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Abstract

Vortex solitons in parity-time (PT ) symmetric and partially PT (pPT ) symmetric
azimuthal lattices are demonstrated for a media with quadratic nonlinear response. Stability
properties of the vortices are investigated comprehensively by linear spectra and nonlinear
evolution of the governing equations, and it is shown that, although the existence domain
of the PT -symmetric and pPT -symmetric lattices are identical, the stability region of
PT -symmetric lattice is narrower than that of the pPT -symmetric lattice. It is also
observed that deeper real part in the azimuthal potentials supports stability of vortex solitons,
whereas deeper imaginary part and strong quadratic electro-optic effects impoverish stability
properties of the vortices. Moreover, it is shown that there are different stability properties
of vortices in pPT -symmetric azimuthal potentials for different vorticity values, while
there is no such difference for vortices in PT -symmetric potentials.

1. Introduction

Solitons are localized waves that arise from a balance between nonlinear and dispersive effects in the medium, and they maintain their shape
and velocity during propagation. In the same manner, vortex solitons preserve their angular momentum during propagation. In recent years,
there has been considerable attention to soliton dynamics in optically induced lattices (potentials). These external lattices can be perfectly
periodic [1, 2], quasi-periodic [3, 4] or irregular structures that possess point or line defects [5].
It is known that if the optical systems include energy gain and loss, the potential of the medium would be complex [6], and such potentials are
called parity-time (PT ) symmetric. A complex potential V (x,y) is PT -symmetric, if it satisfies the condition V ∗(x,y) =V (−x,−y) [6, 7].
In 1998, Bender and Boettcher showed that non-Hermitian Hamiltonians can produce entirely real spectra when they are (PT ) symmetric
[8], and this fact reveals stable propagation of the solitons in optical systems with PT -symmetric lattices under suitable conditions [9].
PT -symmetric lattices were observed experimentally in [10]-[12] and theoretically in [7], and pulse dynamics in PT -symmetric optical
systems are investigated in many studies [13]-[18].
Recently, it has been demonstrated that the spectrum of a complex potential may remain real even if the potential is invariant under complex
conjugation and reflection in a single spatial direction (i.e., V ∗(x,y) =V (−x,y) or V ∗(x,y) =V (x,−y)), which means the complex potential
is partially PT -symmetric (pPT -symmetric) [19, 20]. Soliton dynamics in such pPT -symmetric lattices have been investigated [20],
and symmetry breaking of solitons in pPT -symmetric potentials has been demonstrated by Yang [13, 19]. Symmetry breaking is observed
above a critical power, and this power threshold is a bifurcation point after which non-PT -symmetric (asymmetric) solitons can exist.
More recently, vortex solitons in pPT -symmetric azimuthal potentials have been introduced in [21], and it is shown that although the
considered azimuthal potentials are pPT -symmetric, symmetry breaking of the lattice is not observed. Accordingly, it is shown that stable
vortex solitons can be obtained in pPT -symmetric potentials, where the symmetry is already broken in the PT -symmetric counterpart
of the potential. The pPT -symmetric azimuthal potentials are constructed from PT -symmetric cells placed on a ring where azimuthal
directions (vorticity) become nonequivalent, and the nonequivalence of the azimuthal directions causes remarkable effects on the properties
of vortex solitons. Different from vortices in conservative systems, nonequivalent vorticity of the pPT -symmetric potentials causes the
disparity of the gain loss distribution along the azimuthal direction. In [21], different internal current distributions have been demonstrated
for vortices in such pPT -symmetric azimuthal potentials.
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Figure 2.1: Top view of the azimuthal lattices within (x,y) ∈ [−4,4]. (a) Real part Vre; (b) Imaginary part (Vim) of pPT -symmetric potential when σ = 1;
(c) Imaginary part (Vim) of PT -symmetric potential when σ =−1. The real parts of potentials are identical.

