

RESEARCH ARTICLE

Almost complex structures on coframe bundle with Cheeger-Gromoll metric

Arif Salimov^{*}, Habil Fattayev

Department of Algebra and Geometry, Baku State University, Baku, Azerbaijan

Abstract

In this paper we introduce several almost complex structures compatible with Cheeger-Gromoll metric on the coframe bundle and investigate their integrability conditions.

Mathematics Subject Classification (2020). 53C07, 53C22, 53C25

Keywords. Riemannian manifold, coframe bundle, horizontal lift, Cheeger-Gromoll metric, almost complex structure, Nijenhuis tensor

1. Introduction

The geometric structures of the fiber bundles over Riemannian manifold (M, g) is one of the essential topics in the differential geometry. First Sasaki [13] constructed a Riemannian metric ${}^{S}g$ on the tangent bundle T(M) which depend only on the base manifold. Kowalski [8] proved that if the Sasaki metric ${}^{S}g$ is locally symmetric, then the base metric g is flat and hence ${}^{S}g$ is also flat. Musso and Tricerri [10] obtained an explicit expression of the Cheeger-Gromoll metric ${}^{CG}g$ introduced by Cheeger and Gromoll in [3] (see also [6]). Sekizawa [14] defined some geometric objects related ${}^{CG}g$. Tahara, Vanhecke and Watanabe [15] constructed several almost complex structures compatible with some natural defined Riemannian metrics on the tangent bundle of an almost Hermitian manifold. Bejan and Druţă [2] defined harmonic almost complex structures with respect to general natural metrics in the tangent bundle. In [9] Munteanu introduced Cheeger-Gromooll type metrics and showed the conditions for which the tangent bundle is almost Kahlerian or Kahlerian (see also [7]). To construct an almost Hermitian structure on the cotangent bundle $T^*(M)$ of a Riemannian manifold (M, g) Oproiu and Poroşniuc used some natural lifts of geometric objects [11]. (see also [4]).

In this paper, we construct an almost Hermitian structures on the bundle of linear coframes $F^*(M)$ over a Riemannian manifold (M, g) with the Cheeger-Gromoll metric ${}^{CG}g$. In 2 we briefly describe the definitions and results that are needed later, after which the adapted frame on coframe bundle $F^*(M)$ introduced in 3. The Cheeger-Gromoll metric ${}^{CG}g$ on $F^*(M)$ and its Levi-Civita connection ${}^{CG}\nabla$ are determined in 4. In 5 we define an almost Hermitian structures $({}^{CG}g, J_{\beta}), \beta = 1, 2, ..., n$, on the linear coframe bundle $F^*(M)$. The integrability conditions for almost complex structures $J_{\beta}, \beta = 1, 2, ..., n$, are studied in 6.

^{*}Corresponding Author.

Email addresses: asalimov@hotmail.com (A. Salimov), h-fattayev@mail.ru (H. Fattayev) Received: 20.10.2021; Accepted: 20.02.2022

2. Preliminaries

In this section we shall summarize briefly the main definitions and results which be used later. Let (M, g) be an *n*-dimensional Riemannian manifold. Then the linear coframe bundle $F^*(M)$ over M consists of all pairs (x, u^*) , where x is a point of M and u^* is a basis (coframe) for the cotangent space T_x^*M of M at x [5]. We denote by π the natural projection of $F^*(M)$ to M defined by $\pi(x, u^*) = x$. If $(U; x^1, x^2, ..., x^n)$ is a system of local coordinates in M, then a coframe $u^* = (X^{\alpha}) = (X^1, X^2, ..., X^n)$ for T_x^*M can be expressed uniquely in the form $X^{\alpha} = X_i^{\alpha} (dx^i)_x$. From mentioned above it follows that

$$\left(\pi^{-1}(U); x^1, x^2, ..., x^n, X_1^1, X_2^1, ..., X_n^n\right)$$

is a system of local coordinates in $F^*(M)$ (see, [5]), that is $F^*(M)$ is a C^{∞} manifold of dimension $n + n^2$. We note that indices $i, j, k, ..., \alpha, \beta, \gamma, ...$ have range in $\{1, 2, ..., n\}$, while indices A, B, C, ... have range in $\{1, ..., n, n + 1, ..., n + n^2\}$. We put $i_{\alpha} = \alpha \cdot n + i$. Obviously that indices $i_{\alpha}, j_{\beta}, k_{\gamma}, ...$ have range in $\{n + 1, n + 2, ..., n + n^2\}$. Summation over repeated indices is always implied. Let ∇ be a symmetric linear connection on Mwith components Γ_{ij}^k . Then the tangent space $T_{(x,u^*)}(F^*(M))$ of $F^*(M)$ at $(x, u^*) \in F^*(M)$ splits into the horizontal and vertical subspaces with respect to ∇ :

$$T_{(x,u^*)}(F^*(M)) = H_{(x,u^*)}(F^*(M)) \oplus V_{(x,u^*)}(F^*(M)).$$
(2.1)

We denote by $\Im_s^r(M)$ the set of all differentiable tensor fields of type (r, s) on M. From (2.1) it follows that for every $X \in \Im_0^1(F^*(M))$ is obtained unique decomposing X = hX + vX, where $hX \in H(F^*(M))$, $vX \in V(F^*(M))$. $H(F^*(M))$ and $V(F^*(M))$ the horizontal and vertical distributions for $F^*(M)$, respectively. Now we define naturally n different vertical lifts of 1-form $\omega \in \Im_1^0(M)$. If Y be a vector field on M, i.e. $Y \in \Im_0^1(M)$, then $i^{\mu}Y$ are functions on $F^*(M)$ defined by $(i^{\mu}Y)(x, u^*) = X^{\mu}(Y)$ for all $(x, u^*) = (x, X^1, X^2, ..., X^n) \in F^*(M)$, where $\mu = 1, 2, ..., n$. The vertical lifts $V_{\lambda}\omega$ of ω to $F^*(M)$ are the n vector fields such that

$${}^{V_{\lambda}}\omega(i^{\mu}Y) = \omega(Y)\delta^{\lambda}_{\mu}$$

hold for all vector fields Y on M, where $\lambda, \mu = 1, 2, ..., n$ and δ^{λ}_{μ} denote the Kronecker's delta. The vertical lifts $V_{\lambda}\omega$ of ω to $F^*(M)$ have the components

$$^{V_{\lambda}}\omega = \begin{pmatrix} V_{\lambda}\omega^{k} \\ V_{\lambda}\omega^{k_{\mu}} \end{pmatrix} = \begin{pmatrix} 0 \\ \omega_{k}\delta^{\lambda}_{\mu} \end{pmatrix}$$
(2.2)

with respect to the induced coordinates (x^i, X_i^{α}) in $F^*(M)$ (see, [12]).

