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Abstract
In this paper we introduce several almost complex structures compatible with Cheeger-
Gromoll metric on the coframe bundle and investigate their integrability conditions.
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1. Introduction
The geometric structures of the fiber bundles over Riemannian manifold (M, g) is one

of the essential topics in the differential geometry. First Sasaki [13] constructed a Rie-
mannian metric Sg on the tangent bundle T (M) which depend only on the base manifold.
Kowalski [8] proved that if the Sasaki metric Sg is locally symmetric, then the base metric
g is flat and hence Sg is also flat. Musso and Tricerri [10] obtained an explicit expression
of the Cheeger-Gromoll metric CGg introduced by Cheeger and Gromoll in [3] (see also
[6]). Sekizawa [14] defined some geometric objects related CGg. Tahara, Vanhecke and
Watanabe [15] constructed several almost complex structures compatible with some nat-
ural defined Riemannian metrics on the tangent bundle of an almost Hermitian manifold.
Bejan and Druţǎ [2] defined harmonic almost complex structures with respect to general
natural metrics in the tangent bundle. In [9] Munteanu introduced Cheeger-Gromooll
type metrics and showed the conditions for which the tangent bundle is almost Kahlerian
or Kahlerian (see also [7]).To construct an almost Hermitian structure on the cotangent
bundle T ∗(M) of a Riemannian manifold (M, g) Oproiu and Poroşniuc used some natural
lifts of geometric objects [11]. (see also [4]).

In this paper, we construct an almost Hermitian structures on the bundle of linear
coframes F ∗(M) over a Riemannian manifold (M, g) with the Cheeger-Gromoll metric
CGg. In 2 we briefly describe the definitions and results that are needed later, after which
the adapted frame on coframe bundle F ∗(M) introduced in 3. The Cheeger-Gromoll metric
CGg on F ∗(M) and its Levi-Civita connection CG∇ are determined in 4. In 5 we define
an almost Hermitian structures (CGg, Jβ), β = 1, 2, ..., n, on the linear coframe bundle
F ∗(M). The integrability conditions for almost complex structures Jβ, β = 1, 2, ..., n, are
studied in 6.
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2. Preliminaries
In this section we shall summarize briefly the main definitions and results which be used

later. Let (M, g) be an n−dimensional Riemannian manifold. Then the linear coframe
bundle F ∗(M) over M consists of all pairs (x, u∗), where x is a point of M and u∗ is a
basis (coframe) for the cotangent space T ∗

x M of M at x [5]. We denote by π the natural
projection of F ∗(M) to M defined by π(x, u∗) = x. If (U ; x1, x2, ..., xn) is a system of
local coordinates in M , then a coframe u∗ = (Xα) = (X1, X2, ..., Xn) for T ∗

x M can be
expressed uniquely in the form Xα = Xα

i (dxi)x. From mentioned above it follows that(
π−1(U); x1, x2, ..., xn, X1

1 , X1
2 , ..., Xn

n

)
is a system of local coordinates in F ∗(M) (see, [5]), that is F ∗(M) is a C∞ manifold
of dimension n + n2. We note that indices i, j, k, ..., α, β, γ, ... have range in {1, 2, ..., n},
while indices A, B, C, ... have range in

{
1, ..., n, n + 1, ..., n + n2}. We put iα = α · n + i.

Obviously that indices iα, jβ, kγ , ... have range in
{
n + 1, n + 2, ..., n + n2}. Summation

over repeated indices is always implied. Let ∇ be a symmetric linear connection on M
with components Γk

ij . Then the tangent space T(x,u∗)(F ∗(M)) of F ∗(M) at (x, u∗) ∈ F ∗(M)
splits into the horizontal and vertical subspaces with respect to ∇ :

T(x,u∗)(F ∗(M)) = H(x,u∗)(F ∗(M)) ⊕ V(x,u∗)(F ∗(M)). (2.1)

