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ABSTRACT Permutation flow shop scheduling problem (PFSP) is an NP-complete problem 

with a wide range of applications in many real-world applications. Social spider optimization 

(SSO) is a swarm intelligence algorithm proposed for continuous optimization problems. 

Recently, SSO has received increased interest in the field of combinatorial optimization as 

well. For this reason, in this paper, SSO algorithm is proposed to solve the PFSP with make 

span minimization. The proposed algorithm has been tested on 141 well-known benchmark 

instances and compared against six other conventional and best-so-far metaheuristics. The 

obtained results show that SSO outperforms some of the compared works although they are 

hybrid methods. 

 

KEYWORDS: Metaheuristic, Optimization, Flow Shop Scheduling, Social Spider, Swarm 

Intelligence.  

 

1. INTRODUCTION 

Flow shop is a renowned manufacturing layout in which a set of jobs should be processed, in the 

same order, on a set of machines. The flow shop scheduling problem considers the sequence of the 

jobs over the machines with respect to a certain performance measure, such as makespan, maximum 

lateness, or total weighted completion time. If each machine should process the jobs in the same 

order, the problem is called as permutation flow shop scheduling problem (PFSP) [1].  PFSP is an NP-

complete problem that has several real-life application fields, such as computing designs, production, 

information processing, communications, and transportation [2].  

Due to its complexity and practical relevance, PFSP has been addressed by a considerable number 

of metaheuristic algorithms. These algorithms include discrete jaya algorithm [3], genetic-shuffled 

frog-leaping [4], Iterative beam search [5], evolutionary algorithm [6], hybrid backtracking search [2], 

shuffled complex evolution [7], genetic algorithm [8-10] bacterial foraging optimization [11], bat 

algorithm (BA) [12], rhinoceros search [13], biogeography-based optimization [14], differential 

evolution [15] [16], harmony search [17], cuckoo search [18], scatter search [19], iterated greedy [20],  

monkey search [21], and ant colony optimization (ACO) [22]. 

Social spider optimization (SSO) is a new swarm intelligence algorithm that has been proposed for 

continuous optimization problems [23]. However, recently, there has been an increased interest in 

applying it for solving combinatorial problems. Works such as [24-28] have shown it as a promising 

area of research for combinatorial problems.  
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In this paper, SSO is proposed for the PFSP with makespan minimization. The aim is to examine 

the effectiveness of SSO on PFSP as it has been widely used as a benchmark problem to validate the 

effectiveness of many optimization algorithms. To the best of our knowledge, there is no published 

work to address the PFSP by using this algorithm. The remainder of this paper is structured as 

follows. The problem definition is given in the next section. Section 3 describes the proposed 

algorithm. The computational results are reported in Section 4. The conclusion and future works are 

presented in Section 5.  

2. PROBLEM DEFINITION 

Suppose that n jobs 1{ }n

i iJ =  need to be sequentially processed on m machines 1{ }m

k kM = . Each job iJ  

is composed of m operations ( ,  ,  . . . , )i1 i2 imO O O . All jobs should have the same processing order on 

each machine. ikO  represents the operation of  job iJ  on machine kM  which needs using kM  solely 

for a specified continued time called 
ikP ( pre-emption is not allowed). Let 1 2{ ,  ,  ... , }n   =  be a 

permutation of the jobs in which i  denotes the index of the job placed at the ith position of π. Then, 

the completion time of each job ( , )iC k , 1,...,i n=  can be calculated by the following set of recursive 

formulas [29]. 