Let $V \in \mathfrak{S}_0^1(M)$. The complete lift ${}^{C}V \in \mathfrak{S}_0^1(F^*(M))$ of V to the linear coframe bundle $F^*(M)$ is defined by

$$^{C}V(i^{\mu}Y) = i^{\mu}(L_{V}Y) = X_{m}^{\mu}(L_{V}Y)^{m}$$

for all vector fields $Y \in \mathfrak{S}_0^1(M)$, where L_V be the Lie derivation with respect to V. The complete lift $^{\mathbb{C}}V$ has the components

$${}^{C}V = \left(\begin{array}{c} {}^{C}V^{k} \\ {}^{C}V^{k\mu} \end{array}\right) = \left(\begin{array}{c} V^{k} \\ -X^{\mu}_{m}\partial_{k}V^{m} \end{array}\right)$$

with respect to the induced coordinates (x^i, X_i^{α}) in $F^*(M)$.

The horizontal lift ${}^{H}V \in \mathfrak{S}_{0}^{1}(F^{*}(M))$ of V to the linear coframe bundle $F^{*}(M)$ is defined by

$${}^{H}V(i^{\mu}Y) = i^{\mu}(\nabla_{V}Y) = X^{\mu}_{m}(\nabla_{V}Y)^{m}$$

for all vector fields $Y \in \mathfrak{S}_0^1(M)$, where ∇_V be the covariant derivative with respect to V. The horizontal lift ${}^{H}V$ has the components

$${}^{H}V = \begin{pmatrix} {}^{H}V^{k} \\ {}^{H}V^{k}_{\mu} \end{pmatrix} = \begin{pmatrix} V^{k} \\ X^{\mu}_{m}\Gamma^{m}_{lk}V^{l} \end{pmatrix}$$
(2.3)

with respect to the induced coordinates (x^i, X_i^{α}) in $F^*(M)$, where Γ_{ij}^k are the components of Levi-Civita connection on M.

The bracket operation of vertical and horizontal vector fields is given by the formulas

$$\begin{bmatrix} V_{\beta}\omega, V_{\gamma}\theta \end{bmatrix} = 0, \begin{bmatrix} HX, V_{\gamma}\theta \end{bmatrix} = V_{\gamma}(\nabla_X\theta), \begin{bmatrix} HX, HY \end{bmatrix} = \begin{bmatrix} H[X, Y] + \sum_{\sigma=1}^{n} V_{\sigma}(X^{\sigma} \circ R(X, Y)) \end{bmatrix}$$
(2.4)

for all $X, Y \in \mathfrak{S}_0^1(M)$ and $\omega, \theta \in \mathfrak{S}_1^0(M)$, where R is the Riemannian curvature of g. If f is a differentiable function on M, $Vf = f \circ \pi$ denotes its canonical vertical lift to the $F^*(M).$

3. Adapted frames on $F^*(M)$

Suppose (U, x^i) be a local coordinate system in M. In $U \subset M$, we put

$$X_{(i)} = \partial/(\partial x^i), \quad \theta^{(i)} = dx^i, \ i = 1, 2, ..., n.$$

Taking into account of (2.2) and (2.3), we see that

-17

$${}^{H}X^{(i)} = D_{i} = \begin{pmatrix} \delta_{i}^{j} \\ X_{m}^{\beta}\Gamma_{ij}^{m} \end{pmatrix}, \qquad (3.1)$$

$$^{V_{\alpha}}\theta^{(i)} = D_{i_{\alpha}} = \begin{pmatrix} 0\\ \delta^{\alpha}_{\beta}\delta^{i}_{j} \end{pmatrix}$$
(3.2)

with respect to the natural frame $\{\partial_j, \partial_{j_\beta}\}$. It follows that this $n + n^2$ vector fields are linearly independent and generate, respectively the horizontal distribution of linear connection ∇ and the vertical distribution of linear coframe bundle $F^*(M)$. The set $\{D_I\} = \{D_i, D_{i_\alpha}\}$ is called the frame adapted to linear connection ∇ on $\pi^{-1}(U) \subset F^*(M)$. From (2.2), (2.3), (3.1) and (3.2), we deduce that the horizontal lift ${}^{H}V$ of $V \in \mathfrak{S}_{0}^{1}(M)$ and vertical lift ${}^{V_{\alpha}}\omega$ for each $\alpha = 1, 2, ..., n$, of $\omega \in \mathfrak{S}_{1}^{0}(M)$ have respectively, components:

$${}^{H}V = V^{i}D_{i} = \left(\begin{array}{c} V^{i} \\ 0 \end{array}\right), \tag{3.3}$$

$${}^{V_{\beta}}\omega = \sum_{i} \omega_{i} \delta^{\beta}_{\alpha} D_{i_{\alpha}} = \begin{pmatrix} 0\\ \delta^{\beta}_{\alpha} \omega_{i} \end{pmatrix}$$
(3.4)

with respect to the adapted frame $\{D_I\}$. The non-holonomic objects Ω_{IJ}^{K} of the adapted frame $\{D_I\}$ are defined by

$$[D_I, D_J] = \Omega_{IJ}{}^K D_K$$

and have the following non-zero components:

$$\left(\begin{array}{c} \Omega_{ij_{\beta}}^{\quad \ k_{\gamma}} = -\Omega_{j_{\beta}i}^{\quad \ k_{\gamma}} = -\delta_{\beta}^{\gamma} \Gamma_{ik}^{j}, \\ \Omega_{ij}^{\quad \ k_{\gamma}} = X_{m}^{\gamma} R_{ijk}^{\quad m}, \end{array} \right.$$

where R_{iik}^{m} local components of the Riemannian curvature R.

The Cheeger-Gromoll metric on the linear coframe bundle 4.

Definition 4.1. Let (M, g) be an *n*-dimensional Riemannian manifold. A Riemannian metric \tilde{g} on the linear coframe bundle $F^*(M)$ is said to be natural with respect to g on M if

$$\tilde{g}({}^{H}X, {}^{H}Y) = g(X, Y)$$

$$\tilde{g}({}^{H}X,{}^{V_{\alpha}}\omega)=0$$

for all $X, Y \in \mathfrak{S}_0^1(M)$ and $\omega \in \mathfrak{S}_1^0(M)$.

aa

For any $x \in M$ the scalar product on the cotangent space T_x^*M is defined by

$$g^{-1}(\omega,\theta) = g^{ij}\omega_i\theta_j$$

for all $\omega, \theta \in \mathfrak{S}^0_1(M)$.

The Cheeger-Gromoll metric CGg is a positive definite metric on linear coframe bundle $F^*(M)$ which is described in terms of lifted vector fields as follows.

