
Advances in the Theory of Nonlinear Analysis and its Applications 6 (2022) No. 2, 148�156.
https://doi.org/10.31197/atnaa.1012869
Available online at www.atnaa.org

Research Article

Semilinear parabolic di�usion systems on the sphere

with Caputo-Fabrizio operator

Tran Thanh Binha

aDivision of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam

Abstract

PDEs on spheres have many important applications in physical phenomena, oceanography and meteorology,
geophysics. In this paper, we study the parabolic systems with Caputo-Fabrizio derivative. In order to
establish the existence of the mild solution, we use the Banach �xed point theorem and some analysis of
Fourier series associated with several evaluations of the spherical harmonics function. Some of the techniques
on upper and lower bounds of the Mittag-Le�er functions are also applied. This is one of the �rst research
results on the systems of parabolic di�usion on the sphere.
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1. Introduction

Partial di�ferential equations on the sphere and their analysis were investigated by many authors, such as
many authors, for example [13, 14, 15, 16, 17, 9, 12, 33, 34, 35, 22, 28]. These equations play a role in modeling
a number of physical phenomena that occur in the earth's surface or in earthquakes and seismic events.
When studying natural phenomena, many external factors occur, so equations with classical derivatives
cannot fully describe these models. The appearance of fractional Caculus contributed to a clari�cation
and more complete in the simulation. Fractional analysis has many applications in mechanics, physics
and engineering science, etc. We would like to share many published works on these issues such as E.
Karapinar et al [1, 2, 3, 4, 5, 6, 7, 8], H. Jafari and his group [18, 19, 20, 21]. When examining mathematical
models, depending on the models, there will be many corresponding derivatives. Each type of derivative
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has its advantages and disadvantages. The most prominent among the fractional derivatives is the Caputo
derivative. This is the derivative that contains the singularity kernels. In [26], the authors invented the
Caputoâ��Fabrizio fractional derivative with purpose of avoiding singular kernels. It is also the convolution
of the exponential function and the �rst order derivative. The Caputo-Fabrizio derivative is an operator that
has been widely applied to a number of derivative modes in many �elds, such as biology, physics, control
systems, materials science, and dynamics. liquid learning [30].

In this paper, we consider the systems of parabolic problem with Caputo-Fabrizio derivative on the unit
sphere S2 ⊂ R3 as follows

CFD
α
t u−∆∗u = F (u, v) (x, t) in S2 × (0, T ),

CFD
α
t v −∆∗v = G(u, v) (x, t) in S2 × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x in S2,

(1)

where CFD
α
t is Caputo-Fabrizio operator for fractional derivatives which is de�ned as (see [29])

CFD
α
t v(t) =

H(r)

1− α

� t

0
Dα(t− ν)

∂v(ν)

∂ν
dν, for t ≥ 0,

where we denote by the kernel Dα(z) = exp
(
− α

1−αz
)
and H(r) satis�es H(0) = H(1) = 1, (see e.g. [26, 27])

and ∆∗ is the Laplace-Beltrami operator. So far, only a few special cases of fractional partial di�erential
systems have been studied [31, 32], there are still many other systems that have not been studied, especially
the models on the sphere.

This article is organized as follows. Section 2 gives some preliminary and mild solution. In Section 3, we
present our main results including two main theorems. Finally, the proof of some theorems is completed in
section 4.

2. Preliminaries

Spherical harmonics are polynomials which satisfy ∆xY (x) = 0 (where ∆x is the Laplacian operator in
R3) and are restricted to the surface of the Euclidean sphere S2. The eigenvalues for −∆∗ in R3 are

θn = n2 + n, n = 0, 1, 2, ......

and the eigenfunctions corresponding to θn are the spherical harmonics Xn(x)

∆∗Xn(x) = −θnXn(x).

The space of all spherical harmonics of degree n on S2, denoted by Vn, has an orthonormal basis {Xnk(x) :
n = 1, 2, 3, ...M(2, n)} where

M(2, 0) = 1, M(2, n) =
2n+ 1

Γ(2)
, n ≥ 1.

Noting that any function f ∈ L2(S2) can be expressed in the form of spherical harmonics

f =
∞∑
n=0

2n+1
Γ(2)∑
k=1

f̂nkXnk, f̂nk =

�
S2

fXnkdS,

where dS is the surface measure of the unit sphere. Let us de�ne Hp(S2) for p > 0 by

Hp(S2) =

{
ψ ∈ L2(S2) :

∞∑
n=0

2n+1
Γ(2)∑
k=1

(
n2 + n+ 1

)p
|ψ̂nk|2 <∞

}
(2)
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with the following norm

‖ψ‖Hp(S2) =

√√√√√ ∞∑
n=0

2n+1
Γ(2)∑
k=1

(
n2 + n+ 1

)p
|ψ̂nk|2.