11 1( ,1)C p = ,                                       (1) 

1 1( ,1) ( ,1)
ii iC C p  −= + ,  2,..., ,i n=                                   (2) 

11 1( , ) ( , 1) kC k C k p = − + ,  2,...,m,k =                            (3) 

1( , ) max{ ( , ), ( , 1)}
ii i i kC k C k C k p  −= − + ,  2,..., ,i n=  2,...,m,k =                   (4) 

Then, the makespan is given by 

max ( ) ( , ).nC C m =                                                                     (5) 

Therefore, the problem turns into finding a permutation    in the set of all permutations  such that  

max ( ) ( , )     .nC C m                                          (6)   

3. SOCIAL SPIDER OPTIMIZATION  

3.1 BACKGROUND 

The social spider optimization (SSO) suggested by Cuevas et al. [30] is a recent swarm 

intelligence algorithm inspired by the collaborative behavior of social spider colony. This behavior 

can be summarized in the following way. A social spider colony is composed of two essential 

components: spiders and communal web. The spiders are grouped into two different categories: males 
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and females. Based on its gender, each spider collaborates in different tasks such as building and 

maintaining the communal web, prey capturing, and mating. Interactions among spiders are either 

direct or indirect. Direct interactions involve physical contact, such as mating. Indirect interactions 

take place by using the communal web as a medium of communication that transfers important 

information, such as the size of the trapped preys and characteristics of the neighboring members. 

This information, which is encoded as small vibrations, is a crucial portion for the mutual 

coordination among the spiders. The intensity of these vibrations is dependent on the locations and 

weights of the spiders that generate them [30].  

This collaborative behavior can be utilized for solving optimization problems by simulation as 

follows. SSO imagines the communal web as the search space. The location of a spider in the 

communal web symbolizes a solution of the problem in the search space. Each spider is given a value 

for its weight that depends on the fitness of the solution that is represented by it. Unlike most of the 

existent swarm algorithms, SSO models two different search agents (spiders): males for performing 

extensive exploitation and females for performing efficient exploration. This allows not only to 

imitate the collaborative behavior of the colony in a better realistic way, but also to utilize 

computational operators that can delay the premature convergence and somehow strike an 

exploration–exploitation balance [30]. The search process is controlled by three operators: the female 

cooperative operator that changes the locations of females, the male cooperative operator that changes 

the locations of males, and the mating operator that produces new spiders that are located on new 

locations in the search space [30]. Figure 1 describes the general framework of the proposed SSO. As 

it can be noticed, a supplementary step has been added to the classical SSO, in which the locations of 

the spiders that exist in the continuous space are converted to their equivalent locations in the 

combinatorial space. What follows is the mathematical modelling of the proposed SSO [30]. 
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Figure 1. The proposed SSO. 
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3.2 GENDER ASSIGNATION 

The first step in SSO is determining the number of female and male spiders. Since social spider 

colonies are highly female-biased ones, the number of females Nf  is selected at random in the range 

65–90% of the population. Let N be the total number of spiders, then Nf  is calculated using the 

following formula. 

𝑁𝑓 = 𝑓𝑙𝑜𝑜𝑟[(0.9 − rand ∙ 0.25) ∙ 𝑁]                                                                                                   (7) 

where rand is a random number in the range (0, 1), and the floor function is used to convert a real 

number into an integer number. The number of male spiders Nm is calculated as the complement 

between N and Nf using the following formula.  

𝑁𝑚 = 𝑁 −𝑁𝑓                                                      (8) 

For that reason, the entire population of spiders S is split into female spiders group 𝐹 = {𝑓1, 𝑓2, … 𝑓𝑁𝑓} 

and male spiders group 𝑀 = {𝑚1,𝑚2, …𝑚𝑁𝑚}, where 𝑆 = 𝐹 ∪𝑀(𝑆 = {𝑠1, 𝑠2, … 𝑠𝑁}), such that 𝑆 =

{𝑠1 = 𝑓1, 𝑠2 = 𝑓2, … , 𝑠𝑁𝑓 = 𝑓𝑁𝑓 , 𝑠𝑁𝑓+1 = 𝑚1, 𝑠𝑁𝑓+2 = 𝑚2, … , 𝑠𝑁 = 𝑚𝑁𝑚}. 

3.3 COLONY INITIALIZATION 

The locations of all spiders are initialized at random. Each spider location, fi or mi, is an n- 

dimensional vector that represents the optimization variables, where n is the number of jobs in PFSP. 