Definition 4.2. Let g be a Riemannian metric on a manifold M. Then the Cheeger-Gromoll metric is a Riemannian metric CG_g on the linear coframe bundle $F^*(M)$ such that $CG(H\mathbf{y}|H\mathbf{y}) = V((\mathbf{y}|\mathbf{y})) = (\mathbf{y}|\mathbf{y})$

$$CGg(^{H}X, ^{H}Y) = ^{v}(g(X, Y)) = g(X, Y) \circ \pi,$$

$$CGg(^{V_{\alpha}}\omega, ^{H}Y) = 0,$$

$$CGg(^{V_{\alpha}}\omega, ^{V_{\beta}}\theta) = 0, \quad \alpha \neq \beta,$$

$$CGg(^{V_{\alpha}}\omega, ^{V_{\alpha}}\theta) = \frac{1}{1+r_{\alpha}^{2}}(g^{-1}(\omega, \theta) + g^{-1}(\omega, X^{\alpha})g^{-1}(\theta, X^{\alpha}))$$

$$(4.1)$$

for all $X, Y \in \mathfrak{F}_0^1(M)$ and $\omega, \theta \in \mathfrak{F}_1^0(M)$, where $r_\alpha^2 = \|X^\alpha\|^2 = g^{-1}(X^\alpha, X^\alpha)$.

We note that the Cheeger-Gromoll metric on the cotangent bundle of Riemannian manifold introduced by Salimov and Agca and studied in [1].

From (4.1) we determine that metric CG_g has components

$$\begin{split} ^{CG}g_{ij} &= {}^{CG}g(D_i, D_i) = {}^V(g(\partial_i, \partial_j)) = g_{ij}, \\ ^{CG}g_{i_{\alpha}j} &= {}^{CG}g(D_{i_{\alpha}}, D_j) = 0, \\ ^{CG}g_{i_{\alpha}j_{\beta}} &= {}^{CG}g(D_{i_{\alpha}}, D_{j_{\beta}}) = 0, \quad \alpha \neq \beta, \\ ^{CG}g_{i_{\alpha}j_{\alpha}} &= {}^{CG}g(D_{i_{\alpha}}, D_{j_{\alpha}}) = \frac{1}{1+r_{\alpha}^2}(g^{-1}(dx^i, dx^j)) \\ &+ g^{-1}(dx^i, X_r^{\alpha})g^{-1}(dx^j, X_s^{\alpha})) = \frac{1}{1+r_{\alpha}^2}(g^{ij} + g^{ir}g^{js}X_r^{\alpha}X_s^{\alpha}) \end{split}$$

with respect to the adapted frame $\{D_I\}$ of linear coframe bundle $F^*(M)$. The Levi-Civita connection ${}^{CG}\nabla$ satisfies the following relations

$$i) {}^{CG} \nabla_{H_X}{}^H Y = {}^H (\nabla_X Y) + \frac{1}{2} \sum_{\sigma=1}^n {}^{V_\sigma} (X^{\sigma} \circ R(X,Y)),$$

$$ii) {}^{CG} \nabla_{H_X}{}^{V_\beta} \theta = {}^{V_\beta} (\nabla_X \theta) + \frac{1}{2h_\beta}{}^H (X^\beta (g^{-1} \circ R(\ ,X)\tilde{\theta})),$$

$$iii) {}^{CG} \nabla_{V_{\alpha\omega}}{}^H Y = \frac{1}{2h_\alpha}{}^H (X^\alpha (g^{-1} \circ R(\ ,Y) \stackrel{\leftrightarrow}{\omega})),$$

$$iv) {}^{CG} \nabla_{V_{\alpha\omega}}{}^{V_\beta} \theta = 0 \text{ for } \alpha \neq \beta,$$

$${}^{CG} \nabla_{V_{\alpha\omega}}{}^{V_\alpha} \theta = -\frac{1}{h_\alpha} ({}^{CG} g({}^{V_\alpha}\omega,\gamma\delta){}^{V_\alpha}\theta + {}^{CG} g({}^{V_\alpha}\theta,\gamma\delta){}^{V_\alpha}\omega)$$

$$+ \frac{1+h_\alpha}{h_\alpha}{}^{CG} g({}^{V_\alpha}\omega,{}^{V_\alpha}\theta)\gamma\delta - \frac{1}{h_\alpha}{}^{CG} g({}^{V_\alpha}\theta,\gamma\delta){}^{CG} g({}^{V_\alpha}\omega,\gamma\delta)\gamma\delta$$

for all $X, Y \in \mathfrak{S}_0^1(M)$, $\omega, \theta \in \mathfrak{S}_1^0(M)$, where $\tilde{\omega} = g^{-1} \circ \omega$, $R(-, X)\tilde{\omega} \in \mathfrak{S}_1^1(M)$, $h_{\alpha} = 1 + r_{\alpha}^2$, R and $\gamma \delta$ denotes respectively the Riemannian curvature of g and the canonical vertical vector field on $F^*(M)$ with local expression $\gamma \delta = X_i^{\sigma} D_{i_{\sigma}}$.

5. Almost complex structures on $(F^*(M), {}^{CG}g)$

First of all, let us introduce the almost complex structures J_{β} , $\beta = 1, 2, ..., n$, which are compatible with ${}^{CG}g$ on the linear coframe bundle $F^*(M)$. Suppose that for each $\beta = 1, 2, ..., n$, J_{β} is defined to be the following form

$$\begin{cases} J_{\beta}{}^{H}X = a_{1}{}^{V_{\beta}}\tilde{X} + b_{1}X^{\beta}(X){}^{V_{\beta}}X^{\beta}, \\ J_{\beta}{}^{V_{\gamma}}\omega = 0, \quad \beta \neq \gamma, \\ J_{\beta}{}^{V_{\beta}}\omega = a_{2}{}^{H}\tilde{\omega} + b_{2}g^{-1}(X^{\beta},\omega){}^{H}\tilde{X}^{\beta}, \end{cases}$$
(5.1)

where $X \in \mathfrak{S}_0^1(M)$, $\omega \in \mathfrak{S}_1^0(M)$, $\tilde{X} = g \circ X \in \mathfrak{S}_1^0(M)$, $\tilde{\omega} = g^{-1} \circ \omega \in \mathfrak{S}_0^1(M)$ and a_1, a_2, b_1 and b_2 are functions on collinear frame bundle $F^*(M)$ determined by conditions

$$J_{\beta}^2 = -I, \qquad (5.2)$$

$${}^{CG}g(J_{\beta}{}^{H}X, J_{\beta}{}^{H}X) = {}^{CG}g({}^{H}X, {}^{H}X) = g(X, Y).$$
(5.3)

