∣∣
+ 2

∫ t

0

∣∣M′(a(uεm))a(uεm,u′εm)
2∣∣ ds+

∫ t

0

∣∣M(a(uεm))a(u′εm)
∣∣ ds.

Since, M(λ ) ∈C1([0,∞)), then

M(a(uεm))≤ sup
m≥1
{M(λ ) : 0≤ λ ≤ sup ||uεm||L∞(0,T ;H1

0 (Ω))} ≤ c

and

M′(a(uεm))≤ sup
m≥1
{M(λ ) : 0≤ λ ≤ sup ||uεm||L∞(0,T ;H1

0 (Ω))} ≤ c,

with c,c positive constants independent of ε,m and t.
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Then,∣∣∣∣∫ t

0
M(a(uεm))a(uεm,u′′εm)ds

∣∣∣∣≤ c‖uεm‖
∥∥u′εm

∥∥+C3 +2c
∫ t

0
‖uεm‖2∥∥u′εm

∥∥2 ds+ c
∫ t

0

∥∥u′εm
∥∥2 ds.

From (3.7) and (3.8) we have∣∣∣∣∫ t

0
M(a(uεm))a(uεm,u′′εm)ds

∣∣∣∣≤C4 +α
∥∥u′εm

∥∥2
, with C4,α positive constants independent of ε,m and t. (3.10)

Integrating (3.9) from 0 to t, 0 < t ≤ T , and using the estimate (3.10) we obtain∫ t

0
(K,u′′2εm)ds+ ε

∫ t

0
|u′′εm|2 ds+(

1
2
−α)||u′εm||2 ≤C4. (3.11)

Choosing properly 0 < α < 1/2 we obtain directly from estimate (3.11)

(K1/2u′′εm) is bounded in L2(Q),

(
√

ε u′′εm) is bounded in L2(Q),

(u′εm) is bounded in L∞(0,T ;H1
0 (Ω)). (3.12)

(III) Now we will get an estimate for u′′εm(t). At this point we have an additional degree of difficulty. We first obtain an
estimate for u′′εm(0). In this direction, taking t = 0 and v = u′′εm(0) in equation (3.1) we obtain

((K(0),u′′2εm(0))+ ε|u′′εm(0)|2 +M(a(u0m))a(u0m,u′′εm(0)).+a(u′1m,u
′′
εm(0)) = 0.

Since K(0)≥C0 > 0 we have

(C0 + ε)|u′′εm(0)|2 ≤ |M(a(u0m))∆u0m +∆u1m| |u′′εm(0)|,

therefore

|u′′εm(0)| ≤ c̃, where c̃ is a positive constant independent of ε,m and t. (3.13)

Deriving the approximate equation (3.1) with respect to t and making v = u′′εm(t) we obtain

(Ku′′′εm,u
′′
εm)+(

∂K
∂ t

u′′εm,u
′′
εm)+ ε(u′′′εm,u

′′
εm)+

d
dt

[M(a(uεm))]a(uεm,u′′εm)+M(a(uεm))a(u′εm,u
′′
εm)+a(u′′εm) = 0,

that is,

1
2

d
dt
(K,u′′2εm)+

1
2
(

∂K
∂ t

,u′′2εm)+
ε

2
d
dt
|u′′εm|2 +‖u′′εm‖2 =−2M′(a(uεm))a(uεm,u′εm)a(uεm,u′′εm)−M(a(uεm))a(u′εm,u

′′
εm),

and then,

1
2

d
dt

[
(K,u′′2εm)+ ε|u′′εm|2

]
+‖u′′εm‖2 ≤C5 +µ

γ

2
‖u′′εm‖2 +

C(γ)

2
(K,u′′2εm), with C5 independent of ε,m and t. (3.14)

Integrating (3.14) from 0 to t, we obtain

1
2
[
(K,u′′2εm)+ ε|u′′εm|2

]
+(1−µ

γ

2
)
∫ t

0
‖u′′εm‖2 ds≤C5 +C(γ)

∫ t

0
(K,u′′2εm)ds+

1
2
[
K(0),u′′2εm(0))+ ε|u′′εm(0)|2

]
. (3.15)

By using (3.13) and Gronwall’s inequality, (3.15) leads to

1
2
[
(K,u′′2εm)+ ε|u′′εm|2

]
+(1−µ

γ

2
)
∫ t

0
‖u′′εm‖2 ds≤C6, with C6 a positive constant independent of ε,m and t.