De�nition 2.1. The function (u,w) is called a mild solution of Problem (1) if it satis�es that

u(t) = Dr(t)u0 +

� t

0
Dr(t− s)F (u(s), w(s))ds

w(t) = Dr(t)w0 +

� t

0
Dr(t− s)G(u(s), w(s))ds (3)

where Dr(t) is de�ned by

Dr(t)f =
∞∑
n=0

2n+1
Γ(2)∑
k=1

1

1 + (1− r)(n2 + n)
exp

(
−α(n2 + n)

1 + (1− r)(n2 + n)
t

)
f̂nkXnk.

Now we have the following Lemma.

Lemma 2.2. Let f ∈ Hq−1(S2). Then we have∥∥∥Dr(t)f
∥∥∥
Hq(S2)

≤
√

1

1− r
∥∥f∥∥

Hq−1(S2)
. (4)

Proof. Let us assume that f ∈ Hq(S2). Then we get the following equality

∥∥∥Dr(t)f
∥∥∥2
Hq(S2)

=
∞∑
n=0

2n+1
Γ(2)∑
k=1

(
n2 + n+ 1

)q
1 + (1− r)(n2 + n)

exp

(
−2α(n2 + n)

1 + (1− r)(n2 + n)
t

)
|f̂nk|2. (5)

Since 1 > 1− r, we get that (
n2 + n+ 1

)q
1 + (1− r)(n2 + n)

≤ 1

1− r

(
n2 + n+ 1

)q−1
. (6)

It follows from (5) that

∥∥∥Dr(t)f
∥∥∥2
Hq(S2)

≤ 1

1− r

∞∑
n=0

2n+1
Γ(2)∑
k=1

(
n2 + n+ 1

)q−1
|f̂nk|2 =

1

1− r
∥∥f∥∥2

Hq−1(S2)
, (7)

which allows us to obtain that the desired result (4).

Theorem 2.3. Let (u0, w0) ∈ Hp−1(S2)×Hp−1(S2) and F (0, 0) = G(0, 0) = 0. Let us assume that∥∥∥F (u1, w1)− F (u2, w2)
∥∥∥
Hp(S2)

≤ Kf

(
‖u1 − u2‖Hp(S2) + ‖w1 − w2‖Hp(S2)

)
(8)

and ∥∥∥G(u1, w1)−G(u2, w2)
∥∥∥
Hp(S2)

≤ Kg

(
‖u1 − u2‖Hp(S2) + ‖w1 − w2‖Hp(S2)

)
. (9)

Then Problem (1) has a unique solution (u,w) on the space
(
L∞ν (0, T ;Hp(S2))

)2
. Then we get∥∥u(., t)

∥∥
Hp(S2)

+
∥∥w(., t)

∥∥
Hp(S2)

≤

(√
1

1− r
∥∥u0∥∥Hp−1(S2)

+

√
1

1− r
∥∥w0

∥∥
Hp−1(S2)

)
exp

(√ 1

1− r
(Kf +Kg)Cpt

)
. (10)
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Proof. For any ν ≥ 0, denote by
(
L∞ν (0, T ;Hp(S2))

)2 the function space
(
L∞(0, T ;Hp(S2))

)2 associated
with the norm

‖(u, v)‖ν,p := max
0≤t≤T

∥∥∥ exp(−νt)u(·, t)
∥∥∥
Hp(S2)

+ max
0≤t≤T

∥∥∥ exp(−νt)v(·, t)
∥∥∥
Hp(S2)

,

for any (u,w) ∈
(
L∞(0, T ;Hp(S2))

)2
. Let us de�ne the operator

N(u,w)(t) =
(
N1(u,w)(t),N2(u,w)(t)

)
(11)

where N1 and N2 are given by

N1(u,w)(t) = Dr(t)u0 +

� t

0
Dr(t− s)F (u(s), w(s))ds

N2(u,w)(t) = Dr(t)w0 +

� t

0
Dr(t− s)G(u(s), w(s))ds. (12)

If (u,w) = (0, 0) then using the condition F (0, 0) = G(0, 0) = 0, we have that∥∥∥N1(u,w)(t)
∥∥∥
Hp(S2)

=
∥∥∥Dr(t)u0

∥∥∥
Hp(S2)

≤
∥∥∥u0∥∥∥

Hp−1(S2)
(13)

and ∥∥∥N2(u,w)(t)
∥∥∥
Hp(S2)

=
∥∥∥Dr(t)w0

∥∥∥
Hp(S2)

≤
∥∥∥w0

∥∥∥
Hp−1(S2)

. (14)

From two above observations, we deduce that N(u,w) ∈
(
L∞ν (0, T ;Hp(S2))

)2 for any ν > 0.