Substituting (5.1) into (5.2), we obtain:

$$\begin{split} J_{\beta}^{2H}X &= J_{\beta}(J_{\beta}^{H}X) = J_{\beta}(a_{1}^{V_{\beta}}\tilde{X} + b_{1}X^{\beta}(X)^{V_{\beta}}X^{\beta}) \\ &= a_{1}(J_{\beta}^{V_{\beta}}\tilde{X}) + b_{1}X^{\beta}(X)(J_{\beta}^{V_{\beta}}X^{\beta}) = a_{1}(a_{2}^{H}X + b_{2}g^{-1}(X^{\beta},\tilde{X})^{H}\tilde{X}^{\beta}) \\ &+ b_{1}X^{\beta}(X)(a_{2}^{H}\tilde{X}^{\beta} + b_{2}g^{-1}(X^{\beta},X^{\beta})^{H}\tilde{X}^{\beta}) = a_{1}a_{2}^{H}X \\ &+ a_{1}b_{2}g^{-1}(X^{\beta},\tilde{X})^{H}\tilde{X}^{\beta} + b_{1}a_{2}X^{\beta}(X)^{H}\tilde{X}^{\beta} \\ &+ b_{2}b_{1}X^{\beta}(X)(h_{\beta} - 1)^{H}\tilde{X}^{\beta} = a_{1}a_{2}^{H}X + (b_{1}a_{2} + b_{2}b_{1} \\ &+ b_{2}b_{1}(h_{\beta} - 1))X^{\beta}(X)^{H}\tilde{X}^{\beta} = -^{H}X, \end{split}$$

from which it follows that

$$a_1 a_2 = -1, (5.4)$$

$$a_1b_2 + b_1a_2 + b_2b_1(h_\beta - 1) = 0.$$
 (5.5)

Direct calculations using (5.1) and (5.3) give

$$\begin{split} {}^{CG}g(J_{\beta}{}^{H}X, J_{\beta}{}^{H}X) &= {}^{CG}g(a_{1}{}^{V_{\beta}}\tilde{X} + b_{1}X^{\beta}(X){}^{V_{\beta}}X^{\beta}, a_{1}{}^{V_{\beta}}\tilde{X} \\ &+ b_{1}X^{\beta}(X){}^{V_{\beta}}X^{\beta}) = a_{1}^{2CG}g({}^{V_{\beta}}\tilde{X}, {}^{V_{\beta}}\tilde{X}) + a_{1}b_{1}X^{\beta}(X){}^{CG}g({}^{V_{\beta}}\tilde{X}, {}^{V_{\beta}}X^{\beta}) \\ &+ b_{1}a_{1}X^{\beta}(X){}^{CG}g({}^{V_{\beta}}X^{\beta}, {}^{V_{\beta}}\tilde{X}) + b_{1}^{2}X^{\beta}(X){}^{CG}g({}^{V_{\beta}}X^{\beta}, {}^{V_{\beta}}X^{\beta}) \\ &= \frac{a_{1}^{2}}{h_{\beta}}(g^{-1}(\tilde{X}, \tilde{X}) + g^{-1}(\tilde{X}, X^{\beta})g^{-1}(\tilde{X}, X^{\beta})) \\ &+ \frac{a_{1}b_{1}X^{\beta}(X)}{h_{\beta}}(g^{-1}(\tilde{X}, X^{\beta}) + g^{-1}(\tilde{X}, X^{\beta})g^{-1}(X^{\beta}, X^{\beta})) \\ &+ \frac{b_{1}a_{1}X^{\beta}(X)}{h_{\beta}}(g^{-1}(X^{\beta}, \tilde{X}) + g^{-1}(X^{\beta}, X^{\beta})g^{-1}(\tilde{X}, X^{\beta})) \\ &+ \frac{b_{1}^{2}X^{\beta}(X)X^{\beta}(X)}{h_{\beta}}(g^{-1}(X^{\beta}, X^{\beta}) + g^{-1}(X^{\beta}, X^{\beta})g^{-1}(X^{\beta}, X^{\beta})) \\ &= \frac{a_{1}^{2}}{h_{\beta}}g(X, X) + \left(\frac{a_{1}^{2}}{h_{\beta}} + 2a_{1}b_{1} + b_{1}^{2}(h_{\beta} - 1)\right)(X^{\beta}(X))^{2} = g(X, X). \end{split}$$

From the last relation we obtain:

$$\frac{a_1^2}{h_\beta} = 1,\tag{5.6}$$

$$\frac{a_1^2}{h_\beta} + 2a_1b_1 + b_1^2(h_\beta - 1) = 0.$$
(5.7)

Using (5.6) and (5.4), we get first $a_1 = \pm \sqrt{h_\beta}$ and $a_2 = \mp \frac{1}{\sqrt{h_\beta}}$. Without lost of the generality we can take $a_1 = \sqrt{h_\beta}$ and $a_2 = -\frac{1}{\sqrt{h_\beta}}$. Then for these values from (5.7) we get

$$b_1^2(h_\beta - 1) + 2\sqrt{h_\beta}b_1 + 1 = 0,$$

from which it follows

$$b_1 = \frac{-\sqrt{h_\beta} \pm 1}{h_\beta - 1}.$$

We can take $b_1 = \frac{-\sqrt{h_\beta}+1}{h_\beta-1} = -\frac{1}{\sqrt{h_\beta}+1}$. Then by using of (5.5) we obtain:

$$\sqrt{h_{\beta}}b_2 + \frac{1}{\sqrt{h_{\beta}}(\sqrt{h_{\beta}}+1)} - b_2\frac{1}{\sqrt{h_{\beta}}}(h_{\beta}-1) = 0,$$

or

$$b_2 = \frac{-1}{\sqrt{h_\beta}(\sqrt{h_\beta} + 1)}.$$

Therefore, we have the almost complex structures J_{β} , $\beta = 1, 2, ..., n$, on linear coframe bundle $F^*(M)$

$$\begin{cases} J_{\beta}{}^{H}X = \sqrt{h_{\beta}}{}^{V_{\beta}}\tilde{X} - \frac{1}{\sqrt{h_{\beta}}+1}X^{\beta}(X)^{V_{\beta}}X^{\beta}, \\ J_{\beta}{}^{V_{\gamma}}\omega = 0, \quad \beta \neq \gamma, \\ J_{\beta}{}^{V_{\beta}}\omega = -\frac{1}{\sqrt{h_{\beta}}}\left({}^{H}\tilde{\omega} + \frac{1}{(\sqrt{h_{\beta}}+1)}g^{-1}(X^{\beta},\omega)^{H}\tilde{X}^{\beta}\right), \end{cases}$$
(5.8)

which are satisfies the compability conditions (5.3) with the Cheeger-Gromoll metric ^{CG}g .

Remark 5.1. Taking into account that equality $J_{\beta}^{V_{\gamma}}\omega = 0$ holds for $\gamma \neq \beta$, of interest is the case when $\gamma = \beta$.