In the abovementioned studies, soliton dynamics of the PT -symmetric and pPT - symmetric lattices have been investigated in cubic
nonlinear (Kerr) media that is governed by nonlinear Schrödinger (NLS) type equations. However, it is known that many nonlinear optical
systems include materials, such as potassium niobate (KNbO3) [22] or lithium niobate (LiNbO3) [23], that have both cubic and quadratic
nonlinear responses [24, 25]. One of the models to describe the nonlinear evolution of the optical waves in quadratically polarized media
is the NLS equation with coupling to a mean term (denoted as NLSM systems). The NLSM equations were introduced to characterize
water waves by Benney and Roskes in 1969 [26] and extended to three-dimensional wave packets by Davey and Stewartson in 1974 [27],
then Ablowitz et al. [24, 28, 29] derived an equivalent form of the NLSM model to characterize the pulse dynamics in non-resonant
quadratic materials. Recently, the existence of ground-state solution for the NLSM system was demonstrated and collapse dynamics were
investigated [30] and it was shown that wave collapse in the NLSM system can be arrested by self-rectification [22]. Latterly, collapse of the
NLSM system has been arrested by real periodic [31], quasiperiodic [32] and pPT -symmetric [33] external lattices. The general NLSM
system is defined as [22, 28, 29]

iuz +∆u+ |u|2u−ρuφ = 0, φxx +νφyy =
(
|u|2
)

xx

where u(x,y) is the normalized amplitude of the envelope of the normalized static electric field propagating in the z direction. ∆u≡ uxx +uyy
corresponds to diffraction, and the cubic term in u originates from the nonlinear (Kerr) change of the refractive index. ρ denotes the combined
optical rectification and electro-optic effects modeled by the φ(x,y) field, and ν shows the anisotropy of the material.
These equations come from the interplay between the fundamental and dc fields while the second-harmonic-generation (SHG) is not phase
matched. In such circumstances, an additional self-phase modulation contribution is produced by the SHG due to cascaded nonlinearity.
Consequently, the NLSM system is a nonlocal nonlinear coupling between the first field and a static field that is emerged from the zeroth
harmonic (mean term) [24, 28, 29].
In this study, the numerical existence of vortex solitons in PT -symmetric and pPT -symmetric azimuthal lattices are demonstrated for
a medium with quadratic nonlinear response, and stability properties of the obtained vortex solitons are investigated comprehensively by
linear spectrum and nonlinear evolution of the governing equations. The model equations are given as the NLSM system with an additional
external potential. The paper is outlined as follows: In Sec. 2, the model equations and the azimuthal potentials are presented, and vortex
soliton solutions of the model are obtained by numerical methods. In Sec. 3, stability of the vortex solitons are examined by the nonlinear
evolution and linear stability spectra of the model, and impact of the vorticity on vortex stability is investigated. Results of the study is
summarized in Sec. 4.

2. The Model

Pulse dynamics in a medium with quadratic nonlinear response and an additional external potential is governed by the following (2+1)
dimensional model

iuz +∆u+ |u|2u−ρuφ +[preVre(x,y)− ipimVim(x,y)]u = 0, φxx +νφyy =
(
|u|2
)

xx
(2.1)

where pre and pim are the depths of real and imaginary parts of the complex potential V (x,y), respectively. The potential V (x,y) is defined as
N Gaussian waveguides that are placed on a ring of radius r0 [21]:

Vre =
N
∑

k=1
e−[(x−r0 cosθk)

2+(y−r0 sinθk)
2]/α2

Vim =
N
∑

k=1
σ k−1(ycosθk− xsinθk)e−[(x−r0 cosθk)