Therefore,

(K1/2u′′εm) is bounded in L∞(0,T ;L2(Ω)), (3.16)

(
√

ε u′′εm) is bounded in L∞(0,T ;L2(Ω)), (3.17)

(u′′εm) is bounded in L2(0,T ;H1
0 (Ω)). (3.18)
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(IV) Replacing v =−∆uεm in the approximate equation (3.1), we obtain

((K + ε)u′′εm,−∆uεm)+M(a(uεm))a(uεm,−∆uεm)+a(u′εm,−∆uεm) = 0,

that leads us to

1
2

d
dt
|−∆uεm|2 ≤ K0|−∆uεm||u′′εm|+ ε|−∆uεm||u′′εm|+ |M(a(uεm))||−∆uεm|2, where K0 = max

0≤s≤T

(
supess

x∈Ω

K(x,s)
)
.

Performing integration from 0 to t, using Young’s inequality and (3.18), we obtain

|−∆uεm|2 ≤C7 +C8

∫ t

0
|−∆uεm(s)|2ds.

Applying Gronwall’s inequality we get

|−∆uεm|2 ≤C9. (3.19)

Then we obtain,∥∥uεm
∥∥2

H2(Ω)
≤C9, where the constants C7,C8,C9 are positives and independent of ε,m and t.

In fact we have the following regularity

(uεm) is bounded in L∞(0,T ;H2(Ω)). (3.20)

(V) Replacing v =−∆u′εm in approximated equation (3.1), we get

((K + ε)u′′εm,−∆u′εm)+M(a(uεm))a(uεm,−∆u′εm)+a(u′εm,−∆u′εm) = 0,

then,

|−∆u′εm|2 ≤ K0|−∆u′εm||u′′εm|+ |M(a(uεm))||−∆uεm||−∆u′εm|+ ε|u′′εm||−∆u′εm|.

Performing integration from 0 to t, using Young’s inequality, (3.18) and (3.19) we obtain∫ t

0
|−∆u′εm(s)|2ds≤C10 +α

∫ t

0
|−∆u′εm(s)|2ds, thus (1−α)

∫ t

0
|−∆u′εm(s)|2ds≤C10.

Then∥∥u′εm
∥∥2

H2(Ω)
≤C10, C10 independent of ε,m and t.

Therefore

(u′εm) is bounded in L2(0,T ;H2(Ω)). (3.21)

3.3 Step 3. Passage to the limit
From estimates (3.9), (3.12), (3.16), (3.17), (3.18), (3.20), and (3.21), there exists a subsequence of (uεm), denoted by same
way, such that,

uεm
∗
⇀ u in L∞(0,T ;H1

0 (Ω)∩H2(Ω)), (3.22)

u′εm ⇀ u′ in L2(0,T ;H1
0 (Ω)∩H2(Ω)), (3.23)

u′′εm ⇀ u′′ in L2(0,T ;H1
0 (Ω)),

√
ε u′′εm ⇀ 0 in L2(0,T ;L2(Ω)).

Ku′′εm ⇀ Ku′′ in L2(Q).
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From compact immersion H1
0 (Ω)∩H2(Ω) ↪→H1

0 (Ω), by Aubin-Lions’s lemma [29] follows that uεm→ u in L2(0,T ;H1
0 (Ω)),

and so a(uεm)→ a(u) in L2(0,T ), and, as M ∈C1([0,∞)) we obtain

M(a(uεm))→M(a(u)) in L2(0,T ).

From (3.22) and (3.23) we wave that ∆uεm ⇀ ∆u in L2(Q), and ∆u′εm ⇀ ∆u′ in L2(Q). Thereby,

M(a(uεm))∆uεm ⇀ M(a(u))∆u in L2(Q).

Now consider the approximated equation

(K + ε)u′′εm−M(a(uεm))∆uεm−∆u′εm = 0.