We denote by ℑr
s(M) the set of all differentiable tensor fields of type (r, s) on M . From (2.1)

it follows that for every X ∈ ℑ1
0(F ∗(M)) is obtained unique decomposing X = hX + vX,

where hX ∈ H(F ∗(M)), vX ∈ V (F ∗(M)). H(F ∗(M)) and V (F ∗(M)) the horizontal
and vertical distributions for F ∗(M), respectively. Now we define naturally n different
vertical lifts of 1−form ω ∈ ℑ0

1(M). If Y be a vector field on M , i.e. Y ∈ ℑ1
0(M),

then iµY are functions on F ∗(M) defined by (iµY )(x, u∗) = Xµ(Y ) for all (x, u∗) =
(x, X1, X2, ..., Xn) ∈ F ∗(M), where µ = 1, 2, ..., n. The vertical lifts Vλω of ω to F ∗(M)
are the n vector fields such that

Vλω(iµY ) = ω(Y )δλ
µ

hold for all vector fields Y on M, where λ, µ = 1, 2, ..., n and δλ
µ denote the Kronecker’s

delta. The vertical lifts Vλω of ω to F ∗(M) have the components

Vλω =
(

Vλωk

Vλωkµ

)
=
(

0
ωkδλ

µ

)
(2.2)

with respect to the induced coordinates (xi, Xα
i ) in F ∗(M) (see, [12]).

Let V ∈ ℑ1
0(M). The complete lift CV ∈ ℑ1

0(F ∗(M)) of V to the linear coframe bundle
F ∗(M) is defined by

CV (iµY ) = iµ(LV Y ) = Xµ
m(LV Y )m

for all vector fields Y ∈ ℑ1
0(M), where LV be the Lie derivation with respect to V. The

complete lift CV has the components

CV =
(

CV k

CV kµ

)
=
(

V k

−Xµ
m∂kV m

)
with respect to the induced coordinates (xi, Xα

i ) in F ∗(M).
The horizontal lift HV ∈ ℑ1

0(F ∗(M)) of V to the linear coframe bundle F ∗(M) is defined
by

HV (iµY ) = iµ(∇V Y ) = Xµ
m(∇V Y )m
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for all vector fields Y ∈ ℑ1
0(M), where ∇V be the covariant derivative with respect to V.

The horizontal lift HV has the components

HV =
(

HV k

HV kµ

)
=
(

V k

Xµ
mΓm

lkV l

)
(2.3)

with respect to the induced coordinates (xi, Xα
i ) in F ∗(M), where Γk

ij are the components
of Levi-Civita connection on M.

The bracket operation of vertical and horizontal vector fields is given by the formulas

[Vβ ω, Vγ θ] = 0,
[HX, Vγ θ] = Vγ (∇Xθ),
[HX, HY ] = H [X, Y ] +

n∑
σ=1

Vσ (Xσ ◦ R(X, Y ))
(2.4)

for all X, Y ∈ ℑ1
0(M) and ω, θ ∈ ℑ0

1(M), where R is the Riemannian curvature of g. If
f is a differentiable function on M, V f = f ◦ π denotes its canonical vertical lift to the
F ∗(M).

3. Adapted frames on F ∗(M)
Suppose (U, xi) be a local coordinate system in M. In U ⊂ M, we put

X(i) = ∂/(∂xi), θ(i) = dxi, i = 1, 2, ..., n.