The n components of each vector are uniformly distributed between the predefined lower initial 

parameter bound  𝑝𝑗
𝑙𝑜𝑤and upper parameter bound 𝑝𝑗

ℎ𝑖𝑔ℎ
. These values are calculated using the 

following formulas. 

𝑓𝑖,𝑗
0    = 𝑝𝑗

𝑙𝑜𝑤 + 𝑟𝑎𝑛𝑑(0,1) ∙ (𝑝𝑗
ℎ𝑖𝑔ℎ

− 𝑝𝑗
𝑙𝑜𝑤)  𝑖 = 1,2,… ,𝑁𝑓;  𝑗 = 1,2, … , 𝑛                                        (9) 

𝑚𝑘,𝑗
0 = 𝑝𝑗

𝑙𝑜𝑤 + 𝑟𝑎𝑛𝑑(0,1) ∙ (𝑝𝑗
ℎ𝑖𝑔ℎ

− 𝑝𝑗
𝑙𝑜𝑤)  𝑘 = 1,2,… ,𝑁𝑚;  𝑗 = 1,2,… , 𝑛                                    (10) 

where j refers to the index of a variable, i refers to the index of a female individual, k refers to the 

index of a male individual, the value 0 indicates that the individuals belong to the initial population, 

and rand(0,1) is a function used to generate a random number in the range (0,1). Hence,  fi,j is the jth 

job of the ith female spider and mk,j is the jth job of the kth male spider. 

3.4 CONTINUOUS TO COMBINATORIAL TRANSFORMATION 

Since SSO works only on real numbers encoding, the random keys discretization method, which 

was initially proposed in [31], is utilized to transfer the locations of spiders from the continuous space 

to their corresponding locations in the combinatorial space. 
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3.5 WEIGHT CALCULATION AND ASSIGNATION 

In the biological metaphor, the size of a spider is the characteristic that estimates its ability to do 

its assigned duties well. In SSO, each individual i of the population S is assigned a weight wi that 

depends on the quality of the solution it symbolizes (irrespective of gender). The weight of each 

spider is calculated by using the following formula. 

𝑤𝑖 =
𝐶𝑚𝑎𝑥(𝑠𝑖) − 𝐶𝑚𝑎𝑥

𝑤𝑜𝑟𝑠𝑡

𝐶𝑚𝑎𝑥
𝑏𝑒𝑠𝑡 − 𝐶𝑚𝑎𝑥

𝑤𝑜𝑟𝑠𝑡                                                                                                                            (11) 

where 𝐶𝑚𝑎𝑥(𝑠𝑖) is the makespan value obtained by decoding the permutation of jobs that corresponds 

to the location of the spider si, and 𝐶𝑚𝑎𝑥
𝑏𝑒𝑠𝑡  and 𝐶𝑚𝑎𝑥

𝑤𝑜𝑟𝑠𝑡 are the makespan values of the best and worst 

individuals in the population, respectively. 

3.6 MODELING OF THE VIBRATIONS  

The vibrations observed by a spider depend on the distance and weight of the spiders that generate 

them. In SSO, the vibrations observed by spider i as a result of the information sent by another spider 

j are modeled according to the following formula. 

𝑉𝑖𝑏𝑖𝑗 = 𝑤𝑗 ∙ 𝑒
−𝑑𝑖,𝑗

2

                                                                                                                               (12) 

where di,j is the Euclidean distance between the two spiders. SSO considers that each spider i is 

supposed to be able to detect vibrations from three other spiders. These spiders are the closest one that 

has a higher weight Vibci, the best spider in the colony Vibbi, and the nearest female spider Vibfi. 

3.7 FEMALE COOPERATIVE OPERATOR 

Female spiders are commonly attracted to the other (male or female) spiders in accordance with 

their vibrations transmitted over the communal web. Strong vibrations are generated by either big 

spiders or other neighboring spiders lying nearby the spider that is perceiving them. The decision of 

attraction or repulsion is made according to an internal state which is affected by several factors such 

as reproduction cycle, curiosity, and other random phenomena. This behavior is modeled by the 

female cooperative operator which is defined as follows. 