Making the inner product in L2(Ω) by ϕ ∈ L2(Ω) we obtain

((K + ε)u′′εm,ϕ)− (M(a(uεm))∆uεm,ϕ)− (∆u′εm,ϕ) = 0.

Taking the limit with m→ ∞ and ε → 0, we get

((Ku′′,ϕ)− (M(a(u))∆u,ϕ)− (∆u′,ϕ) = 0, for all ϕ ∈ L2(Q), and then (2.4) is proven.

The verification of the initial data (2.6) is obtained in a standard way.

4. Uniqueness of Solution
Consider u and û with the hypotheses of regularity (2.1), (2.2) of Theorem 2.1. Then, w = u− û is solution of the equation

Kw′′− (M(a(u))∆w− [M(a(u))−M(a(û))]∆û−∆w′ = 0, (4.1)

with initial conditions

w(0) = 0 and w′(0) = 0. (4.2)

Taking the inner product in L2(Ω) on both sides of (4.1) with w,w′ and w′′ respectively, we get

(Kw′′,w)+(M(a(u))a(w)+ [M(a(u))−M(a(û))]a(û,w)+a(w′,w) = 0,
(Kw′′,w′)+(M(a(u))a(w,w′)+ [M(a(u))−M(a(û))]a(û,w′)+a(w′) = 0,

(K,w′′2)+(M(a(u))a(w,w′′)+ [M(a(u))−M(a(û))]a(û,w′′)+a(w′,w′′) = 0,

that is

(Kw′′,w)+(M(a(u))‖w‖2 +[M(a(u))−M(a(û))]a(û,w)+
1
2

d
d t
‖w‖2 = 0,

1
2

d
dt
(K,w′2)− 1

2
(

∂K
∂ t

,w′2)+
1
2
(M(a(u))

d
d t
‖w‖2 +‖w′‖2 +[M(a(u))−M(a(û))]a(û,w′) = 0,

(K,w′′2)+(M(a(u))a(w,w′′)+ [M(a(u))−M(a(û))]a(û,w′′)+
1
2

d
d t
‖w′‖2 = 0.

Adding the last three equations above and integrating from 0 to t, we obtain∫ t

0
(K,w′′2)ds+

1
2
(K,w′2)+

1
2

M(a(u))‖w‖2 +
1
2
‖w‖2 +

1
2
‖w′‖2 +

∫ t

0
‖w′‖2 dx

=
∫ t

0

{
1
2
(

∂K
∂ t

,w′2)− (Kw′′,w)−M(a(u))‖w‖2−M(a(u))a(w,w′′)
}

ds

+
∫ t

0

{
[M(a(û))−M(a(u))] [a(û,w)+a(û,w′)+a(û,w′′)]+M′(a(u))a(u,u′)‖w‖2

}
ds.

Note that

1
2
(

∂K
∂ t

,w′2)≤ δC‖w′‖2 +C(δ )(K,w′2),
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and ∫ t

0
(Kw′′,w)ds = (Kw′,w)−

∫ t

0
(

∂K
∂ t

,w′w)ds−
∫ t

0
(K,w′2)ds

≤C1‖w′‖‖w‖+C2

∫ t

0
‖w′‖‖w‖ds+C(δ )C1

∫ t

0
‖w′‖‖w‖ds+

∫ t

0
(K,w′2)ds.

Then we have,∫ t

0
(Kw′′,w)ds≤ α‖w′‖2 +

C3

α
‖w‖2 +

∫ t

0
(K,w′2)ds

≤ α‖w′‖2 +C4

∫ t

0
‖w‖2 ds+C5

∫ t

0
‖w′‖2 ds+

∫ t

0
(K,w′2)ds.