Taking into account of (2.2) and (2.3), we see that

HX(i) = Di =
(

δj
i

Xβ
mΓm

ij

)
, (3.1)

Vαθ(i) = Diα =
(

0
δα

β δi
j

)
(3.2)

with respect to the natural frame {∂j , ∂jβ
}. It follows that this n + n2 vector fields

are linearly independent and generate, respectively the horizontal distribution of linear
connection ∇ and the vertical distribution of linear coframe bundle F ∗(M). The set
{DI} = {Di, Diα} is called the frame adapted to linear connection ∇ on π−1(U) ⊂ F ∗(M).
From (2.2), (2.3), (3.1) and (3.2), we deduce that the horizontal lift HV of V ∈ ℑ1

0(M)
and vertical lift Vαω for each α = 1, 2, ..., n, of ω ∈ ℑ0

1(M) have respectively, components:

HV = V iDi =
(

V i

0

)
, (3.3)

Vβ ω =
∑

i

ωiδ
β
αDiα =

(
0

δβ
αωi

)
(3.4)

with respect to the adapted frame {DI}. The non-holonomic objects Ω K
IJ of the adapted

frame {DI} are defined by
[DI , DJ ] = Ω K

IJ DK

and have the following non-zero components: Ω kγ

ijβ
= −Ω kγ

jβi = −δγ
βΓj

ik,

Ω kγ

ij = Xγ
mR m

ijk ,

where R m
ijk local components of the Riemannian curvature R.



Almost complex structures on coframe bundle 1263

4. The Cheeger-Gromoll metric on the linear coframe bundle
Definition 4.1. Let (M, g) be an n−dimensional Riemannian manifold. A Riemannian
metric g̃ on the linear coframe bundle F ∗(M) is said to be natural with respect to g on
M if

g̃(HX, HY ) = g(X, Y ),

g̃(HX, Vαω) = 0
for all X, Y ∈ ℑ1

0(M) and ω ∈ ℑ0
1(M).

For any x ∈ M the scalar product on the cotangent space T ∗
x M is defined by

g−1(ω, θ) = gijωiθj

for all ω, θ ∈ ℑ0
1(M).

The Cheeger-Gromoll metric CGg is a positive definite metric on linear coframe bundle
F ∗(M) which is described in terms of lifted vector fields as follows.

Definition 4.2. Let g be a Riemannian metric on a manifold M . Then the Cheeger-
Gromoll metric is a Riemannian metric CGg on the linear coframe bundle F ∗(M) such
that

CGg(HX, HY ) = V (g(X, Y )) = g(X, Y ) ◦ π,

CGg(Vαω, HY ) = 0,

CGg(Vαω, Vβ θ) = 0, α ̸= β,

CGg(Vαω, Vαθ) = 1
1+r2

α
(g−1(ω, θ) + g−1(ω, Xα)g−1(θ, Xα))

(4.1)

for all X, Y ∈ ℑ1
0(M) and ω, θ ∈ ℑ0

1(M),.where r2
α = ∥Xα∥2 = g−1(Xα, Xα).

We note that the Cheeger-Gromoll metric on the cotangent bundle of Riemannian manifold
introduced by Salimov and Agca and studied in [1].

From (4.1) we determine that metric CGg has components
CGgij = CGg(Di, Di) = V (g(∂i, ∂j)) = gij ,

CGgiαj = CGg(Diα , Dj) = 0,

CGgiαjβ
= CGg(Diα , Djβ

) = 0, α ̸= β,

CGgiαjα = CGg(Diα , Djα) = 1
1+r2

α
(g−1(dxi, dxj)

+g−1(dxi, Xα
r )g−1(dxj , Xα

s )) = 1
1+r2

α
(gij + girgjsXα

r Xα
s )

with respect to the adapted frame {DI} of linear coframe bundle F ∗(M).
The Levi-Civita connection CG∇ satisfies the following relations
i) CG∇HX

HY = H(∇XY ) + 1
2

n∑
σ=1

Vσ (Xσ ◦ R(X, Y )),

ii) CG∇HX
Vβ θ = Vβ (∇Xθ) + 1

2hβ

H(Xβ(g−1 ◦ R( , X)θ̃)),
iii) CG∇Vα ω

HY = 1
2hα

H(Xα(g−1 ◦ R( , Y ) ↔
ω)),

iv) CG∇Vα ω
Vβ θ = 0 for α ̸= β,

CG∇Vα ω
Vαθ = − 1

hα
(CGg(Vαω, γδ)Vαθ + CGg(Vαθ, γδ)Vαω)

