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ABSTRACT 

 

The condition monitoring of bearings has gained great importance in recent years to increase reliability and 

reduce production loss. Many monitoring techniques have been proposed based on different intelligent 

techniques and feature extraction schemes. In this study, a combined decision algorithm has been developed 

based on feature set that composed of statistical variables and linear prediction coefficients of time domain 
vibration signals. Artificial intelligent techniques, namely artificial neural networks, adaptive neuro-fuzzy 

inference systems and support vector machine were employed together to develop a decision making 

algorithm that classify the type and severity of bearing faults. Although each method can be used alone for 
data classification in the developed models with a limited performance, the proposed decision algorithm 

combines decision of each method with a synergy according to the majority of the decisions. Based on the 

experimental results, the proposed scheme outperformed the three methods when used alone.  
Keywords: Condition monitoring, bearing fault detection, ANN, ANFIS, SVM, combined decision algorithm. 

 

 

1. INTRODUCTION 

 

Machine automation and condition monitoring of the rotating machines have become crucial 

as the technologies of modern manufacturing industry have been rapidly developed.  Vast 

majority of rotating machines such as motor systems absolutely need rolling element bearings that 

provide an interface between the stationary and moving parts of the mechanical equipment for 

proper operation of rotating parts. Because of their functions, rolling element bearings have to 

bear not only high loads in the system but also harsh operating conditions in spite of their delicate 

structures [1]. Thus, severe operating conditions may frequently cause defects on the parts of 

bearing. If these defects are developed, they lead up to fault or malfunctions of the bearing 

mechanism that deteriorate the machine running condition; and eventually the roller bearing with 

faults may cause fatal break down of the rotating machines and even catastrophic personal 

casualties [2]. Subsequently, these phenomena may result in catastrophic accidents and 

unexpected downtime of all processes in manufacturing companies employing critical rotating 

machinery such as large motors and pumps in power generation plants [3]. On the other hand, 

although the prices of bearing elements are low, economical cost due to bearing failures are huge 

[4]. It was reported that, motor failures are often linked to bearing failure [5]. Therefore, condition 
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monitoring of the bearing and other rotating parts is a real problem in modern production plants. 

There are extensive amount of research related to the procedures of condition monitoring based 

on fault detection and diagnosis that are an important part of preventive maintenance in industrial 

applications [6].   

Over the last few decades, different methods of fault diagnosis have been developed for 

rotating machinery systems based on vibration analysis to classify the extracted feature 

parameters [7–11]. Vibration occurs as an output of the impacts between mechanical components. 

The faults or defects at the subcomponents of bearings such as inner race and outer race generate 

impulses as the roller elements, balls, impact the defects during the operation of bearing. Not only 

inner race and outer race but also the balls may have cracks or spalls as bearing faults. The 

amplitude and frequency spectrum of the vibration signals depends on the size and location of the 

defects on the bearing local parts [12,13].  

All the methods based on vibration signals can be aggregated in three classes: time domain 

analysis, frequency domain analysis, and time–frequency domain analysis. Time domain analysis 

is at first the simplest and cheapest way for diagnosing based on feature extraction using 

statistical parameters such as mean, root-mean square (rms), median, standard deviation, 

skewness, kurtosis, etc [5]. It was reported that statistical investigation of time domain vibration 

signals displays different characteristics features for healthy and defected bearings [3]. Shao and 

Nezu examined the relations fault/defect level, the kurtosis value and the learning ratio of 

adaptive noise cancellation for faulty bearing signals [14]. Williams et al. used multiple sensors 

for bearing condition monitoring in the run-to-failure test [15]. They showed that statistical 

parameters such as rms value, kurtosis and crest factor calculated from the time series data 

collected by multiple sensors increase as the size of the bearing faults grows.  