Besides that,

[M(a(û))−M(a(u))]
[
a(û,w)+a(û,w′)+a(û,w′′)

]
≤ |M′(ξ )||a(û)−a(u)|‖û‖‖w‖+‖û‖‖w′‖+‖û‖w′′‖
= |M′(ξ )||(‖û‖−‖u‖)(‖û‖+‖u‖)|‖û‖(‖w‖+‖w′‖+‖w′′‖)
≤ |M′(ξ )||û−u‖)(‖û‖+‖u‖)|‖û‖(‖w‖+‖‖w′‖+‖w′′‖)
= |M′(ξ )|‖w‖(‖û‖+‖u‖)‖û‖(‖w‖+‖‖w′‖+‖w′′‖)
≤C6‖w‖2 +C7‖w′‖2 +C8‖w‖‖w′′‖

and

M(a(u))a(w,w′′) = M(a(u))
[

d
dt

a(w,w′)−a(w′)
]

=
d
dt

[
M(a(u))a(w,w′)

]
−2M(a(u))a(u,u′)a(w,w′)−M(a(u))a(w′),

then, ∫ t

0
M(a(u))a(w,w′)ds≤C9‖w‖‖w′‖+C10

∫ t

0
‖w‖‖w′‖ds+C11

∫ t

0
‖w′‖2 ds

≤ α‖w′‖2 +C12

∫ t

0
‖w‖2 ds+C13

∫ t

0
‖w′‖2 ds.

Therefore,

1
2
(K,w′2)+

1
2

M(a(u))‖w‖2 +
1
2
‖w‖2 +

(
1
2
−2α

)
‖w′‖2

≤
∫ t

0

[
(1+C(γ))(K,w′2)+M(a(u))‖w‖2 +C14‖w‖2 +C5‖w′‖2] ds+C8

∫ t

0
‖w‖‖w′′‖ds.

Then,

(K,w′2)+M(a(u))‖w‖2 +‖w‖2 +(1−4α)‖w′‖2

≤ c
∫ t

0

[
(K,w′2)+M(a(u))‖w‖2 +‖w‖2 +(1−4α)‖w′‖2] ds+ c

∫ t

0
‖w‖‖w′′‖ds.

Now, we denote

ϕ(t) = (K,w′2)+M(a(u))‖w‖2 +‖w‖2 +(1−4α)‖w′‖2

and we obtain

ϕ(t)≤ c
∫ t

0
ϕ(s)ds+ c

∫ t

0
g(s)ϕ1/2(s)ds, where g(s) = ‖w′′‖ ∈ L1(0,T ).

Then, we have ϕ(t) = 0, for all t ∈ [0,T ] and finally w = 0, that is, u = û which proves the uniqueness of solution.
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5. Asymptotic Behaviour
In this section we prove the exponential decay of solution to the problem (1.1)-(1.3). Let start by present the following result:

Lemma 5.1 (Nakao’s Lemma, [31]). Suppose that E(t) is a bounded nonnegative function on R+, satisfying

supess
t≤s≤t+1

E(s)≤C[E(t)−E(t +1)], for t ≥ 0, where C is a positive constant.

Then, we have

E(t)≤Ce−αt , with α =
1

C+1
, for all t ≥ 0.

The main result of this section is given by the following theorem:

Theorem 5.2. Under the hypotheses of Theorem 2.1, the energy associated with the system (1.1)-(1.3) satisfies

E(t)≤Ce−αt , for all t ≥ 0, where C and α are positive constants.

Proof. Multiplying (1.1) by ut and integrating over Ω, we obtain

1
2

d
dt

[
|K1/2u′(t)|2 + M̂(a(u(t))

]
+‖u′(t)‖2 =

1
2
(

∂K
∂ t

,u′(t)), where, M̂(t) =
∫ t

0
M(s)ds.

By (H.2) we have

|(∂K
∂ t

,u′2(t))| ≤ γ|u′2(t))|2 +C(γ)|(K,u′2(t))| ≤ µ(δ +C(γ)K0)|u′(t)|2,

with

K0 = max
t≤s≤T

(
supess

x∈Ω

K(x,s)
)
, and µ > 0 is a constant such that |ϕ|2 ≤ µ‖ϕ‖2, ϕ ∈ H1

0 (Ω).

Whence follows that

1
2

d
dt

[
|K1/2u′(t)|2 + M̂(a(u(t))

]
+[1−µ(γ +C(γ)K0)]‖u′(t)‖2 ≤ 0, (5.1)

where γ > 0 is sufficiently small such that 1−µ(γ +C(γ)K0)> 0.

Now, its important to remember that E(t) =
1
2

[
|K1/2u′(t)|2 + M̂(a(u(t)))

]
.