Take any (u1, w1) and (u2, w2) in the space
(
L∞ν (0, T ;Hp(S2))

)2. We get that∥∥∥N1(u1, w1)−N1(u2, w2)
∥∥∥
Hp(S2)

=
∥∥∥� t

0
Dr(t− s)F (u1(s), w1(s))ds−

� t

0
Dr(t− s)F (u2(s), w2(s))ds

∥∥∥
Hp(S2)

≤
� t

0

∥∥∥F (u1(s), w1(s))− F (u2(s), w2(s))
∥∥∥
Hp−1(S2)

ds. (15)

From the condition of globally Lipschitz of the source function F , we �nd that
� t

0

∥∥∥F (u1(s), w1(s))− F (u2(s), w2(s))
∥∥∥
Hp−1(S2)

ds

≤ Cp
� t

0

∥∥∥F (u1(s), w1(s))− F (u2(s), w2(s))
∥∥∥
Hp(S2)

ds

≤ KfCp

� t

0

∥∥∥u1(s)− u2(s)∥∥∥
Hp(S2)

ds+KfCp

� t

0

∥∥∥w1(s)− w2(s)
∥∥∥
Hp(S2)

ds. (16)

Hence, we �nd that

e−νt
∥∥∥N1(u1, w1)−N1(u2, w2)

∥∥∥
Hp(S2)

≤ KfCp

� t

0
e−ν(t−s)e−νs

∥∥∥u1(s)− u2(s)∥∥∥
Hp(S2)

ds+KfCp

� t

0
e−ν(t−s)e−νs

∥∥∥w1(s)− w2(s)
∥∥∥
Hp(S2)

ds

≤ KfCp

(� t

0
e−ν(t−s)ds

)
max
0≤t≤T

∥∥∥ exp(−νt) (u1(·, t)− u2(., t))
∥∥∥
Hp(S2)

+KfCp

(� t

0
e−ν(t−s)ds

)
max
0≤t≤T

∥∥∥ exp(−νt) (w1(·, t)− w2(., t))
∥∥∥
Hp(S2)

. (17)
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It is obvious to see that
� t

0
e−ν(t−s)ds =

1− e−νt

ν
≤ 1

ν
. (18)

Combining (17) and (18), we �nd that

e−νt
∥∥∥N1(u1, w1)−N1(u2, w2)

∥∥∥
Hp(S2)

≤
KfCp
ν

max
0≤t≤T

∥∥∥ exp(−νt) (u1(·, t)− u2(., t))
∥∥∥
Hp(S2)

+
KfCp
ν

max
0≤t≤T

∥∥∥ exp(−νt) (w1(·, t)− w2(., t))
∥∥∥
Hp(S2)

. (19)

By a similar argument as above, we �nd that

e−νt
∥∥∥N2(u1, w1)−N2(u2, w2)

∥∥∥
Hp(S2)

≤ KgCp
ν

max
0≤t≤T

∥∥∥ exp(−νt) (u1(·, t)− u2(., t))
∥∥∥
Hp(S2)

+
KgCp
ν

max
0≤t≤T

∥∥∥ exp(−νt) (w1(·, t)− w2(., t))
∥∥∥
Hp(S2)

. (20)

From two above observation, we arrive at the following estimate

e−νt
∥∥∥N1(u1, w1)−N1(u2, w2)

∥∥∥
Hp(S2)

+ e−νt
∥∥∥N2(u1, w1)−N2(u2, w2)

∥∥∥
Hp(S2)

≤
KfCp +KgCp

ν
‖(u1, w1)− (u2, w2)‖ν,p. (21)

The right hand side of (21) is independent of t, we �nd that∥∥∥N (u1, w1)−N (u2, w2)
∥∥∥
ν,p
≤
KfCp +KgCp

ν
‖(u1, w1)− (u2, w2)‖ν,p. (22)

By choose ν large enough, we can say that N is a contraction mapping. So, there exists a function (u,w)
which is a solution of

N(u,w) = (u,w).