+1+hα
hα

CGg(Vαω, Vαθ)γδ − 1
hα

CGg(Vαθ, γδ)CGg(Vαω, γδ)γδ
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for all X, Y ∈ ℑ1
0(M), ω, θ ∈ ℑ0

1(M), where ω̃ = g−1 ◦ ω, R( , X)ω̃ ∈ ℑ1
1(M), hα = 1 + r2

α,
R and γδ denotes respectively the Riemanniian curvature of g and the canonical vertical
vector field on F ∗(M) with local expression γδ = Xσ

i Diσ .

5. Almost complex structures on (F ∗(M), CGg)
First of all, let us introduce the almost complex structures Jβ, β = 1, 2, ..., n,

which are compatible with CGg on the linear coframe bundle F ∗(M). Suppose that for
each β = 1, 2, ..., n, Jβ is defined to be the following form

Jβ
HX = a1

Vβ X̃ + b1Xβ(X)Vβ Xβ,
Jβ

Vγ ω = 0, β ̸= γ,
Jβ

Vβ ω = a2
H ω̃ + b2g−1(Xβ, ω)HX̃β,

(5.1)

where X ∈ ℑ1
0(M), ω ∈ ℑ0

1(M), X̃ = g ◦ X ∈ ℑ0
1(M), ω̃ = g−1 ◦ ω ∈ ℑ1

0(M) and a1, a2, b1
and b2 are functions on colinear frame bundle F ∗(M) determined by conditions

J2
β = −I, (5.2)

CGg(Jβ
HX, Jβ

HX) = CGg(HX, HX) = g(X, Y ). (5.3)
Substituting (5.1) into (5.2), we obtain:

J2
β

HX = Jβ(Jβ
HX) = Jβ(a1

Vβ X̃ + b1Xβ(X)Vβ Xβ)

= a1(Jβ
Vβ X̃) + b1Xβ(X)(Jβ

Vβ Xβ) = a1(a2
HX + b2g−1(Xβ, X̃)HX̃β)

+b1Xβ(X)(a2
HX̃β + b2g−1(Xβ, Xβ)HX̃β) = a1a2

HX

+a1b2g−1(Xβ, X̃)HX̃β + b1a2Xβ(X)HX̃β

+b2b1Xβ(X)(hβ − 1)HX̃β = a1a2
HX + (b1a2 + b2b1

+b2b1(hβ − 1))Xβ(X)HX̃β = −HX,

from which it follows that
a1a2 = −1, (5.4)

a1b2 + b1a2 + b2b1(hβ − 1) = 0. (5.5)
Direct calculations using (5.1) and (5.3) give

CGg(Jβ
HX, Jβ

HX) = CGg(a1
Vβ X̃ + b1Xβ(X)Vβ Xβ, a1

Vβ X̃

+b1Xβ(X)Vβ Xβ) = a2
1

CGg(Vβ X̃, Vβ X̃) + a1b1Xβ(X)CGg(Vβ X̃, Vβ Xβ)

+b1a1Xβ(X)CGg(Vβ Xβ, Vβ X̃) + b2
1Xβ(X)CGg(Vβ Xβ, Vβ Xβ)

= a2
1

hβ
(g−1(X̃, X̃) + g−1(X̃, Xβ)g−1(X̃, Xβ))

+a1b1Xβ(X)
hβ

(g−1(X̃, Xβ) + g−1(X̃, Xβ)g−1(Xβ, Xβ))

+b1a1Xβ(X)
hβ

(g−1(Xβ,
↔
X) + g−1(Xβ, Xβ)g−1(X̃, Xβ))

+ b2
1Xβ(X)Xβ(X)

hβ
(g−1(Xβ, Xβ) + g−1(Xβ, Xβ)g−1(Xβ, Xβ))

= a2
1

hβ
g(X, X) +

(
a2

1
hβ

+ 2a1b1 + b2
1(hβ − 1)