Integrating (5.1) from t to t +1, we obtain∫ t+1

t
|u′(s)|2 ds≤ µ

∫ t+1

t
‖u′(s)‖2 ds≤C15 [E(t)−E(t +1)] def

= F2(t), with C15 =
µ

1−µ(γ +C(γ)K0)
> 0. (5.2)

Therefore, from (5.2), there exist t1 ∈
[
t, t + 1

4

]
and t2 ∈

[
t + 3

4 , t +1
]

such that |u′(ti)| ≤ 2F(t), i = 1,2.

The inner product in L2(Ω) of (1.1) with u(t) implies

d
dt
(Ku′(t),u(t))−|K1/2u′(t)|2 +M(a(u))a(u)+((u′(t),u(t))) = (

∂K
∂ t

u′(t),u(t)).

Integrating from t1 to t2 and by using (H.2) we have∫ t2

t1
M(a(u))a(u)dt ≤ K0|u′(t1)||u(t1)|+K0|u′(t2)||u(t2)|

+µK0

∫ t2

t1
‖u′(s)‖2 ds+

∫ t2

t1
‖u′(s)‖‖u(s)‖ds

+ γ
√

µ

∫ t2

t1
|u′(s)|‖u(s)‖ds+C(γ)K0

√
µ

∫ t2

t1
|u′(s)|‖u(s)‖ds. (5.3)
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Now,

M(a(u))a(u)≥ m0a(u) = m0‖u‖2, where m0 = min
0≤s≤a(u)

M(s)> 0. (5.4)

Then, by (5.2), (5.3) and (5.4), we obtain

m0

∫ t2

t1
‖u(s)‖2 ds≤ 4µK0F(t) supess

t≤s≤t+1
‖u(s)‖+C16F2(t)+

3
4

m0

∫ t2

t1
‖u(s)‖2 ds,

where C16 = µK0 +
1

m0
+

µγ2

m0
+

µC2(γ)K2
0

m0
> 0.

Then we have,∫ t2

t1
‖u(s)‖2 ds≤C17F(t) supess

t≤s≤t+1
‖u(s)‖+C18F2(t) def

= G2(t), being C17 =
4µK0

m0
and C18 =

4C
m0

. (5.5)

From (5.2) and (5.5) we obtain∫ t2

t1

[
|u′(s)|2 +‖u(s)‖2] ds≤ F2(t)+G2(t). (5.6)

Thus, by (5.6) there exists t∗ ∈ [t1, t2] such that |u′(t∗)|2 +‖u(t∗)‖2 ≤ 2[F2(t)+G2(t)]. (5.7)

Now, not that,

M̂(a(u((t∗))))≤ m1‖u(t∗)‖2 ≤ 2m1[F2(t)+G2(t)], with m1 = max
0≤s≤a(u(t∗))

M(s). (5.8)

From (5.7) and (5.8), we have E(t∗)≤C16[F2(t)+G2(t)]. (5.9)

Since that E(t) is increasing, we obtain supess
t≤s≤t+1

E(s)≤ E(t∗)+ [1−µ(γ +C(γ))K0

∫ t+1

t
‖u′(s)‖2 ds. (5.10)

Now, by (5.2), (5.9) and (5.10), we get supess
t≤s≤t+1

E(s)≤C17[F2(t)+F(t) supess
t≤s≤t+1

‖u′(s)‖ ≤C18F2(t)+
1
2

supess
t≤s≤t+1

E(s).

Then, by (5.2) supess
t≤s≤t+1

E(s)≤C[E(t)−E(t +1)], where Ci, i = 15,16,17,18 and C are positive constants.

Therefore, by Nakao’s lemma, we obtain E(t)≤Ce−αt , with α =
1

C+1
, for all t ≥ 0.

The exponential decay of the solution was been proven.

6. Conclusion
We prove the existence, uniqueness, and exponential stability of the solution to a degenerate hyperbolic equation where the
greatest lower bound for Kirchhoff function M( ·) is zero. We consider strong damping as a stabilization mechanism. We have
improved previous results in the literature, mainly because the exponential decay for this type of problem, as far as we know,
has not been previously considered.
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