Moreover, we get

∥∥u(t)
∥∥
Hp(S2)

≤
∥∥∥Dr(t)u0

∥∥∥
Hp(S2)

+
∥∥∥� t

0
Dr(t− s)F (u(s), w(s))ds

∥∥∥
Hp(S2)

≤
√

1

1− r
∥∥u0∥∥Hp−1(S2)

+

√
1

1− r

∥∥∥� t

0
F (u(s), w(s))ds

∥∥∥
Hp−1(S2)

. (23)

Since the fact that ‖v‖Hp−1(S2) ≤ Cp‖v‖Hp(S2) and Lipschitz condition of F as in (8), we know that

∥∥∥� t

0
F (u(s), w(s))ds

∥∥∥
Hp−1(S2)

≤ Cp
� t

0

∥∥∥F (u(s), w(s))
∥∥∥
Hp(S2)

ds

≤ KfCp

� t

0

(∥∥∥u(., s)
∥∥∥
Hp(S2)

+
∥∥∥w(., s)

∥∥∥
Hp(S2)

)
ds. (24)

Combining (23) and (24), we arrive at

∥∥u(., t)
∥∥
Hp(S2)

≤
√

1

1− r
∥∥u0∥∥Hp−1(S2)

+

√
1

1− r
KfCp

� t

0

(∥∥∥u(., s)
∥∥∥
Hp(S2)

+
∥∥∥w(., s)

∥∥∥
Hp(S2)

)
ds. (25)



T. Thanh Binh, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 148�156. 153

By a similar techniques as above, we get that

∥∥w(., t)
∥∥
Hp(S2)

≤
√

1

1− r
∥∥w0

∥∥
Hp−1(S2)

+

√
1

1− r
KgCp

� t

0

(∥∥∥u(., s)
∥∥∥
Hp(S2)

+
∥∥∥w(., s)

∥∥∥
Hp(S2)

)
ds. (26)

From two previous estimate, we infer that∥∥u(., t)
∥∥
Hp(S2)

+
∥∥w(., t)

∥∥
Hp(S2)

≤
√

1

1− r
∥∥u0∥∥Hp−1(S2)

+

√
1

1− r
∥∥w0

∥∥
Hp−1(S2)

+

√
1

1− r
(Kf +Kg)Cp

� t

0

(∥∥∥u(., s)
∥∥∥
Hp(S2)

+
∥∥∥u(., s)

∥∥∥
Hp(S2)

)
ds. (27)

Hence, by using Gronwall's inequality, we obtain that the desired result (10).

Theorem 2.4. Let F,G as in Theorem (2.3). Then there exists a positive constant C(p, r,Kf ,Kg, T ) such

that ∥∥∥ d
dt
u(t)

∥∥∥
Hp−1(S2)

+
∥∥∥ d
dt
w(t)

∥∥∥
Hp−1(S2)

≤ C(p, r,Kf ,Kg, T )
(∥∥u0∥∥Hp−1(S2)

+
∥∥w0

∥∥
Hp−1(S2)

)
. (28)

Proof. Let us continue to treat the regularity result for �rst derivative of (u,w). Set Dr(t) is de�ned by

Dr(t)f =

∞∑
n=0

2n+1
Γ(2)∑
k=1

−r(n2 + n)

(1 + (1− r)(n2 + n))2
exp

(
−α(n2 + n)

1 + (1− r)(n2 + n)
t

)
f̂nkXnk.

Then we get the following equality

∥∥∥Dr(t)f
∥∥∥2
Hq(S2)

=

∞∑
n=0

2n+1
Γ(2)∑
k=1

r2
(
n2 + n+ 1

)q
(n2 + n)2

(1 + (1− r)(n2 + n))2
exp

(
−2α(n2 + n)

1 + (1− r)(n2 + n)
t

)
|f̂nk|2. (29)

Since 1 > 1− r and n2 + n < n2 + n+ 1, we get that(
n2 + n+ 1

)q
(n2 + n)2

1 + (1− r)(n2 + n)
≤ 1

1− r

(
n2 + n+ 1

)q+1
. (30)

It follows from (5) that

∥∥∥Dr(t)f
∥∥∥2
Hq(S2)

≤ 1

1− r

∞∑
n=0

2n+1
Γ(2)∑
k=1

(
n2 + n+ 1

)q+1
|f̂nk|2 =

1

1− r
∥∥f∥∥2

Hq+1(S2)
. (31)