Now it follows by a direct computations that

$$CG_{g}(J_{\beta}{}^{H}X, J_{\beta}{}^{V_{\beta}}\omega) = CG_{g}({}^{H}X, {}^{V_{\beta}}\omega),$$
$$CG_{g}(J_{\beta}{}^{V_{\beta}}\omega, J_{\beta}{}^{V_{\beta}}\theta) = CG_{g}({}^{V_{\beta}}\omega, {}^{V_{\beta}}\theta),$$

whenever

$${}^{CG}g(J_{\beta}{}^{H}X, J_{\beta}{}^{H}X) = {}^{CG}g({}^{H}X, {}^{H}X).$$

1265

Indeed, using (4.1) and (5.8), we have

$$\begin{split} & {}^{CG}g(J_{\beta}{}^{H}X, J_{\beta}{}^{V_{\beta}}\omega) = {}^{CG}g(\sqrt{h_{\beta}}{}^{V_{\beta}}\tilde{X} \\ & -\frac{1}{\sqrt{h_{\beta}}+1}X^{\beta}(X){}^{V_{\beta}}X^{\beta}, -\frac{1}{\sqrt{h_{\beta}}}({}^{H}\tilde{\omega} + \frac{1}{\sqrt{h_{\beta}}+1}g^{-1}(X^{\beta}, \omega){}^{H}\tilde{X}^{\beta})) \\ & = -\delta_{\beta}^{\gamma}{}^{CG}g({}^{V_{\beta}}\tilde{X}, {}^{H}\tilde{\omega}) - \frac{1}{\sqrt{h_{\beta}}+1}g^{-1}(X^{\beta}, \omega){}^{CG}g({}^{V_{\beta}}\tilde{X}, {}^{H}\tilde{X}^{\beta}) \\ & +\frac{1}{\sqrt{h_{\beta}}(\sqrt{h_{\beta}}+1)^{2}}X^{\beta}(X){}^{CG}g({}^{V_{\beta}}X^{\beta}, {}^{H}\tilde{\omega}) \\ & +\frac{1}{\sqrt{h_{\beta}}(\sqrt{h_{\beta}}+1)^{2}}X^{\beta}(X)g^{-1}(X^{\beta}, \omega){}^{CG}g({}^{V_{\beta}}X^{\beta}, {}^{H}\tilde{X}^{\beta}) \\ & = 0 = {}^{CG}g({}^{H}X, {}^{V_{\beta}}\omega). \end{split}$$

Similarly we get

$$\begin{split} {}^{CG}g(J_{\beta}{}^{V_{\beta}}\omega, J_{\beta}{}^{V_{\beta}}\theta) &= {}^{CG}g(-\frac{1}{\sqrt{h_{\beta}}}({}^{H}\tilde{\omega} \\ &+ \frac{1}{\sqrt{h_{\beta}}+1}g^{-1}(X^{\beta}, \omega){}^{H}\tilde{X}^{\beta}), -\frac{1}{\sqrt{h_{\beta}}}({}^{H}\tilde{\theta} + \frac{1}{\sqrt{h_{\beta}}+1}g^{-1}(X^{\beta}, \theta){}^{H}\tilde{X}^{\beta})) \\ &= \frac{1}{h_{\beta}}{}^{CG}g({}^{H}\tilde{\omega}, {}^{H}\tilde{\theta}) + \frac{1}{h_{\beta}(\sqrt{h_{\beta}}+1)}g^{-1}(X^{\beta}, \theta){}^{CG}g({}^{H}\tilde{\omega}, {}^{H}\tilde{X}^{\beta}) \\ &+ \frac{1}{h_{\beta}(\sqrt{h_{\beta}}+1)^{2}}g^{-1}(X^{\beta}, \omega){}^{CG}g({}^{H}\tilde{X}^{\beta}, {}^{H}\tilde{\theta}) \\ &+ \frac{1}{h_{\beta}(\sqrt{h_{\beta}}+1)^{2}}g^{-1}(X^{\beta}, \omega){}^{g^{-1}}(X^{\beta}, \theta){}^{CG}g({}^{H}\tilde{X}^{\beta}, {}^{H}\tilde{X}^{\beta}) \\ &= \frac{1}{h_{\beta}}g^{-1}(\omega, \theta) + \frac{2}{h_{\beta}(\sqrt{h_{\beta}}+1)}g^{-1}(X^{\beta}, \omega){}^{g^{-1}}(X^{\beta}, \theta) \\ &+ \frac{1}{h_{\beta}(\sqrt{h_{\beta}}+1)^{2}}g^{-1}(X^{\beta}, \omega){}^{g^{-1}}(X^{\beta}, \theta)(h_{\beta}-1) \\ &= \frac{(\sqrt{h_{\beta}}+1)g^{-1}(\omega, \theta) + (\sqrt{h_{\beta}}+1)g^{-1}(X^{\beta}, \omega){}^{g^{-1}}(X^{\beta}, \theta)}{h_{\beta}(\sqrt{h_{\beta}}+1)} \\ &= \frac{1}{h_{\beta}}(g^{-1}(\omega, \theta) + g^{-1}(X^{\beta}, \omega){}^{g^{-1}}(X^{\beta}, \theta)) = {}^{CG}g({}^{V_{\beta}}\omega, {}^{V_{\beta}}\theta). \end{split}$$

Thus the following theorem holds.

Theorem 5.2. The triple $(F^*(M), {}^{CG}g, J_\beta)$ is an almost Hermitian manifold for any $\beta = 1, 2, ..., n$.

6. The integrability of J_{β} , $\beta = 1, 2, ..., n$

It is known that the almost complex structure J of a Riemannian manifold (M,g) is integrable if and only if its Nijenhuis tensor

$$N_J(X,Y) = [X,Y] + J[JX,Y] + J[X,JY] - [JX,JY] = 0$$

for all $X, Y \in \mathfrak{S}_0^1(M)$ ([16, p. 118]).

The Nijenhuis tensor of an almost complex structure J_{β} on $F^*(M)$ for any $\beta = 1, 2, ..., n$, is given by

$$N_{J_{\beta}}(\tilde{X}, \tilde{Y}) = [\tilde{X}, \tilde{Y}] + J_{\beta}[J_{\beta}\tilde{X}, \tilde{Y}] + J_{\beta}[\tilde{X}, J_{\beta}\tilde{Y}] - [J_{\beta}\tilde{X}, J_{\beta}\tilde{Y}],$$
(6.1)

where $\tilde{X}, \tilde{Y} \in \mathfrak{S}_0^1(F^*(M))$. It is easy to check that the values $N_{J_\beta}(^HX, ^{V_\gamma}\theta)$ and $N_{J_\beta}(^{V_\alpha}\omega, ^{V_\gamma}\theta)$ of the Nijenhuis tensor N_{J_β} can be expressed in terms of the values $N_{J_\beta}(^HX, ^HY)$ of this tensor, where $X, Y \in \mathfrak{S}_0^1(M), \ \omega, \theta \in \mathfrak{S}_1^0(M)$. Indeed, using (5.2) and (6.1), we have