)
(Xβ(X))2 = g(X, X).
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From the last relation we obtain:

a2
1

hβ
= 1, (5.6)

a2
1

hβ
+ 2a1b1 + b2

1(hβ − 1) = 0. (5.7)

Using (5.6) and (5.4), we get first a1 = ±
√

hβ and a2 = ∓ 1√
hβ

. Without lost of the

generality we can take a1 =
√

hβ and a2 = − 1√
hβ

. Then for these values from (5.7) we get

b2
1(hβ − 1) + 2

√
hβb1 + 1 = 0,

from which it follows

b1 =
−
√

hβ ± 1
hβ − 1

.

We can take b1 = −
√

hβ+1
hβ−1 = − 1√

hβ+1
. Then by using of (5.5) we obtain:

√
hβb2 + 1√

hβ(
√

hβ + 1)
− b2

1√
hβ

(hβ − 1) = 0,

or

b2 = −1√
hβ(

√
hβ + 1)

.

Therefore, we have the almost complex structures Jβ, β = 1, 2, ..., n, on linear coframe
bundle F ∗(M)


Jβ

HX =
√

hβ
Vβ X̃ − 1√

hβ+1
Xβ(X)Vβ Xβ,

Jβ
Vγ ω = 0, β ̸= γ,

Jβ
Vβ ω = − 1√

hβ

(
H ω̃ + 1

(
√

hβ+1)
g−1(Xβ, ω)HX̃β

)
,

(5.8)

which are satisfies the compability conditions (5.3) with the Cheeger-Gromoll metric CGg.

Remark 5.1. Taking into account that equality Jβ
Vγ ω = 0 holds for γ ̸= β, of interest is

the case when γ = β.

Now it follows by a direct computations that

CGg(Jβ
HX, Jβ

Vβ ω) = CGg(HX, Vβ ω),

CGg(Jβ
Vβ ω, Jβ

Vβ θ) = CGg(Vβ ω, Vβ θ),

whenever
CGg(Jβ

HX, Jβ
HX) = CGg(HX, HX).
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Indeed, using (4.1) and (5.8), we have
CGg(Jβ

HX, Jβ
Vβ ω) = CGg(

√
hβ

Vβ X̃

− 1√
hβ+1

Xβ(X)Vβ Xβ, − 1√
hβ

(H ω̃ + 1√
hβ+1

g−1(Xβ, ω)HX̃β))

= −δγ
β

CGg(Vβ X̃, H ω̃) − 1√
hβ+1

g−1(Xβ, ω)CGg(Vβ X̃, HX̃β)

+ 1√
hβ(

√
hβ+1)

Xβ(X)CGg(Vβ Xβ, H ω̃)

+ 1√
hβ(

√
hβ+1)2 Xβ(X)g−1(Xβ, ω)CGg(Vβ Xβ, HX̃β)

= 0 = CGg(HX, Vβ ω).
Similarly we get

CGg(Jβ
Vβ ω, Jβ

Vβ θ) = CGg(− 1√
hβ

(H ω̃

+ 1√
hβ+1

g−1(Xβ, ω)HX̃β), − 1√
hβ

(H θ̃ + 1√
hβ+1

g−1(Xβ, θ)HX̃β))

= 1
hβ

CGg(H ω̃, H θ̃) + 1
hβ(

√
hβ+1)

g−1(Xβ, θ)CGg(H ω̃, HX̃β)

+ 1
hβ(

√
hβ+1)

g−1(Xβ, ω)CGg(HX̃β, H θ̃)

+ 1
hβ(

√
hβ+1)2 g−1(Xβ, ω)g−1(Xβ, θ)CGg(HX̃β, HX̃β)

= 1
hβ

g−1(ω, θ) + 2
hβ(

√
hβ+1)

g−1(Xβ, ω)g−1(Xβ, θ)

+ 1
hβ(

√
hβ + 1)2 g−1(Xβ, ω)g−1(Xβ, θ)(hβ − 1)

=
(
√

hβ + 1)g−1(ω, θ) + (
√

hβ + 1)g−1(Xβ, ω)g−1(Xβ, θ)
hβ(

√
hβ + 1)

= 1
hβ

(g−1(ω, θ) + g−1(Xβ, ω)g−1(Xβ, θ)) = CGg(Vβ ω, Vβ θ).