2+(y−r0 sinθk)
2]/α2

where σ = ±1, θk = 2π(k− 1)/N and α is waveguide width. For σ = −1 the potential is PT -symmetric, i.e., V (x,y) = V (−x,y) =
V ∗(x,−y) = V ∗(−x,−y), and for σ = 1, it is pPT -symmetric, i.e., V (x,y) = V ∗(−x,y) = V ∗(x,−y) 6= V ∗(−x,−y). We consider PT
and pPT -symmetric azimuthal potentials with N = 6, the radius r0 = N/2 and the waveguide width α = 0.5. Real and imaginary parts of
PT (σ =−1) and pPT -symmetric (σ = 1) azimuthal potentials are displayed in Figure 2.1. The phase transition point was determined as
pim = 7.2 for PT -symmetric case of the lattice when pre = 5 [21]. Above this threshold value, spectrum of the lattice include eigenvalues
with non-zero imaginary parts. Phase transition is not observed for the pPT -symmetric azimuthal potential (when σ = 1).
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2.1. Numerical solution for the vortex solitons

The steady state solution (vortex solitons) of the considered model (2.1) is obtained via squared operator method (SOM) that has been
developed by Yang [34]. It has been shown that steady state solutions of a wide range of nonlinear wave equations can be computed
efficiently by the SOM algorithm. The algorithm is outlined as follows:
Inserting the ansatz u =U (x,y)exp(iµz) into the system (2.1), the operator L0 is obtained,

L0u =−µU +∆U + |U |2U−ρφU +VU, φxx +νφyy =
(
|U |2

)
xx

where µ is the eigenvalue (propagation constant). Splitting the operator L0 into its real and imaginary parts and applying Fourier
transformation, we get the sub-operators T 1 and T 2 as follows:

T 1 = Re
(

F−1
(

F (L0u)
K2 + c

))
, T 2 = Im

(
F−1

(
F (L0u)
K2 + c

))
.

where F denotes Fourier transformation, k = (kx,ky) are Fourier variables, K2 = k2
x + k2

y and c is a real positive number that is chosen
heuristically for parametrizing the algorithm. Separating the amplitue U into its real and imaginary parts U =Ure(x,y)+ iUim(x,y) and
substituting into the operator L0u (2.2), we get sub-operators LRe and LIm as follows:

LRe =−µUre +∆Ure +(U3
re +UreU2

im)−ρφUre + preVreUre + pimVimUim

LIm =−µUim +∆Uim +(U3
im +U2

reUim)−ρφUim + preVreUim− pimVimUre.

Taking partial derivatives of LRe and LIm with respect to both Ure and Uim gives elements of the operator L1,

R11 =
∂LRe
∂Ure

(T 1) , R12 =
∂LRe
∂Uim

(T 2),

R21 =
∂LIm
∂Ure

(T 1) , R22 =
∂LIm
∂Uim

(T 2).

and the operator L1 is defined as

L1u = R11 +R12 + i(R21 +R22).

After L0 and L1 are obtained, the algorithm is iterated as follows,

Un+1 =Un−
(
F−1

(
F (L1u)

K2+c

))
∆t ,

µn+1 = µn +‖u ·T 1+ v ·T 2‖∆t,

φn+1 = F−1
(

k2
x F(|Un|2)
k2

x+νk2
y

)
.

This numerical scheme is implemented until the error

E =
√
‖Un+1−Un‖2 + |µn+1−µn|< 10−8,

and this algortihm is convergent while the time step ∆t is below a certain threshold [34].
To obtain vortex solitons of the model (2.1), the initial condition of the SOM algorithm is chosen as

u(x,y,z) =U(r)exp[imθ(r)+ iµz] (2.2)

where r = (x,y), U is field module, θ is the phase, m is vorticity and µ is the propagation constant. The considered azimuthal potentials
(N = 6) support six-hump vortex solitons for the following parameter set:

(ρ, ν , pre, pim, µ, m) = (0.5, 1.5, 6, 1, 0.5, 1). (2.3)

It is noted that ρ = 0.5 and ν = 1.5 are particularly selected parameter values to characterize quadratic electro-optic effects in potassium
niobate (KNbO3) [22].
In Figure 2.2, the vortex profile, the top view and the phase structure are shown for the azimuthal potentials when σ = 1 (pPT -symmetric)
in the first row (a) and when σ =−1 (PT -symmetric) in the second row (b). It can be seen that there are six-hump vortex structures that
are located at local maxima of the considered azimuthal potentials.