$$\begin{split} N_{J_{\beta}}({}^{H}X, {}^{v_{\gamma}}\theta) &= [{}^{H}X, {}^{v_{\gamma}}\theta] + J_{\beta}[J_{\beta}{}^{H}X, {}^{v_{\gamma}}\theta] + J_{\beta}[{}^{H}X, J_{\beta}{}^{V_{\gamma}}\theta] \\ &- [J_{\beta}{}^{H}X, J_{\beta}{}^{V_{\gamma}}\theta] = [{}^{H}X, \delta_{\beta}^{\gamma}J_{\beta}{}^{H}W] + J_{\beta}[J_{\beta}{}^{H}X, \delta_{\beta}^{\gamma}J_{\beta}{}^{H}W] \\ &+ J_{\beta}[{}^{H}X, J_{\beta}(\delta_{\beta}^{\gamma}J_{\beta}{}^{H}W)] - [J_{\beta}{}^{H}X, J_{\beta}(\delta_{\beta}^{\gamma}J_{\beta}{}^{H}W)] = \delta_{\beta}^{\gamma}[{}^{H}X, J_{\beta}{}^{H}W \\ &+ \delta_{\beta}^{\gamma}J_{\beta}[J_{\beta}{}^{H}X, J_{\beta}{}^{H}W] - \delta_{\beta}^{\gamma}J_{\beta}[{}^{H}X, {}^{H}W] + \delta_{\beta}^{\gamma}[J_{\beta}{}^{H}X, {}^{H}W] \\ &= -\delta_{\beta}^{\gamma}J_{\beta}N_{J_{\beta}}({}^{H}X, {}^{H}W), \end{split}$$

where

$$V_{\gamma}\theta = \delta^{\gamma}_{\beta}J_{\beta}^{H}W = \delta^{\gamma}_{\beta}(\sqrt{h_{\beta}}V_{\beta}\tilde{W} - \frac{1}{\sqrt{h_{\beta}}+1}X^{\beta}(W)V_{\beta}X^{\beta})$$
$$= \delta^{\gamma}_{\beta}V_{\beta}(\sqrt{h_{\beta}}\tilde{W} - \frac{1}{\sqrt{h_{\beta}}+1}X^{\beta}(W)X^{\beta}), \ W \in \mathfrak{S}^{1}_{0}(M).$$

Similarly, we have

$$\begin{split} N_{J_{\beta}}(^{V_{\alpha}}\omega,^{V_{\gamma}}\theta) &= [^{V_{\alpha}}\omega,^{V_{\gamma}}\theta] + J_{\beta}[J_{\beta}^{V_{\alpha}}\omega,^{V_{\gamma}}\theta] + J_{\beta}[^{V_{\alpha}}\omega,J_{\beta}^{V_{\gamma}}\theta] \\ &- [J_{\beta}^{V_{\alpha}}\omega,J_{\beta}^{V_{\gamma}}\theta] = [\delta^{\alpha}_{\beta}J_{\beta}^{H}Z,\delta^{\gamma}_{\beta}J_{\beta}^{H}W] + J_{\beta}[J_{\beta}(\delta^{\alpha}_{\beta}J_{\beta}^{H}Z,\delta^{\gamma}_{\beta}J_{\beta}^{H}W] \\ &+ J_{\beta}[\delta^{\alpha}_{\beta}J_{\beta}^{H}Z,J_{\beta}(\delta^{\gamma}_{\beta}J_{\beta}^{H}W)] - [J_{\beta}(\delta^{\alpha}_{\beta}J_{\beta}^{H}Z),J_{\beta}(\delta^{\gamma}_{\beta}J_{\beta}^{H}W)] \\ &= \delta^{\alpha}_{\beta}\delta^{\gamma}_{\beta}[J_{\beta}^{H}Z,J_{\beta}^{H}W] - \delta^{\alpha}_{\beta}\delta^{\gamma}_{\beta}J_{\beta}[^{H}Z,J_{\beta}^{H}W] - \delta^{\alpha}_{\beta}\delta^{\gamma}_{\beta}J_{\beta}[J_{\beta}^{H}Z,^{H}W] \\ &- \delta^{\alpha}_{\beta}\delta^{\gamma}_{\beta}[^{H}Z,^{H}W] = -\delta^{\alpha}_{\beta}\delta^{\gamma}_{\beta}N_{J_{\beta}}(^{H}Z,^{H}W), \end{split}$$

where ${}^{V_{\alpha}}\omega = \delta^{\alpha}_{\beta}J_{\beta}{}^{H}Z, \ Z \in \mathfrak{S}^{1}_{0}(M)$. Therefore, we have

Lemma 6.1. An almost complex structure J_{β} on $(F^*(M), {}^{CG}g)$ for each $\beta = 1, 2, ..., n$, is integrable if and only if $N_{J_{\beta}}({}^{H}X, {}^{H}Y) = 0$ for any $X, Y \in \mathfrak{S}_{0}^{1}(M)$.

Let us calculate

$$\begin{split} N_{J_{\beta}}(^{H}X,^{H}Y) &= [^{H}X,^{H}Y] + J_{\beta}[J_{\beta}{}^{H}X,^{H}Y] + J_{\beta}[^{H}X,J_{\beta}{}^{H}Y] \\ &- [J_{\beta}{}^{H}X,J_{\beta}{}^{H}Y]. \end{split}$$

Before calculating $N_{J_{\beta}}({}^{H}X, {}^{H}Y)$ it is necessary to prove the following.

Lemma 6.2. Let (M,g) be a Riemannian manifold and $f : R \to R$ a smooth function. Then for all $X \in \mathfrak{S}_0^1(M)$ and $\omega, \theta \in \mathfrak{S}_1^0(M)$, we have

$$1.^{V_{\beta}}\omega\left(f(r_{\alpha}^{2}) = 2\delta_{\alpha}^{\beta}f'(r_{\alpha}^{2})g^{-1}(\omega, X^{\alpha}),$$
(6.2)

$$2.^{H}X(g^{-1}(X^{\alpha},\theta) = g(X^{\alpha},\nabla_{X}\theta), \qquad (6.3)$$

where $r_{\alpha}^2 = g^{-1}(X^{\alpha}, X^{\alpha}).$

Proof. Direct calculations using (3.3) and (3.4) give

1.
$$V_{\beta}\omega(f(r_{\alpha}^2)) = \omega_i \delta_{\sigma}^{\beta} f'(r_{\alpha}^2) \partial_{i_{\sigma}}(g^{rs} X_r^{\alpha} X_s^{\alpha})$$

$$= \omega_i \delta^{\beta}_{\sigma} f'(r^2_{\alpha}) g^{rs} (\delta^{\sigma}_{\alpha} \delta^i_r X^{\alpha}_s + \delta^{\sigma}_{\alpha} \delta^i_s X^{\alpha}_r) = 2\omega_i \delta^{\beta}_{\alpha} f'(r^2_{\alpha}) g^{is} X^{\alpha}_s$$