Thus the following theorem holds.

Theorem 5.2. The triple (F ∗(M), CGg, Jβ) is an almost Hermitian manifold for any
β = 1, 2, ..., n.

6. The integrability of Jβ, β = 1, 2, ..., n

It is known that the almost complex structure J of a Riemannian manifold (M, g) is
inteqrable if and only if its Nijenhuis tensor

NJ(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ] − [JX, JY ] = 0

for all X, Y ∈ ℑ1
0(M) ([16, p. 118]).

The Nijenhuis tensor of an almost complex structure Jβ on F ∗(M) for any β = 1, 2, ..., n,
is given by

NJβ
(X̃, Ỹ ) = [X̃, Ỹ ] + Jβ[JβX̃, Ỹ ] + Jβ[X̃, JβỸ ] − [JβX̃, JβỸ ], (6.1)



Almost complex structures on coframe bundle 1267

where X̃, Ỹ ∈ ℑ1
0(F ∗(M)). It is easy to check that the values NJβ

(HX, Vγ θ) and NJβ
(Vαω, Vγ θ)

of the Nijenhuis tensor NJβ
can be expressed in terms of the values NJβ

(HX, HY ) of this
tensor, where X, Y ∈ ℑ1

0(M), ω, θ ∈ ℑ0
1(M). Indeed, using (5.2) and (6.1), we have

NJβ
(HX, Vγ θ) = [HX, Vγ θ] + Jβ[Jβ

HX, Vγ θ] + Jβ[HX, Jβ
Vγ θ]

−[Jβ
HX, Jβ

Vγ θ] = [HX, δγ
βJβ

HW ] + Jβ[Jβ
HX, δγ

βJβ
HW ]

+Jβ[HX, Jβ(δγ
βJβ

HW )] − [Jβ
HX, Jβ(δγ

βJβ
HW )] = δγ

β [HX, Jβ
HW

+δγ
βJβ[Jβ

HX, Jβ
HW ] − δγ

βJβ[HX, HW ] + δγ
β [Jβ

HX, HW ]

= −δγ
βJβNJβ

(HX, HW ),

where
Vγ θ = δγ

βJβ
HW = δγ

β(
√

hβ
Vβ W̃ − 1√

hβ+1
Xβ(W )Vβ Xβ)

= δγ
β

Vβ (
√

hβW̃ − 1√
hβ+1

Xβ(W )Xβ), W ∈ ℑ1
0(M).

Similarly, we have

NJβ
(Vαω, Vγ θ) = [Vαω, Vγ θ] + Jβ[Jβ

Vαω, Vγ θ] + Jβ[Vαω, Jβ
Vγ θ]

−[Jβ
Vαω, Jβ

Vγ θ] = [δα
β Jβ

HZ, δγ
βJβ

HW ] + Jβ[Jβ(δα
β Jβ

HZ, δγ
βJβ

HW ]

+Jβ[δα
β Jβ

HZ, Jβ(δγ
βJβ

HW )] − [Jβ(δα
β Jβ

HZ), Jβ(δγ
βJβ

HW )]

= δα
β δγ

β [Jβ
HZ, Jβ

HW ] − δα
β δγ

βJβ[HZ, Jβ
HW ] − δα

β δγ
βJβ[Jβ

HZ, HW ]

−δα
β δγ

β [HZ, HW ] = −δα
β δγ

βNJβ
(HZ, HW ),

where Vαω = δα
β Jβ

HZ, Z ∈ ℑ1
0(M). Therefore, we have

Lemma 6.1. An almost complex structure Jβ on (F ∗(M), CGg) for each β = 1, 2, ..., n, is
inteqrable if and only if NJβ

(HX, HY ) = 0 for any X, Y ∈ ℑ1
0(M).