Hence, we �nd that ∥∥∥Dr(t)f
∥∥∥
Hq(S2)

≤
√

1

1− r
∥∥f∥∥

Hq+1(S2)
. (32)

Since the fomula
d

dt

� t

0
G(t, s)ds =

� t

0
Gt(t, s)ds+G(t, t).
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We get

d

dt
u(t) = Dr(t)u0 +

� t

0
Dr(t− s)F (u(s), w(s))ds+ F (u(t), w(t)),

d

dt
w(t) = Dr(t)w0 +

� t

0
Dr(t− s)G(u(s), w(s))ds+G(u(t), w(t)). (33)

This implies that∥∥∥ d
dt
u(t)

∥∥∥
Hp−1(S2)

≤
∥∥∥Dr(t)u0

∥∥∥
Hp−1(S2)

+
∥∥∥� t

0
Dr(t− s)F (u(s), w(s))ds

∥∥∥
Hp−1(S2)

+
∥∥∥F (u(t), w(t))

∥∥∥
Hp−1(S2)

(34)

Using (32), we get that ∥∥∥Dr(t)u0

∥∥∥
Hp−1(S2)

≤
√

1

1− r

∥∥∥u0∥∥∥
Hp(S2)

. (35)

Using again (32) and Lipschitz condition of F as in (8), we infer that∥∥∥� t

0
Dr(t− s)F (u(s), w(s))ds

∥∥∥
Hp−1(S2)

≤
√

1

1− r

� t

0

∥∥∥F (u(s), w(s))
∥∥∥
Hp(S2)

ds

≤ Kf

√
1

1− r

� t

0

(
‖u(., s)‖Hp(S2) + ‖w(., s)‖Hp(S2)

)
ds (36)

and ∥∥∥F (u(t), w(t))
∥∥∥
Hp−1(S2)

≤ Kf

(
‖u(., t)‖Hp(S2) + ‖w(., t)‖Hp(S2)

)
. (37)

Combining (34), (35), (36), and (37), we have the following assertion right away∥∥∥ d
dt
u(t)

∥∥∥
Hp−1(S2)

≤
√

1

1− r

∥∥∥u0∥∥∥
Hp(S2)

+Kf

√
1

1− r

� t

0

(
‖u(., s)‖Hp(S2) + ‖w(., s)‖Hp(S2)

)
ds

+Kf

(
‖u(., t)‖Hp(S2) + ‖w(., t)‖Hp(S2)

)
. (38)

By a similar argument as above, we also get that∥∥∥ d
dt
w(t)

∥∥∥
Hp−1(S2)

≤
√

1

1− r

∥∥∥w0

∥∥∥
Hp(S2)

+Kg

√
1

1− r

� t

0

(
‖u(., s)‖Hp(S2) + ‖w(., s)‖Hp(S2)

)
ds

+Kg

(
‖u(., t)‖Hp(S2) + ‖w(., t)‖Hp(S2)

)
. (39)

From two recent observation, we can deduce that∥∥∥ d
dt
u(t)

∥∥∥
Hp−1(S2)

+
∥∥∥ d
dt
w(t)

∥∥∥
Hp−1(S2)

≤
√

1

1− r

∥∥∥u0∥∥∥
Hp(S2)

+

√
1

1− r

∥∥∥w0

∥∥∥
Hp(S2)

+ (Kg +Kf )

√
1

1− r

� t

0

(
‖u(., s)‖Hp(S2) + ‖w(., s)‖Hp(S2)

)
ds

+ (Kg +Kf )
(
‖u(., t)‖Hp(S2) + ‖w(., t)‖Hp(S2)

)
. (40)
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Since (10), we �nd that

‖u(., t)‖Hp(S2) + ‖w(., t)‖Hp(S2)

≤

(√
1

1− r
∥∥u0∥∥Hp−1(S2)

+

√
1

1− r
∥∥w0

∥∥
Hp−1(S2)

)
exp

(√ 1

1− r
(Kf +Kg)CpT

)
. (41)

From two above observation, we can deduce that∥∥∥ d
dt
u(t)

∥∥∥
Hp−1(S2)

+
∥∥∥ d
dt
w(t)

∥∥∥
Hp−1(S2)

≤ C(p, r,Kf ,Kg, T )
(∥∥u0∥∥Hp−1(S2)

+
∥∥w0

∥∥
Hp−1(S2)

)
. (42)
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