$$= 2\delta^{\beta}_{\alpha} f'(r^2_{\alpha}) g^{-1}(\omega, X^{\alpha}),$$
2. ${}^H X(g^{-1}(X^{\alpha}, \theta)) = (X^i D_i)(g^{-1}(X^{\alpha}, \theta)) = X^i(\partial_i$
 $+ X^{\sigma}_l \Gamma^l_{ip} \partial_{p\sigma})(g^{-1}(X^{\alpha}, \theta)) = X^i \partial_i (g^{rs} X^{\alpha}_r \theta_s)$
 $+ X^i X^{\sigma}_l \Gamma^l_{ip} \partial_{p\sigma} (g^{rs} X^{\alpha}_r \theta_s) = X^i (\partial_i g^{rs}) X^{\alpha}_r \theta_s$
 $+ X^i g^{rs} X^{\alpha}_r \partial_i \theta_s + X^i X^{\sigma}_l \Gamma^l_{ip} g^{rs} \delta^{\alpha}_{\sigma} \delta^{p}_r \theta_s = X^i (-\Gamma^r_{im} g^{ms}$
 $-\Gamma^s_{im} g^{rm}) X^{\alpha}_r \theta_s + X^i g^{rs} X^{\alpha}_r \partial_i \theta_s + X^i X^{\alpha}_l \Gamma^l_{ir} g^{rs} \theta_s$
 $= -X^i \Gamma^r_{im} g^{ms} X^{\alpha}_r \theta_s - X^i \Gamma^s_{im} g^{rm} X^{\alpha}_r \theta_s + X^i g^{rs} X^{\alpha}_r \partial_i \theta_s$
 $+ X^i X^{\alpha}_l \Gamma^l_{ir} g^{rs} \theta_s = X^i (\nabla_X \theta)_s g^{rs} = g^{-1} (X^{\alpha}, \nabla_X \theta).$

This completes the proof of the lemma. Direct calculations using (2.4), (3.3), (3.4), (5.8), (6.2) and (6.3) give

$$\begin{split} [{}^{H}X, {}^{H}Y] &= {}^{H}[X, Y] + \sum_{\sigma=1}^{n} {}^{V_{\sigma}}(X^{\sigma} \circ R(X, Y)), \\ J_{\beta}[J_{\beta}{}^{H}X, {}^{H}Y] &= J_{\beta}[\sqrt{h_{\beta}}{}^{V_{\beta}}\tilde{X} - \frac{1}{\sqrt{h_{\beta}} + 1}X^{\beta}(X){}^{V_{\beta}}X^{\beta}, {}^{H}Y] \\ &= J_{\beta}(\sqrt{h_{\beta}}[{}^{V_{\beta}}\tilde{X}, {}^{H}Y] - \frac{1}{\sqrt{h_{\beta}} + 1}g(\tilde{X}^{\beta}, X)[{}^{V_{\beta}}X^{\beta}, {}^{H}Y] \\ &+ \frac{1}{\sqrt{h_{\beta}} + 1}{}^{H}Y(g(\tilde{X}^{\beta}, X)){}^{V_{\beta}}X^{\beta} = J_{\beta}\left(-\sqrt{h_{\beta}} {}^{V_{\beta}}(\nabla_{Y}\tilde{X}) \\ &+ \frac{1}{\sqrt{h_{\beta}} + 1}\left(g^{-1}(X^{\beta}, \tilde{X}){}^{V_{\beta}}(\nabla_{Y}X^{\beta}) + {}^{H}Y(g^{-1}(X^{\beta}, \tilde{X})) {}^{V_{\beta}}X^{\beta}\right)\right) \\ &= J_{\beta}\left(-\sqrt{h_{\beta}} {}^{V_{\beta}}(\nabla_{Y}\tilde{X}) + \frac{1}{\sqrt{h_{\beta}} + 1}g^{-1}(\nabla_{Y}\tilde{X}, X^{\beta}){}^{V_{\beta}}X^{\beta}\right) \\ &= J_{\beta}(-J_{\beta}{}^{H}(\nabla_{Y}X)) = -J_{\beta}^{2H}(\nabla_{Y}X) = {}^{H}(\nabla_{Y}X), \\ J_{\beta}[{}^{H}X, J_{\beta}{}^{H}Y] = -J_{\beta}[J_{\beta}{}^{H}Y, {}^{H}X] = -{}^{H}(\nabla_{X}Y), \\ [J_{\beta}{}^{H}X, J_{\beta}{}^{H}Y] = [\sqrt{h_{\beta}}{}^{V_{\beta}}\tilde{X} - \frac{1}{\sqrt{h_{\beta}} + 1}g(\tilde{X}^{\beta}, X){}^{V_{\beta}}X^{\beta}, \sqrt{h_{\beta}}{}^{V_{\beta}}\tilde{Y} \\ &- \frac{1}{\sqrt{h_{\beta}} + 1}g(\tilde{X}^{\beta}, Y){}^{V_{\beta}}X^{\beta}] = [\sqrt{h_{\beta}}{}^{V_{\beta}}\tilde{X}, \sqrt{h_{\beta}}{}^{V_{\beta}}\tilde{Y}] \end{split}$$