Let us calculate
NJβ

(HX, HY ) = [HX, HY ] + Jβ[Jβ
HX, HY ] + Jβ[HX, Jβ

HY ]

−[Jβ
HX, Jβ

HY ].

Before calculating NJβ
(HX, HY ) it is necessary to prove the following.

Lemma 6.2. Let (M, g) be a Riemannian manifold and f : R → R a smooth function.
Then for all X ∈ ℑ1

0(M) and ω, θ ∈ ℑ0
1(M) , we have

1.Vβ ω
(
f(r2

α

)
= 2δβ

αf ′(r2
α)g−1(ω, Xα), (6.2)

2.HX(g−1(Xα, θ) = g(Xα, ∇Xθ), (6.3)
where r2

α = g−1(Xα, Xα).

Proof. Direct calculations using (3.3) and (3.4) give

1. Vβ ω(f(r2
α)) = ωiδ

β
σf ′(r2

α)∂iσ (grsXα
r Xα

s )



1268 A. Salimov, H.Fattayev

= ωiδ
β
σf ′(r2

α)grs(δσ
αδi

rXα
s + δσ

αδi
sXα

r ) = 2ωiδ
β
αf ′(r2

α)gisXα
s

= 2δβ
αf ′(r2

α)g−1(ω, Xα),

2. HX(g−1(Xα, θ)) = (XiDi)(g−1(Xα, θ)) = Xi(∂i

+Xσ
l Γl

ip∂pσ )(g−1(Xα, θ)) = Xi∂i(grsXα
r θs)

+XiXσ
l Γl

ip∂pσ (grsXα
r θs) = Xi(∂ig

rs)Xα
r θs

+XigrsXα
r ∂iθs + XiXσ

l Γl
ipgrsδα

σ δp
r θs = Xi(−Γr

imgms

−Γs
imgrm)Xα

r θs + XigrsXα
r ∂iθs + XiXα

l Γl
irgrsθs

= −XiΓr
imgmsXα

r θs − XiΓs
imgrmXα

r θs + XigrsXα
r ∂iθs

+XiXα
l Γl

irgrsθs = XigrsXα
r ∂iθs − XiΓs

imgrmXα
r θs

= Xα
r Xi(∂iθs − Γm

isθm)grs = Xα
r (∇Xθ)sgrs = g−1(Xα, ∇Xθ).

This completes the proof of the lemma.
Direct calculations using (2.4), (3.3), (3.4), (5.8), (6.2) and (6.3) give

[HX, HY ] = H [X, Y ] +
n∑

σ=1

Vσ (Xσ ◦ R(X, Y )),

Jβ[Jβ
HX, HY ] = Jβ[

√
hβ

Vβ X̃ − 1√
hβ + 1

Xβ(X)Vβ Xβ, HY ]

= Jβ(
√

hβ[Vβ X̃, HY ] − 1√
hβ+1

g(X̃β, X)[Vβ Xβ, HY ]

+ 1√
hβ+1

HY (g(X̃β, X))Vβ Xβ = Jβ

(
−
√

hβ
Vβ (∇Y X̃)

+ 1√
hβ+1

(
g−1(X β

, X̃)Vβ (∇Y Xβ) + HY (g−1(Xβ, X̃)) Vβ Xβ
))