Diagnosis requires to locate and to determine exact causes of the bearing faults.  Using the 

extracted features based on vibration analysis, artificial intelligent techniques such as Artificial 

Neural Networks (ANN) [2,16,17], Fuzzy Logic [9], Genetic Algorithms [18], Support Vector 

Machines [19] have been developed for condition monitoring of rotating machines, and have been 

successfully applied to classification to bearing fault classification.  These techniques have largely 

improved the reliability and automation of fault diagnosis systems for bearings. In general, these 

data-driven soft computing techniques make possible the development of diagnostic models if 

they are supported with suitable feature extraction scheme [20]. To apply intelligent techniques 

for classification problems, they need to be trained from empirical data to build models; then they 

can be tested for unseen data that are not used in training procedure. Among them, the ANNs 

have been widely used to identify faulty and normal machine conditions. By combining the 

benefits of learning capability of neural networks and human-like reasoning style of fuzzy logic, 

Lei et al. used Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and they gave the most 

superior features as input to the network [21]. Thus they showed that the importance of selecting 

feature set so that the classifier can improve the classification success rate and generalization 

performance.  

Yet Support Vector Machine (SVM) is one the most successful and widely used intelligent 

technique in recent years as considering the classification performances reported by the 

researchers [22]. Yang et al. applied SVM for fault classification based on time domain signals 

with fractal dimension method in order to increase classification performance [23]. Hu et al. 

proposed an SVM ensemble approach that can successfully diagnosis much higher than single 

SVMs [24]. They reported the success rate of SVMs ensemble is higher than 90% even if the 

percentage of noise exceeds 35%. This means that the SVMs ensemble has more capacity of 

reliability and robustness, and shows an excellent generalization performance. 

In this study, a combined decision algorithm was developed based on the time vibration 

signals using intelligent methods such as ANN, ANFIS and SVM for bearing fault detection. The 

inputs to the methods are the statistical values and linear prediction coefficients of the signals in 

the sense of the feature extraction procedure. Each of the intelligent methods evaluates the signals 
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to determine both the type of fault and the severity or level of fault of the roller element bearing.  

It was observed that if three intelligent techniques are used together, the decision algorithm uses 

the synergy of all and shows better performance for condition monitoring. 

 

2. EXPERIMENTAL SETUP (VIBRATION DATA) 

 

The vibration data used in this study have been obtained (downloaded) from the web site so-

called Bearing Data Center supported by the Case Western Reserve University (CWRU).  This 

data set has been analyzed by many researchers and has become a standard data set of the roller 

bearings as a benchmark for various developed techniques [25]. The data was acquired from 

rolling element bearings under different operating loads and bearing conditions. As can be seen 

from Fig. 1, the ball bearings are installed in an induction motor driven by a mechanical system.  

The test rig consists of a 2 hp, three-phase induction motor, a dynamometer and a torque 

sensor. Different torque load levels are obtained by controlling the dynamometer. An 

accelerometer is mounted on the motor housing at the drive end of the motor to acquire the 

vibration signals from the bearing. The data was collected by a 16 channel DAT recorder with the 

12 K/s sample rate per channel. 

 

 
 

Figure 1. Experimental setup. 

 

The bearings used in this work are type of SKF 6205, deep groove ball bearings. Artificial 

defects with single point faults were introduced into the drive-end bearing of the motor using an 

electro erosion process so-called ‘electro-discharge machining (EDM)’. The fault diameters are 

namely 0.1778, 0.3556 or 0.5334 mm which correspond to incipient, moderate and heavy faults. 

EDM is a machining method for processing hard metals or mechanical components which could 

not be penetrated with conventional methods. Each bearing was tested under four different loads 

(0, 1, 2 and 3 hp). For each kind of working condition, signals were measured under the rotating 

speeds of 1730, 1750, 1772 and 1797 rpms, respectively. The bearing data set was obtained from 

the experimental system under four different operating conditions: normal condition, inner race 

fault condition, ball fault condition and outer race fault condition. Fig. 2 shows sample vibration 

signals for normal and faulty bearings in time axis. 
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Figure 2. Sample vibration signals for normal and faulty bearings. 