$$\begin{split} + \left[\sqrt{h_{\beta}}^{V_{\beta}}\tilde{X}, -\frac{1}{\sqrt{h_{\beta}+1}}g(\tilde{X}^{\beta}, Y)^{V_{\beta}}X^{\beta}\right] \\ + \left[-\frac{1}{\sqrt{h_{\beta}+1}}g(\tilde{X}^{\beta}, X)^{V_{\beta}}X^{\beta}, \sqrt{h_{\beta}}^{V_{\beta}}\tilde{Y}\right] \\ + \left[-\frac{1}{\sqrt{h_{\beta}+1}}g(\tilde{X}^{\beta}, X)^{V_{\beta}}X^{\beta}, -\frac{1}{\sqrt{h_{\beta}+1}}g(\tilde{X}^{\beta}, Y)^{V_{\beta}}X^{\beta}\right] \\ &= \sqrt{h_{\beta}}^{V_{\beta}}\tilde{X}(\sqrt{h_{\beta}})^{V_{\beta}}\tilde{Y} - \sqrt{h_{\beta}}^{V_{\beta}}\tilde{Y}(\sqrt{h_{\beta}})^{V_{\beta}}\tilde{X} \\ + \frac{1}{\sqrt{h_{\beta}}+1}g\left(\tilde{X}^{\beta}, Y\right)^{V_{\beta}}X^{\beta}\left(\sqrt{h_{\beta}}\right)^{V_{\beta}}\tilde{X} + \frac{\sqrt{h_{\beta}}}{\sqrt{h_{\beta}}+1}g(\tilde{X}^{\beta}, Y)[^{V_{\beta}}X^{\beta}, ^{V_{\beta}}\tilde{X}] - \\ - \frac{1}{\sqrt{h_{\beta}}+1}g(\tilde{X}^{\beta}, X)^{V_{\beta}}X^{\beta}(\sqrt{h_{\beta}})^{V_{\beta}}\tilde{Y} - -\frac{\sqrt{h_{\beta}}}{\sqrt{h_{\beta}}+1}g(\tilde{X}^{\beta}, X)[^{V_{\beta}}X^{\beta}, ^{V_{\beta}}\tilde{Y}] \\ &= g^{-1}(X^{\beta}, \tilde{X})^{V_{\beta}}\tilde{Y} - g^{-1}(X^{\beta}, \tilde{Y})^{V_{\beta}}\tilde{X} \\ + \frac{1}{\sqrt{h_{\beta}}(\sqrt{h_{\beta}+1)}}g^{-1}(X^{\beta}, \tilde{Y})g^{-1}(X^{\beta}, X^{\beta})^{V_{\beta}}\tilde{X} - \frac{\sqrt{h_{\beta}}}{\sqrt{h_{\beta}+1}}g^{-1}(X^{\beta}, \tilde{X})^{V_{\beta}}\tilde{Y} \\ &= V_{\beta}\left(g^{-1}(X^{\beta}, \tilde{X})\tilde{Y} - g^{-1}(X^{\beta}, \tilde{Y})\tilde{X}\right)\left(1 - \frac{r_{\beta}^{2}}{\sqrt{h_{\beta}}(\sqrt{h_{\beta}+1)}} + \frac{\sqrt{h_{\beta}}}{\sqrt{h_{\beta}+1}}\right). \end{split}$$

Therefore,

$$\begin{split} N_{J_{\beta}}({}^{H}X, {}^{H}Y) &= {}^{H}[X, Y] + \sum_{\sigma=1}^{n} (X^{\sigma} \circ R(X, Y)) + {}^{H}((\nabla_{Y}X) - (\nabla_{X}Y)) \\ &- {}^{V_{\beta}} \left(g^{-1}(X^{\beta}, \tilde{X}) \tilde{Y} - g^{-1}(X^{\beta}, \tilde{Y}) \tilde{X} \right) \left(1 - \frac{r_{\beta}^{2}}{\sqrt{h_{\beta}}(\sqrt{h_{\beta}} + 1)} + \frac{\sqrt{h_{\beta}}}{\sqrt{h_{\beta}} + 1} \right) \\ &= \sum_{\sigma=1}^{n} (X^{\sigma} \circ R(X, Y)) - {}^{V_{\beta}} \left(g^{-1}(X^{\beta}, \tilde{X}) \tilde{Y} \right) \\ &- g^{-1}(X^{\beta}, \tilde{Y}) \tilde{X} \right) \left(1 - \frac{r_{\beta}^{2}}{\sqrt{h_{\beta}}(\sqrt{h_{\beta}} + 1)} + \frac{\sqrt{h_{\beta}}}{\sqrt{h_{\beta}} + 1} \right) \\ &= \sum_{\sigma=1}^{n} (X^{\sigma} \circ R(X, Y)) - \frac{1 + \sqrt{h_{\beta}} + h_{\beta}}{\sqrt{h_{\beta}}(\sqrt{h_{\beta}} + 1)} V_{\beta} \left(g^{-1}(X^{\beta}, \tilde{X}) \tilde{Y} - g^{-1}(X^{\beta}, \tilde{Y}) \tilde{X} \right). \end{split}$$
Thus, the following theorem holds.

Theorem 6.3. An almost complex structure J_{β} on $(F^*(M), {}^{CG}g)$ for each $\beta = 1, 2, ..., n$, is integrable if and only if

$$\gamma R(X,Y) = \sum_{\sigma=1}^{n} (X^{\sigma} \circ R(X,Y))$$
$$= \frac{1 + \sqrt{h_{\beta}} + h_{\beta}}{\sqrt{h_{\beta}}(\sqrt{h_{\beta}} + 1)} V_{\beta} \left(g^{-1}(X^{\beta},\tilde{X})\tilde{Y} - g^{-1}(X^{\beta},\tilde{Y})\tilde{X} \right).$$

References

- F. Agca and A. Salimov, Some notes concerning Cheeger-Gromoll metrics, Hacet. J. Math. Stat. 42(5), 533-549, 2013.
- [2] C.L. Bejan and S.L. Druţă-Romaniuc, Harmonic almost complex structures with respect to general natural metrics, Mediterr. J. Math. 11(1), 123-136, 2013.
- [3] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. Math. 96, 413-443, 1972.
- [4] S.L. Druţă-Romaniuc, Cotangent bundles with general natural Kahler structures, Rev. Roumaine Math. Pures Appl. 54(1), 13-23, 2009.
- [5] H. Fattayev and A. Salimov, *Diagonal lifts of metrics to coframe bundle*, Proc. IMM NAS Azerbaijan 44(2), 328-337, 2018.
- [6] S. Gudmondson and E. Kappos, On the geometry of the tangent bundles, Expo. Math. 20(1), 1-41, 2002.
- [7] Z. Hou and L. Sun, Geometry of tangent bundle with Cheeger-Gromoll type metric, J. Math. Anal. Appl. 402, 493-504, 2013.
- [8] O. Kowalski, Curvatures of the induced Riemannian metric of the tangent bundle of Riemannian manifold, J. Reine Angew. Math. 250, 124-129, 1971
- M. Munteanu, Cheeger-Gromoll type metrics on the tangent bundle, Sci. Ann. Univ. Agric. Sci. Vet. Med. 49(2), 257-268, 2006.
- [10] E. Musso and F. Tricerri, *Riemannian metrics on tangent bundles*, Ann. Math. Pura. Appl. **150** (4), 1-20, 1988.
- [11] V. Oproiu and D. Poroșniuc, A Kahler Einstein structure on the cotangent bundle of a Riemannian manifold, An. Şhtiint. Univ. Al. I. Cuza, Iaşi 49, s. I, Mathematics f.2, 399-414, 2003.
- [12] A. Salimov and H. Fattayev, Lifts of derivations in the coframe bundle, Mediterr. J. Math. 17(48), 1-12, 2020.
- [13] S. Sasaki, On the differential geometry of the tangent bundle of Riemannian manifolds, Tohoku Math. J. 10, 238-254, 1958.
- M. Sekizawa, Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math. 14(2), 407-417, 1991.
- [15] M. Tahara, L. Vanhecke and Y. Watanabe, New structures on tangent bundles, Note Mat. 18(1), 131-141, 1998.
- [16] K. Yano and S. Ishihara, Tangent and cotangent bundles, Marsel Dekker Inc., New York, 1973.