= Jβ

(
−
√

hβ
Vβ (∇Y X̃) + 1√

hβ+1
g−1(∇Y X̃, Xβ)Vβ Xβ

)
= Jβ(−Jβ

H(∇Y X)) = −J2
β

H(∇Y X) = H(∇Y X),

Jβ[HX, Jβ
HY ] = −Jβ[Jβ

HY, HX] = −H(∇XY ),

[Jβ
HX, Jβ

HY ] = [
√

hβ
Vβ X̃ − 1√

hβ+1
g(X̃β, X)Vβ Xβ,

√
hβ

Vβ Ỹ

− 1√
hβ+1

g(X̃β, Y )Vβ Xβ] = [
√

hβ
Vβ X̃,

√
hβ

Vβ Ỹ ]
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+[
√

hβ
Vβ X̃, − 1√

hβ+1
g(X̃β, Y )Vβ Xβ]

+[− 1√
hβ+1

g(X̃β, X)Vβ Xβ,
√

hβ
Vβ Ỹ ]

+[− 1√
hβ+1

g(X̃β, X)Vβ Xβ, − 1√
hβ+1

g(X̃β, Y )Vβ Xβ]

=
√

hβ
Vβ X̃(

√
hβ)Vβ Ỹ −

√
hβ

Vβ Ỹ (
√

hβ)Vβ X̃

+ 1√
hβ + 1

g
(
X̃β, Y

)
Vβ Xβ

(√
hβ

)
Vβ X̃ +

√
hβ√

hβ + 1
g(X̃β, Y )[Vβ Xβ, Vβ X̃]−

− 1√
hβ + 1

g(X̃β, X)Vβ Xβ(
√

hβ)Vβ Ỹ − −
√

hβ√
hβ + 1

g(X̃β, X)[Vβ Xβ, Vβ Ỹ ]

= g−1(Xβ, X̃)Vβ Ỹ − g−1(Xβ, Ỹ )Vβ X̃

+ 1√
hβ(

√
hβ+1)

g−1(Xβ, Ỹ )g−1(Xβ, Xβ)Vβ X̃ −
√

hβ√
hβ+1

g−1(Xβ, Ỹ )Vβ X̃

− 1√
hβ(

√
hβ+1)

g−1(Xβ, X̃)g−1(Xβ, Xβ)Vβ Ỹ +
√

hβ√
hβ+1

g−1(Xβ, X̃)Vβ Ỹ

= Vβ

(
g−1(Xβ, X̃)Ỹ − g−1(Xβ, Ỹ )X̃

)(
1 − rβ

2√
hβ(

√
hβ+1)

+
√

hβ√
hβ+1

)
.

Therefore,

NJβ
(HX, HY ) = H [X, Y ] +

n∑
σ=1

(Xσ ◦ R(X, Y )) + H((∇Y X) − (∇XY ))

−Vβ

(
g−1(Xβ, X̃)Ỹ − g−1(Xβ, Ỹ )X̃

)(
1 − rβ

2√
hβ(

√
hβ + 1)

+
√

hβ√
hβ + 1

)

=
n∑

σ=1
(Xσ ◦ R(X, Y )) − Vβ

(
g−1(Xβ, X̃)Ỹ

− g−1(Xβ, Ỹ )X̃
)(

1 − rβ
2√

hβ(
√

hβ + 1)
+

√
hβ√

hβ + 1

)

=
n∑

σ=1
(Xσ ◦ R(X, Y )) −

1 +
√

hβ + hβ√
hβ(

√
hβ + 1)

Vβ

(
g−1(Xβ, X̃)Ỹ − g−1(Xβ, Ỹ )X̃

)
.

Thus, the following theorem holds. □

Theorem 6.3. An almost complex structure Jβ on (F ∗(M), CGg) for each β = 1, 2, ..., n,
is integrable if and only if

γR(X, Y ) =
n∑

σ=1
(Xσ ◦ R(X, Y ))

=
1 +

√
hβ + hβ√

hβ(
√

hβ + 1)
Vβ

(
g−1(Xβ, X̃)Ỹ − g−1(Xβ, Ỹ )X̃

)
.



1270 A. Salimov, H.Fattayev

References
[1] F. Agca and A. Salimov, Some notes concerning Cheeger-Gromoll metrics, Hacet. J.

Math. Stat. 42(5), 533-549, 2013.
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