3. Power and Stability Analysis

The vortex solutions of the model (2.1) is computed by the SOM algorithm, and the stability dynamics of these vortex solitons are studied by
the linear stability spectra and nonlinear evolution of the model.
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Figure 2.2: 3D profile, top view and phase structure of the six-hump vortex solitons located at local maxima of the azimuthal potential for the parameters
given in (2.3) (a) when σ = 1 (the first row); (b) when σ =−1 (the second row). c = 2, ∆t = 0.2 and vorticity m = 1 in both cases.

3.1. Linear stability analysis

The model (2.1) is linearized to calculate linear spectrum of vortex solitons as follows. By denoting

U = eiµz[u0(x,y)+g(x,y)eλ z +h∗(x,y)eλ ∗z]

where u0(x,y) is the vortex soliton and g,h� 1 are perturbed infinitesimal modes. Inserting the perturbed solution U into the model (2.1),
the following eigenvalue problem is obtained

L V = λV

where

L = i
(

L11 L12
L21 L22

)
, V =

(
g
h

)
and the matrix coefficients of L are

L11 = ∆−µ−ρφ +V,
L12 = u2,
L21 =−(u2)∗,
L22 =−(∆−µ−ρφ +V )∗ .

The eigenvalues of L can be calculated numerically by the Fourier collocation method [35]. If any eigenvalue in the spectrum has a positive
real part, the solution is linearly unstable.
The power of solitons, that is calculated by P=

∫∫
∞

−∞
|u|2dxdy, plays an important role in the stability analysis. Therefore, the power-eigenvalue

diagram of gap solitons are investigated in Figure 3.1(a), and stability properties of considered vortex solitons are investigated in Figure 3.1(b)
for the same parameters. Blue line shows pPT -symmetric (σ = 1) and red line shows PT -symmetric (σ =−1) case of the azimuthal
potential. In Figure 3.1(a), the linear stability (solid line) and instability (dotted) regions are determined by computation of eigenvalue spectra
for each point on the power curves and the maximum real parts of these spectra are given in Figure 3.1(b). From the power-eigenvalue
(P−µ) diagram, it can be seen that the vortices are linearly stable below a critical power Pc = 4.14, that corresponds to µ = 0.58, in both
σ = 1 and σ =−1 cases when pre = 6 and pim = 1 (see Figure 3.1(a)).
Similarly, the power and stability properties of vortex solitons are shown in Figure 3.2 for the parameters ρ, ν , pre and pim. It is important
to note that this analysis shows the first band-gap boundaries for the considered parameter regimes in each panel. For instance, when
ν = 1.5, pre = 6, pim = 1, µ = 0.5 and σ = 1, the vortex solitons can be obtained for ρ ∈ [0,1.85] within the gap region (see blue line
in Figure 3.2(a)). It is observed that, although linear stability region for the anisotropy coefficient ν and potential depth of real part pre
are identical in both σ = 1 and σ =−1 cases, stability region of pPT -symmetric (σ = 1) lattice is larger than that of PT -symmetric
(σ =−1) lattice for the coupling parameter ρ and potential depth of imaginary part pim.
The vortex solitons that are shown in Figure 2.2(a) and 2.2(b) correspond to ’a’ and ’b’ points in Figure 3.2(d), respectively. This fact reveals
the linear stability of the vortices at point ’a’ and ’b’ when σ = 1 and σ =−1.
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Figure 3.1: The power of vortex solitons versus eigenvalue (a) and the maximum real part in the eigenvalue spectrum (b) for varied values of µ when
ρ = 0.5, ν = 1.5, pre = 6 and pim = 1.
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Figure 3.2: The power of vortex solitons (a) for varied values of ρ when ν = 1.5, pre = 6, pim = 1 and µ = 0.5; (b) for varied values of ν when
ρ = 0.5, pre = 6, pim = 1 and µ = 0.5; (c) for varied values of pre when ρ = 0.5, ν = 1.5, pim = 1 and µ = 0.5; (d) for varied values of pim when
ρ = 0.5, ν = 1.5, pre = 6 and µ = 0.5. Blue line shows pPT -symmetric (σ = 1) and red line shows PT -symmetric (σ = −1) case of the azimuthal
potential where solid and dotted line show stable and unstable regions for the gap solitons, respectively.