𝑓𝑖
𝑘+1 =

{
 
 

 
 
𝑓𝑖
𝑘 + 𝛼 ∙ 𝑉𝑖𝑏𝑐𝑖 ∙ (𝑠𝑐 − 𝑓𝑖

𝑘) + 𝛽. 𝑉𝑖𝑏𝑏𝑖 ∙ (𝑠𝑏 − 𝑓𝑖
𝑘)

+𝛿 ∙ (rand −
1

2
)      𝑖𝑓 𝑟𝑚 < 𝑃𝐹

𝑓𝑖
𝑘 − 𝛼 ∙ 𝑉𝑖𝑏𝑐𝑖 ∙ (𝑠𝑐 − 𝑓𝑖

𝑘) − 𝛽. 𝑉𝑖𝑏𝑏𝑖 ∙ (𝑠𝑏 − 𝑓𝑖
𝑘)

+𝛿 ∙ (rand −
1

2
)      𝑖𝑓 𝑟𝑚 > 𝑃𝐹

                                                             (13) 

where α, β, δ, rm, and rand are random numbers in the range (0, 1), k represents the iteration counter, 

PF represents the threshold value used for determining whether an attraction or repulsion movement 

is produced, sc is the closest spider to spider i that has a higher weight, and sb is the best spider in the 

population. 
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3.8 MALE COOPERATIVE OPERATOR 

Male spiders consider themselves as a group of alpha males which dominate the colony resources. 

Hence, the males are divided into two sets: dominant and non-dominant males. Dominant males 

usually have superior fitness attributes to non-dominant males. In addition, dominant males are 

enticed to the nearest female spiders in the communal web. On the hand, non-dominant males tend to 

localize on the center of the set of males as a strategy to benefit from the resources left over from the 

dominant males. For implementing such phenomena, the set of males 𝑀 = {𝑚1,𝑚2, …𝑚𝑁𝑚} is sorted 

according to their weight values in increasing order. The male spider that is located in the middle, 

whose weight value is 𝑤𝑁𝑓+𝑚, is treated as the median male spider. The male spiders whose weight 

values are bigger the median value are treated as members of the set of dominant males D, and the 

rest of males are treated as members of the non-dominant set ND. In accordance to this, the variation 

of locations for the male spiders is modeled by the following formula. 

𝑚𝑖
𝑘+1 =

{
  
 

  
 𝑚𝑖

𝑘 + 𝛼 ∙ 𝑉𝑖𝑏𝑓𝑖 ∙ (𝑠𝑓 −𝑚𝑖
𝑘) + 𝛿 ∙ (rand −

1

2
)

  𝑖𝑓 𝑤𝑁𝑓+𝑖 > 𝑤𝑁𝑓+𝑚

𝑚𝑖
𝑘 + 𝛼 ∙ (

∑ 𝑚ℎ
𝑘∙𝑤𝑁𝑓+ℎ

𝑁𝑚
ℎ=1

∑ 𝑤𝑁𝑓+ℎ
𝑁𝑚
ℎ=1

−𝑚𝑖
𝑘)

 𝑖𝑓 𝑤𝑁𝑓+𝑖 ≤ 𝑤𝑁𝑓+𝑚

                                                                   (14) 

where sf is the nearest female spider to the male i, and ∑ 𝑚ℎ
𝑘 ∙ 𝑤𝑁𝑓+ℎ

𝑁𝑚
ℎ=1 ∑ 𝑤𝑁𝑓+ℎ

𝑁𝑚
ℎ=1⁄  is the weighted 

mean of the set of male spiders M. 

3.9 MATING OPERATOR 

Mating is performed by dominant males and females. A dominant male spider mg (mg ∈ D) can 

mate with a set of female spiders Eg if they exist within a specific radius r (range of mating). This 

radius, which depends on the size of the search space, is calculated by the following formula. 