 

3. FEATURE EXTRACTION 

 

During the operation of a rotating machine that consist of many components such as gears, 

bearing and shafts, a valuable data can be acquired via sensors for developing condition 

monitoring techniques. But the data that contains useful information about the machine and 

component conditions may consist of a large number of samples like vibration signals used in this 

study. Therefore, the acquired data in the form of raw signals are not appropriate to be directly 

instructed as inputs to the intelligent techniques for diagnostic operation. To process the data and 

get rid of the ‘curse of dimensionality’, feature extraction is an essential step for abbreviation and 

consequently usage of the raw data. On the other hand, a feature set with appropriate number and 

relevant elements that represent the collected data must be given as input into the intelligent 

techniques without both increasing computer computation burden and reducing classification 

accuracy. 

There have been many feature extraction techniques in the literature developed for the bearing 

fault diagnosing [26]. While some of them require complicated signal processing procedure, a 

relatively simple approach based on calculating the statistical parameters and linear prediction 

coefficients of vibration signals in time domain is employed in this study. 9 statistical parameters 

were extracted by taking the mean, median, maximum, minimum, root mean square, standard 

deviation, skewness, kurtosis and crest factor of the raw signals. Besides, the first 10 linear 

predictive coefficients are used in the feature set. Linear prediction coefficients (lpc) are used to 

encode the vibration signals similar to the applications in filter design and speech recognition.  In 

this study, the last 10 samples are used to predict the current value of the vibration signals, 
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therefore, 10 linear predictive coefficients (lpc) are employed in the feature set. Thus, total 

number of elements in the feature set was determined as 19. 

In the data set obtained from the web site of Bearing Data Center, the raw vibration data were 

acquired with 12 kHz sampling frequency. Then, the features that represent the vibration signals 

are extracted for determining the inputs of the intelligent methods, ANN, ANFIS and SVM. All 

methods were employed using the same features as input parameters in the present work.  

 

4. A COMBINED DECISION ALGORITHM  

 

The fault diagnosing and classification schemes for bearing consist of data acquisition from 

the process, feature extraction from the acquired data, and diagnostic algorithm for decision 

making. Since the acquired and feature extracted data contains information not only about the 

type of mechanical fault such as inner race (IR), ball element (BL) and outer race (OR), but the 

fault severity can also be assessed using a proper decision algorithm. 

Various intelligent techniques have been used for constructing decision algorithms and they 

can successfully perform the diagnostic of the bearing faults to some extent. Thus, a combined 

decision making algorithm was proposed based on ANN, ANFIS and SVM to obtain a better 

diagnosing performance. The basic idea is to exploit the ability of each method individually, and 

then to combine the decisions of separate methods for more accurate results. The developed 

combined decision making algorithm has two stages, as illustrated in Fig. 3 and Fig.4. At the first 

stage, a decision of bearing fault type is made whether the bearing is normal or has an IR, OR or 

BL damage. When the type of damage is determined at this stage, the algorithm proceeds to the 

second stage to determine the severity of the fault, namely incipient, moderate and heavy fault. 

Obviously, the decision making process is ceased at the first stage for a normal bearing.   
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Figure 3. The first stage of the combined decision making algorithm. 

 

ANN, ANFIS and SVM methods were separately used at each step of the decision algorithm. 

The methods inside the models at each stage were trained to output 0 or 1 for input features from 

the corresponding data set. For instance, the intelligent methods in the normal model used in the 

first stage were trained to generate 1 for normal bearings and 0 for others. The decisions of these 

methods with a feature set were combined based on the logical majority gate principle shown in 

Figs. 3 and 4. The majority gate principle means that it generates 1(0) as an output if the majority 

of the inputs are logic 1(0), otherwise the output is logic 0(1). In other words, if two out of three 

methods lead the same result for a given feature set input, then the decision is determined 

according to those outputs.  
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Figure 4. The second stage of the combined decision making algorithm (one per each fault type). 