3.2. Nonlinear evolution of vortex solitons

To test the full stability, the nonlinear stability of vortex solitons are investigated by direct simulation of the model (2.1) for long times.
A finite-difference discretization scheme is used in the spatial domain and the solution is advanced in z with a fourth-order Runge-Kutta
method. The initial condition of evolution is taken to be a vortex structure that is obtained by the SOM algorithm and perturbed with 1%
random noise in amplitude and phase.
Linear stability spectra and nonlinear evolution of the vortices, that are obtained at ’a’, ’b’, ’c’ and ’d’ points in Figure 3.2(d), are examined
in columns (a), (b), (c) and (d) of Figure 3.3, respectively. The nonlinear evolution of perturbed vortices (the first row), linear stability spectra
(the second row) and 3D view of the evolved vortex profiles (the third row) are shown in Figure 3.3. As can be seen from Figure 3.3(a),
3.3(b) and 3.3(c), the linear spectra of vortex solitons that are obtained at ’a’, ’b’, ’c’ points are purely-imaginary (none of their eigenvalues
have a real part), the peak amplitude of the evolved vortices oscillate relatively small amplitudes during the propagation, and vortex profiles
are preserved after evolution at z = 500, thus stable evolution of the vortex structures can be achieved for the considered parameter regimes.
On the other hand, the linear spectrum of the vortex solitons, that is obtained at point ’d’, involves eigenvalues with positive real parts, peak
amplitude of the evolved soliton increases significantly during the evolution and the vortex profile breaks up after evolution at z = 500 (see
Figure 3.3(d)). These facts indicate the instability of vortex structure due to blow-up of solitons when σ =−1, pre = 6 and pim = 5.
It should be noted that the result of nonlinear evolution analysis is consistent with linear (in)stability regions that are given in Figure 3.2 for
the PT -symmetric and pPT -symmetric azimuthal lattices. To see the impact of quadratic optical effects and depth of pPT -symmetric
azimuthal lattices on the pulse stability, the evolution of peak amplitudes are examined for varied ρ,ν , pre and pim values in Figure 3.4. Here,
the initial condition is chosen as the vortex at point ’d’ that is shown to be nonlinearly unstable in Figure 3.3(d), and the initial peak amplitude
of the vortex solitons are normalized to 1 for comparison. The results in Figure 3.4 show that, by increasing the value of optical rectification
parameter ρ and lattice depth of the imaginary part pim, peak amplitude of vortices are increasing more rapidly, and thus collapse of vortices
are accelerated (see panels (a) and (d)). Conversely, the increase in peak amplitude can be delayed by increasing anisotropy parameter ν and
lattice depth of the real part pre (see panels (b) and (c)). These results consistent with previous studies that have demonstrated stability of
two dimensional solitons that are generated by the NLSM system with periodic [31], quasi-periodic [32] and pPT -symmetric [33] lattices.
In [31], it was also shown that, collapse will eventually occur in a lattice-free NLSM system, and collapse of the solitons are expedited by
increasing values of ρ and ν in the lattice-free medium.
It should be noted that, although vortex solitons can be obtained in semi-infinite interval when ν > 0 and increased values of ν assists
maintaining the peak amplitude of the vortices in the pPT -symmetric azimuthal lattices, it can not be considered as a collapse arrest
mechanism, since ρ and ν parameters are prescribed coefficients that are depending on the type of optical materials.
In addition, it is observed that, as shown in [21], there is different stability properties of vortices for different vorticity values that is denoted
by m in equation (2.2) and fixed to 1 in the study. Linear stability spectra and peak amplitudes of the evolved vortices are displayed in
Figure 3.5 for m =+1 and m =−1 when ρ = 1,ν = 1.5, pre = 6, pim = 1 and µ = 1. As can be seen from Figure 3.5, although the linear
stability spectra and nonlinear evolution of the vortices are overlapping for the PT -symmetric lattice (σ =−1) (see the second row (b)),
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Figure 3.3: The peak amplitude of evolved vortices from z = 0 to z = 500 (the first row), linear stability spectra (the second row) and 3D view of vortex
profile after evolution at z = 500 (the third row). The vortex solitons are generated (a) when σ = 1, pre = 6 and pim = 1; (b) when σ = −1, pre = 6 and
pim = 1; (c) when σ = 1, pre = 6 and pim = 5; (d) when σ =−1, pre = 6 and pim = 5. ρ = 0.5, ν = 1.5 and µ = 0.5 in all cases.
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Figure 3.4: The peak amplitude of the evolved vortices in the pPT -symmetric azimuthal potential. The vortex is obtained (a) for varied values of ρ when
ν = 1.5, pre = 6 and pim = 5; (b) for varied values of ν when ρ = 0.5, pre = 6 and pim = 5; (c) for varied values of pre when ρ = 0.5,ν = 1.5 and pim = 5;
and (d) for varied values of pim when when ρ = 0.5,ν = 1.5 and pre = 6. µ = 0.5 in all cases.
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the stability spectra and nonlinear evolution of the vortices are different for the pPT -symmetric lattice (σ = 1) (see the first row (a)). The
maximum real part in the linear stability spectrum for m =+1 is larger than that for m =−1 when σ =−1 (see left panel in Figure 3.5(a)).
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vorticity values (m = +1 and m = −1) in the pPT -symmetric lattice (see panel (a)). In contrast, no such difference is observed in the
PT -symmetric lattice for different vorticity values (see panel (b)).