𝑟 =
∑ (𝑝𝑗

ℎ𝑖𝑔ℎ
−𝑝𝑗

𝑙𝑜𝑤)𝑛
𝑗=1

2∙𝑛
                                                                                                                             (15) 

If Eg = ∅, the mating process is revoked. Otherwise, mating occurs and a new brood snew is generated 

by taking in consideration all elements of the set Tg which is the union mg ∪ Eg. During the mating 

process, the weight of each element of the set Tg controls the probability of its impact on the new 

brood. The members with higher weight values have higher probabilities to impact the new spider 

than those with lighter weight values. The impact probability Psi of each member is calculated by the 

roulette wheel method, which is defined as follows. 

𝑃𝑠𝑖 =
𝑤𝑖

∑ 𝑤𝑗𝑗∈𝑇𝑔
                                                                                                                                      (16) 

where i ∈ Tg. When a new spider is born, it is immediately compared to the spider holding the worst 
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weight of the whole colony. If the new spider is superior to the worst spider, it replaces it. Otherwise, 

the worst spider is kept and the new spider is neglected. 

4. COMPUTATIONAL RESULTS 

SSO has been implemented in C++. The tests have been run on a personal computer with 3.4 GHz 

CPU and 8 GB RAM. Two well-known benchmark sets were used for the evaluation. The first set is 

Reeves’s set [32]. This set is composed of 21 instances that are divided into 7 equal subsets of 

different sizes. These sizes range from 20 jobs and 5 machines up to 75 jobs and 20 machines. The 

second set is Taillard’s set [33]. This set is composed of 120 instances that are divided into 12 equal 

subsets of different sizes. These sizes range from 20 jobs and 5 machines up to 500 jobs and 20 

machines. In order to tune the parameters, preliminary experiments have been done on 19 instances 

selected randomly from the two benchmark sets (one of each subset). Consequently, the parameters 

have been set as follows: N=100, PF=0.7, α, β, δ, and rm are as assigned random values between zero 

and one, and the maximum number of iterations is 10000. 

SSO was compared with conventional and best-so-far metaheuristics. The metaheuristics that were 

compared using Reeves’s set are chaotic local search based bacterial foraging algorithm (CLS-BFO) 

[11], shuffled complex evolution algorithm with opposition-based learning (SCE-OBL) [7], and 

Genetic algorithm integrated with artificial chromosomes (ACGA) [34]. The metaheuristics that were 

compared using Taillard’s set are memetic algorithm with novel semi-constructive evolution operators 

(MASC) [8] which is one of the best-so-far approaches for the problem, hybrid whale optimization 

algorithm based on local search strategy (HWA) [35], and self-guided differential evolution with 

neighborhood search (NS-SGDE) [16]. SSO was run 10 independent times and the best solution (BS) 

among them was considered for the comparison. Table 1 presents the results on Reeves’s set. It lists 

instance name, instance size (number of jobs * number of machines), best known solution (BKS), BS 

of each algorithm. From Table 1, it can be seen that SSO is able to obtain better solutions than the 

others on most of the instances. However, to make a precise comparison, the relative error of BS for 

each instance (PE), and the average of PE for the whole set of instances (APE) were calculated for 

each algorithm as follows. 

𝑃𝐸 = 100 × (
𝐵𝑆−𝐵𝐾𝑆

𝐵𝐾𝑆
)                                                                                                                       (17) 

𝐴𝑃𝐸 = (∑ (
𝐵𝑆𝑖−𝐵𝐾𝑆𝑖

𝐵𝐾𝑆𝑖
) × 10021

𝑖=1 ) /21                                                                                                (18) 

Table 2 presents the results. It lists APE values for SSO and the other algorithms (OA), and the 

percentage improvement (PI) achieved by SSO in APE values with respect to each of the other 

algorithms, which was calculated as follows. 