 

The second stage of the combined decision algorithm consists of separate incipient, moderate 

and heavy fault models for all three fault types (IR, BL and OR). The faults severity models were 

trained using only the data for the corresponding fault type. For instance, the incipient fault model 

for the IR fault case was trained using the IR faulty data only. For training the model, the IR 

faulty data was divided into two groups: incipient vs. not incipient. The model was trained to 

output 1 for the IR incipient fault and 0 for the IR fault with other severity levels. The remaining 

models in the second stage were trained in a similar fashion.  

The final decision of the model is again made by logical majority gate operation, i.e., if the 

majority of three intelligent methods inside the model generate the same result, then final decision 

of the fault model, say incipient fault model, is reached. At the last step, all the decisions from 

models are unified to determine the severity of fault. On the contrary to logical majority gate 

principle, only one model out of three must generate 1 and the others must generate 0 for an 

accurate final decision about the fault severity. If more than one fault type models generate 1, 

then it corresponds to a ‘conflicting decision’ that shows failure of the proposed algorithm. 
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When utilizing the intelligent methods in the algorithm, a circumstance must be pointed out 

that the ANN and the ANFIS methods were trained to generate 0 or 1. But these methods can 

generate any arbitrary values at the outputs. Since the models were forced to generate 0 or 1 for 

decision making, a threshold value was used to separate the two states of the method. The outputs 

of the ANN and ANFIS methods below the threshold value were considered to be 0, while the 

outputs above the threshold were considered to be 1.  

 

5. EXPERIMENTAL RESULTS 

 

In order to assess the proposed combined decision making algorithm, we applied the data [27] 

to predict the type and severity of the faults for rolling element bearings. The detailed description 

of the data set is shown in Table 1. 

 

Table 1. Experimental conditions 
 

Data index Fault type Fault level (mm) 

1-40 IR 0.1778 

41-80 IR 0.3556 

81-120 IR 0.5334 

121-160 BL 0.1778 

161-200 BL 0.3556 

201-240 BL 0.5334 

241-280 OR 0.1778 

281-320 OR 0.3556 

321-360 OR 0.5334 

361-500 Normal - 

 

Before applying the proposed algorithm, a data set was prepared from Case data [27]. The 

data set comprises the vibration signals acquired for the roller element bearing under four 

different operating conditions (normal condition, inner race fault, ball fault and outer race fault). 

The data was collected at 12,000 samples/second with different time durations. While all the data 

for faulty cases was collected for 10 seconds, the time duration of normal bearing data was 20 

seconds for unloaded case and 40 seconds for other motor loads (1, 2 and 3hp). In order to get a 

rich data set, we divide the data into 1 second windows. Then, the features of each signal window 

were extracted in order to avoid the difficulties of long data sets for intelligent methods. 9 

statistical parameters and 10 linear predictive coefficients were used to represent the data that is 

divided into one second parts. Finally, we obtained a feature set with dimension of 19 rows and 

500 columns where each column represents the features of one second of vibration signals.  

The proposed algorithm, a combined decision making algorithm, employs intelligent methods 

inside the models at two stages. In the first stage of the decision algorithm shown in Fig.3, four 

models (normal, IR, BL and OR) are developed that have ANN, ANFIS, SVM systems and a 

logical majority gate. These intelligent systems were trained for either 0 or 1using the 50 % of 

data for the corresponding case. For instance, 120 column of the feature set belongs to IR fault 

case. 50 % columns out of it (corresponding 60 columns) and 50 % of the rest (corresponding 190 

columns) were selected randomly to give as input for training process of the intelligent methods. 

The rest of the data in feature set was used to test the developed system in training. The decision 

of the model, say IR fault model, is determined after the logical majority gate operation.  