4. Conclusions

The numerical existence of vortex solitons in PT -symmetric (σ =−1) and pPT -symmetric (σ = 1) azimuthal potentials are demonstrated
for the quadratic nonlinear media, and stability properties in the considered lattices are explored by examining the nonlinear evolution
and linear stability spectra of the vortex structures. It has been shown that, although the existence domain of the PT -symmetric and
pPT -symmetric lattices are identical, the stability region of PT -symmetric lattice is narrower than that of the pPT -symmetric lattice.
Linear stability spectra and nonlinear evolution of vortices show that, the stable evolution of vortex structures can be achieved in both
PT -symmetric and pPT -symmetric azimuthal potentials for a wide range of parameters, and although there is a threshold value of
the depth of imaginary part in the PT -symmetric potential for the stability of vortices, there is not any phase-transition point for the
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pPT -symmetric potential. Accordingly, it is demonstrated that stable vortex structures can exist in pPT -symmetric potentials, where the
symmetry is already broken in the PT -symmetric counterpart of the potential.
Moreover, it has been observed that there are different stability properties of vortices in pPT -symmetric azimuthal potentials for different
vorticity values, while there is no such difference for vortices in PT -symmetric potentials.
Linear stability spectra together with the nonlinear evolution reveal that deeper real part in the azimuthal potentials support stability of
vortices, whereas deeper imaginary part and strong quadratic electro-optic effects in the medium impoverish stability properties of the
vortices.
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[25] M. Bağcı, J. N. Kutz, Spatiotemporal mode locking in quadratic nonlinear media, Phys. Rev. E., 102(2) (2020), 022205.
[26] D. J. Benney, G. J. Roskes, Wave instabilities, Stud. in App. Math., 48 (1969), 377-385.
[27] A. Davey, K. Stewartson, On three-dimensional packets of surface waves, Proc. of the Royal Soc. of London. Series A, Math. and Phys. Sci., 338 (1974),

101-110.
[28] M. J. Ablowitz, G. Biondini, S. Blair, Multi- dimensional pulse propagation in non-resonant χ(2) materials, Phys.Lett. A., 236(5) (1997), 520-524.
[29] M. J. Ablowitz, G. Biondini, S. Blair, Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic materials, Phys.

Rev. E., 63(4) (2001), 046605.
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