𝑃𝐼 = 100 × (𝑂𝐴𝐴𝑃𝐸 − 𝑆𝑆𝑂𝐴𝑃𝐸)/𝑂𝐴𝐴𝑃𝐸                                                                                           (19) 
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From Table 2, it can be seen that SSO has the lowest APE value and produces relative 

improvements to all the other algorithms. This shows that SSO is an effective approach since the 

compared works are hybrid methods. To further verify the effectiveness of SSO, the one-way 

ANOVA test was applied on the PE values. Figure 2 shows the results. From Figure 2, it can be seen 

that SSO outperforms the compared algorithms, and the resulting p-value is 0,009 which implies that 

the algorithms are significantly statistically different with each other. 

Table 1. The computational results on Reeves’s set. 

Instance n*m BKS SSO SCE-OBL CLS-BFO ACGA

Rec1 20x5 1245 1247 1249 1249 1249
Rec3 20x5 1109 1109 1111 1111 1109
Rec5 20x5 1242 1245 1245 1245 1245
Rec7 20x10 1566 1566 1584 1584 1566
Rec9 20x10 1537 1537 1545 1545 1537
Rec11 20x10 1431 1431 1431 1449 1431
Rec13 20x15 1930 1935 1963 1968 1935
Rec15 20x15 1950 1968 1993 1993 1950
Rec17 20x15 1902 1923 1944 1954 1911
Rec19 30x10 2093 2117 2156 2139 2099
Rec21 30x10 2017 2017 2064 2059 2046
Rec23 30x10 2011 2030 2067 2073 2021
Rec25 30x15 2513 2566 2584 2638 2545
Rec27 30x15 2373 2397 2445 2443 2396
Rec29 30x15 2287 2333 2364 2408 2304
Rec31 50x10 3045 3104 3179 3180 3105
Rec33 50x10 3114 3118 3154 3187 3140
Rec35 50x10 3277 3277 3281 3292 3277
Rec37 75x20 4890 5096 5327 5422 5193
Rec39 75x20 5043 5185 5391 5465 5276
Rec41 75x20 4910 5135 5334 5436 5208  

 

Table 2.  APE of SSO and the other works on Reeves’s set. 

Algorithm PI

OA (%) SSO (%) SSO (%)

CLS-BFO 2,675 1,123 58

SCE-OBL 3,255 1,123 65

ACGA 1,247 1,123 10

APE

 

 

Figure 2. Means and 95% confidence intervals on Reeves’s set. 
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Table 3. The computational results on ST1.

Instance n*m BKS SSO NS-SGDE HWA MASC

Ta001 20x5 1278 1282 1278 1278 1278
Ta002 20x5 1359 1359 1359 1359 1359
Ta003 20x5 1081 1088 1081 1081 1081
Ta004 20x5 1293 1300 1293 1293 1293
Ta005 20x5 1235 1237 1235 1235 1235
Ta006 20x5 1195 1195 1195 1195 1195
Ta007 20x5 1239 1243 1239 1239 1239
Ta008 20x5 1206 1206 1206 1206 1206
Ta009 20x5 1230 1231 1230 1230 1230
Ta010 20x5 1108 1108 1108 1108 1108

Ta011 20x10 1582 1598 1582 1582 1582
Ta012 20x10 1659 1682 1659 1659 1659
Ta013 20x10 1496 1513 1496 1496 1496
Ta014 20x10 1377 1395 1377 1377 1377
Ta015 20x10 1419 1440 1419 1419 1419
Ta016 20x10 1397 1404 1397 1397 1397
Ta017 20x10 1484 1493 1484 1484 1484
Ta018 20x10 1538 1555 1538 1538 1538
Ta019 20x10 1593 1606 1593 1593 1593
Ta020 20x10 1591 1611 1591 1591 1591

Ta021 20x20 2297 2329 2297 2297 2297
Ta022 20x20 2099 2125 2099 2099 2099
Ta023 20x20 2326 2350 2326 2326 2326
Ta024 20x20 2223 2244 2223 2223 2223
Ta025 20x20 2291 2309 2291 2291 2291
Ta026 20x20 2226 2244 2228 2226 2226
Ta027 20x20 2273 2296 2273 2273 2273
Ta028 20x20 2200 2229 2200 2200 2200
Ta029 20x20 2237 2252 2237 2237 2237
Ta030 20x20 2178 2195 2178 2178 2178