The test scores of each intelligent system developed for the fault type models are shown in 

Figs. 5-8, separately. In these figures, the blue circles show the actual state of the bearing and red 

crosses represent the predicted state of the bearing, whereas the green stars imply the modified 

prediction values after threshold. Because the ANN and ANFIS systems may generate any value 
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rather than 0 and 1 in test process, their outputs must be modified according to the threshold. In 

the experiments, a reasonable threshold value was chosen as 0.5. 

 

 
 

Figure 5. Test scores at the first stage of the combined decision algorithm for Normal model. 
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Figure 6. Test scores at the first stage of the combined decision algorithm for IR fault model. 

 

 
 

Figure 7. Test scores at the first stage of the combined decision algorithm for BL fault model. 
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Figure 8. Test scores at the first stage of the combined decision algorithm for OR fault model. 

 

To evaluate the performance of the developed models for classification accuracy with 

numerical values, true positives and true negatives are used. For a two-class prediction problem, 

i.e. binary classification, the outcomes are labeled either positive (1) or negative (0). There are 

four possible outcomes from a binary classifier.  If both the actual value and the prediction 

outcome are 1, then it is called a true positive (TP); however, if the actual value is 0 when the 

prediction outcome is 1, then it is said to be a false positive (FP). Conversely, a true negative 

(TN) has occurred when both the prediction outcome and the actual value are 0, and false 

negative (FN) is when the prediction outcome is 0 while the actual value is 1. The idea explained 

with four outcomes of a binary classification can be formulated in a 2×2 contingency table as 

illustrated in Table 2.  

 

Table 2. The contingency table for binary classification 
 

 Actual 

Prediction 1 0 

1 TP FP 

0 FN TN 

 

The detailed prediction percentages of each intelligent system for the first stage of the 

proposed algorithm are given in Table 3 using the TP and TN representations explained above. 

Again in this table, TP shows the prediction performance in percentage when the actual value and 

the model prediction outcome are 1, while TN shows the performance when both the actual value 

and prediction outcome values are 0. Recall that the IR, BL, OR and normal models were trained 
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with randomly selected features using half of the whole feature data set. During the test 

procedure, the rest of the data that is not used for the training process are given the intelligent 

methods inside the models. Therefore, the model may generate either 0 or 1 as prediction 

outcomes. 

 

Table 3. The prediction performance in percentage for the first stage of the combined decision 

algorithm 
 

 Methods TN TP Total 

IR Model 

ANN 99.47 100 99.60 

ANFIS 99.47 100 99.60 

SVM 97.89 100 98.40 

BL  Model 

ANN 96.84 91.67 95.60 

ANFIS 100 98.33 99.60 

SVM 97.89 98.33 98 

OR Model 

ANN 100 100 100 

ANFIS 98.94 100 99.20 

SVM 100 100 100 

Normal Model 

ANN 100 100 100 

ANFIS 100 100 100 

SVM 100 100 100 

 

In general, ANN presents the worst performance when compared the other intelligent 

methods. For IR and BL fault type models, ANFIS outperforms the SVM. On the other hand, 

SVM outperforms the ANFIS for the OR fault type and normal models. Because the intelligent 

methods have different performances for different fault type models, their outputs were combined 

using the logical majority gate operation. As explained in the previous section, majority gate 

generate logic 1 (0) output if at least two of the inputs are 1 (0). When we apply this operation, 

the proposed algorithm predicts the type of the fault with an accuracy of 100%. To show the 

utilization of this operation, the outputs the three methods for a selected data set are given in 

Table 4. ANN_IR, ANFIS_IR and SVM_IR refer to the decisions of the ANN, ANFIS and SVM 

methods for the IR fault model at the first stage, respectively. The similar representations were 

used for the BL and OR fault models. It can be seen from the table that the proposed algorithm 

makes a correct decision about the state of the bearing while the other individual methods make 

prediction errors. The prediction errors are pointed by bold numbers in the table. For instance, for 

the data with index 51, ANN_, ANFIS_ and SVM_IR models all output 1 signaling an IR fault. 