Ta031 50x5 2724 2724 2724 2724 2724
Ta032 50x5 2834 2839 2834 2834 2834
Ta033 50x5 2621 2621 2621 2621 2621
Ta034 50x5 2751 2753 2751 2751 2751
Ta035 50x5 2863 2863 2863 2863 2863
Ta036 50x5 2829 2832 2829 2829 2829
Ta037 50x5 2725 2725 2725 2725 2725
Ta038 50x5 2683 2703 2683 2683 2683
Ta039 50x5 2552 2561 2552 2552 2552
Ta040 50x5 2782 2782 2782 2782 2782

Ta041 50x10 2991 3053 3021 3021 3024
Ta042 50x10 2867 2938 2896 2891 2882
Ta043 50x10 2839 2890 2888 2869 2852
Ta044 50x10 3063 3071 3075 3063 3063
Ta045 50x10 2976 3024 3027 3001 2982
Ta046 50x10 3006 3050 3029 3006 3006
Ta047 50x10 3093 3133 3124 3126 3099
Ta048 50x10 3037 3046 3055 3046 3038
Ta049 50x10 2897 2927 2928 2897 2902
Ta050 50x10 3065 3131 3092 3078 3077

Ta051 50x20 3850 3974 3916 3876 3889
Ta052 50x20 3704 3808 3744 3715 3720
Ta053 50x20 3640 3772 3702 3653 3667
Ta054 50x20 3720 3849 3793 3755 3754
Ta055 50x20 3610 3746 3677 3649 3644
Ta056 50x20 3681 3795 3743 3703 3708
Ta057 50x20 3704 3835 3784 3723 3754
Ta058 50x20 3691 3829 3757 3704 3711
Ta059 50x20 3743 3870 3795 3763 3772
Ta060 50x20 3756 3875 - 3767 3778  
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Table 4. The computational results on ST2. 

Instance n*m BKS SSO NS-SGDE HWA MASC 

Ta061 100x5 5493 5493 5493 5493 5493
Ta062 100x5 5268 5284 5283 5268 5268
Ta063 100x5 5171 5193 5182 5175 5175
Ta064 100x5 5014 5023 5018 5018 5014
Ta065 100x5 5250 5250 5253 5250 5250
Ta066 100x5 5135 5137 5135 5135 5135
Ta067 100x5 5246 5259 5246 5246 5246
Ta068 100x5 5094 5106 5094 5094 5094
Ta069 100x5 5448 5467 5448 5448 5448
Ta070 100x5 5322 5338 5322 5324 5322

Ta071 100x10 5770 5787 5784 5776 5770
Ta072 100x10 5349 5379 5362 5362 5349
Ta073 100x10 5676 5691 5691 5691 5677
Ta074 100x10 5781 5849 5826 5825 5781
Ta075 100x10 5467 5513 5503 5491 5467
Ta076 100x10 5303 5328 5308 5308 5304
Ta077 100x10 5595 5662 5610 5608 5596
Ta078 100x10 5617 5695 5630 5630 5625
Ta079 100x10 5871 5916 5882 5891 5875
Ta080 100x10 5845 5903 5881 5848 5845
Ta081 100x20 6202 6377 6360 6280 6257
Ta082 100x20 6183 6360 6278 6278 6223
Ta083 100x20 6271 6450 6405 6368 6325
Ta084 100x20 6269 6393 6394 6350 6303
Ta085 100x20 6314 6477 6452 6377 6380
Ta086 100x20 6364 6544 6461 6430 6431
Ta087 100x20 6268 6439 6385 6354 6306
Ta088 100x20 6401 6603 6496 6515 6472
Ta089 100x20 6275 6451 6428 6396 6330
Ta090 100x20 6434 6625 6538 6527 6456
Ta091 200x10 10862 10947 10887 10885 10872
Ta092 200x10 10480 10542 10555 10512 10487
Ta093 200x10 10922 11005 10980 10965 10922
Ta094 200x10 10889 10939 10917 10889 10889
Ta095 200x10 10524 10537 10537 10524 10526
Ta096 200x10 10326 10377 10357 10375 10330
Ta097 200x10 10854 10908 10929 10868 10868
Ta098 200x10 10730 10798 10798 10751 10731
Ta099 200x10 10438 10478 10465 10465 10454
Ta100 200x10 10675 10758 10727 10727 10680

Ta101 200x20 11195 11418 11468 11335 11280
Ta102 200x20 11203 11488 11487 11517 11272
Ta103 200x20 11281 11559 11549 11481 11378
Ta104 200x20 11275 11465 11553 11405 11376
Ta105 200x20 11259 11444 11438 11374 11310
Ta106 200x20 11176 11421 11445 11335 11265
Ta107 200x20 11360 11593 11596 11438 11430
Ta108 200x20 11334 11597 11592 11530 11398
Ta109 200x20 11192 11457 11485 11439 11266
Ta110 200x20 11288 11567 11607 11499 11355

Ta111 500x20 26059 26493 26420 26388 26187
Ta112 500x20 26520 26953 26942 26714 26779
Ta113 500x20 26371 26787 26729 26648 26496
Ta114 500x20 26456 26817 26751 26656 26618
Ta115 500x20 26334 26698 26643 26579 26500
Ta116 500x20 26477 26874 26832 26666 26647
Ta117 500x20 26389 26691 26609 26594 26529
Ta118 500x20 26560 26913 26925 26711 26772
Ta119 500x20 26005 26425 26326 26228 26223
Ta120 500x20 26457 26905 26766 26695 26617  
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For the clarity of presentation, the benchmark set of Taillard was divided into two subsets. The 

first subset is named ST1 and contains the instances where the number of operations <=100. The 

second subset is named ST2 and contains the instances where the number of operations >100. Table 3 

and Table 4 show BS obtained by the compared works on these two subsets. 

 From Table 3 and Table 4, it can be seen that the performance of SSO deteriorates on this set. 

However, in order to provide a more thorough comparison, the one-way ANOVA test was applied on 

the PE values over the whole set of instances. Figure 3 shows the results. From Figure 3, it can be 

noticed that MASC performs better than all the compared works. This is because MASC combines the 

complementary strengths of population-based (global search), constructive methods, and single-point 

(local search) methods.  The four works can be sorted according to the resulting APE values from the 

best to the worst as follows: MAC 0,278, HWA 0,460, NS-SGDE 0,750, SSO 1,268. It can be also 

noticed that the resulting p-value is 3,83E-22 which indicates that there is a statistically significant 

difference between the compared algorithms.  

The deterioration of SSO performance on this set can be due to two reasons. First, Taillard’s set is 

more difficult to solve than Reeves’s set. Second, SSO didn't use any problem-specific operators or 

external single-point mechanisms. Therefore, it cannot intensify the search in the promising areas of 

the search space, i.e. the neighborhood of good solutions.  

 

Figure 3. Means and 95% confidence intervals on Taillard’s set. 

 

5. CONCLUSION AND FUTURE WORKS 

In this work, SSO algorithm is proposed to solve the permutation flow shop problem with 

makespan minimization. The aim is to investigate the effectiveness of SSO in solving this 

combinatorial problem. The well-known benchmark sets of Reeves and Taillard were used for the 

evaluation. Six other conventional and best-so-far algorithms were used for the comparison. The 

computational results show that SSO outperforms three of them although they are hybrid methods. 

However, the results also show that it fails to compete with the best-so-far algorithms. This is due to 

the fact that the best-so-far approaches are memetic algorithms that combine the advantages of 
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population-based and single-point algorithms. Therefore, it is expected that SSO will perform very 

well if it is hybridized with a single-point algorithm, and this hybridization could be one of the future 

works of this research. 
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