The three models for the BL fault case all generate 0 meaning there is not a BL fault in the 

bearing. For the same data, ANN_, ANFIS_ and SVM_OR models generate 0, 1, and 0, 

respectively. Although, the ANFIS model produced an incorrect decision, the majority gate 

outputs a 0 which eliminates the individual error made by the ANFIS model. As a result, the 

proposed algorithm accurately gives a final decision of IR fault for the data.  
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Table 4. The results of the first stage for determining the bearing fault types 
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1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 'IR' 'IR' 

51 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 'IR' 'IR' 

65 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 'IR' 'IR' 

72 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 'IR' 'IR' 

73 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 'IR' 'IR' 

75 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 'IR' 'IR' 

76 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 'IR' 'IR' 

86 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 'IR' 'IR' 

88 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 'IR' 'IR' 

89 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 'IR' 'IR' 

91 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 'IR' 'IR' 

164 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 'BL' 'BL' 

183 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 'BL' 'BL' 

193 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 'BL' 'BL' 

195 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 'BL' 'BL' 

208 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 'BL' 'BL' 

242 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 'OR' 'OR' 

325 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 'OR' 'OR' 

500 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 'Nor' 'Nor' 

 

When the fault type is predicted at the first stage of the algorithm, the severity of the fault is 

attempted to predict at the second stage as shown in Fig. 4. The test scores for the methods inside 

the models are illustrated in Figs. 9−11, and the prediction percentages of the scheme are 

summarized in Tables 5−7. Note that the figures represent the test scores for determining the fault 

level developed for IR fault case. The incipient, moderate and heavy fault models at the second 

stage are developed separately for each IR, BL and OR fault type. Note that only the data for 

corresponding fault type is feed to the models at this stage.  
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Figure 9. Test scores of Incipient model at the second stage developed for BL fault. 

 

 
 

Figure 10. Test scores of Moderate fault model at the second stage developed for BL fault. 
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Figure 11. Test scores of Heavy fault model at the second stage developed for BL fault. 

 

Similar to the first stage, each one of the intelligent methods predicts the severity of the fault 

at the models. Again, the majority of the decisions in one model, say incipient fault model, is the 

decision of the model. After generating own decision of each model, the final decision can be 

reached about the severity of fault. If more than one model generates 1, then it means that the 

models couldn’t predict properly. Tables 5−7 present the performance of the intelligent methods 

for the IR, BL and the OR fault case, respectively. The tables provide the TN, TP and the total 

prediction percentages. It can be observed from the tables that, performances for each intelligent 

method are different.  

 

Table 5. Test scores of intelligent methods for IR model 
 

IR Methods TN TP Total 

Incipient Fault Model 

ANN 100 100 100 

ANFIS 100 100 100 

SVM 100 100 100 

Moderate Fault Model 

ANN 100 85 95 

ANFIS 100 100 100 

SVM 100 100 100 

Heavy Fault Model 

ANN 100 100 100 

ANFIS 100 100 100 

SVM 100 100 100 
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Table 6. Test scores of intelligent methods for BL model 
 

BL Methods TN TP Total 

Incipient Fault Model 

ANN 97.5 100 98.33 

ANFIS 100 100 100 

SVM 100 100 100 

Moderate Fault Model 

ANN 100 80 93.33 

ANFIS 100 100 100 

SVM 100 100 100 

Heavy Fault Model 

ANN 90 100 93.33 

ANFIS 100 100 100 

SVM 100 100 100 

 

Table 7. Test scores of intelligent methods for OR model 
 

OR Methods TN TP Total 

Incipient Fault Model 

ANN 100 90 96.67 

ANFIS 100 100 100 

SVM 100 100 100 

Moderate Fault Model 

ANN 100 95 98.33 

ANFIS 100 100 100 

SVM 100 100 100 

Heavy Fault Model 

ANN 100 100 100 

ANFIS 100 100 100 

SVM 100 100 100 

 

When the decision of each method is combined based on majority gate operation, the fault 

severity of each feature set is predicted perfectly. As an example, Table 8 is composed of the 

outcomes of each model that was run for BL (Ball Fault) data set. This table presents the 

usefulness of the proposed algorithm using some of the prediction cases. At the 1st, 2nd and 13th 

lines, all the intelligent methods at each model predict the actual status of the fault severity 

accurately so that final decision of the algorithm coincides the actual states. At the other lines of 

the table, some methods do not predict the fault severity properly as happened in the 3rd line 

where ANN method at incipient fault model predicts the fault severity rather than incipient fault. 

The misclassifications (wrong predictions) were shown with bold number, but fortunately the 

other two methods predict properly, and two of the methods, i.e. majority of the methods, have 

correct prediction, the combined decision algorithm determines the actual fault severity without 

any misclassification. 
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Table 8. The results of the second stage for determining the fault level of BL model 
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1 2 1 1 1 1 0 0 0 0 0 0 0 0 Incip Incip 

2 4 1 1 1 1 0 0 0 0 0 0 0 0 Incip Incip 

3 8 0 1 1 1 0 0 0 0 0 0 0 0 Incip Incip 

4 44 0 0 0 0 0 1 1 1 0 0 0 0 Moder Moder 

5 48 0 0 0 0 0 1 1 1 0 0 0 0 Moder Moder 

6 49 0 0 0 0 0 1 1 1 0 0 0 0 Moder Moder 

7 54 1 0 0 0 1 1 1 1 0 0 0 0 Moder Moder 

8 58 0 0 0 0 0 1 1 1 0 0 0 0 Moder Moder 

9 65 1 0 0 0 1 1 1 1 0 0 0 0 Moder Moder 

10 66 0 0 0 0 0 1 1 1 0 0 0 0 Moder Moder 

11 82 0 0 0 0 0 0 0 0 0 1 1 1 Heavy Heavy 

12 87 1 0 0 0 0 0 0 0 0 1 1 1 Heavy Heavy 

13 116 0 0 0 0 0 0 0 0 1 1 1 1 Heavy Heavy 

 

Finally, Table 9 presents a summary for the overall performances of the proposed combined 

decision algorithm with two stages. Remember that the first stage determines the fault type and 

second stage is used to predict the severity of fault for the corresponding data.  According to the 

results presented at Table 9, it can be concluded that the proposed combined decision algorithm is 

an effective tool for detecting the type of a bearing fault and diagnosing its severity. On the other 

hand, ANFIS has perfect performance except the first stage that is used to determine the fault type 

of bearing. It can be concluded that ANFIS based decision algorithm outperforms the ANN and 

SVM. SVM also shows a satisfactory performance in this study. The prediction performances for 

ANN is the worst compared to other intelligent methods. Its performance can be modified by 

changing the network structure such as number of hidden layers and neurons. But it can 

sometimes predict the fault type more accurately than ANFIS at some cases as can be seen from 

the 2nd and 12th line at Table 4. In these cases, when the ANFIS method is not able to predict the 

fault type, ANN method has the correct answer. Therefore, a combined decision algorithm that 

uses the ability of each intelligent method is proposed in this paper, and the algorithm with two 

stages is an effective means for detecting and diagnosing bearing faults.   

 

Table 9. The overall performances of all models. 
 

 ANN ANFIS SVM Combined 

model 

First stage 96 99.2 97.2 100 

Fault IR 95 100 100 100 

Fault BL 98.33 100 100 100 

Fault OR 95 100 100 100 
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6. CONCLUSION 

 

There are many research studies considering CWRU bearing data set for fault classification 

techniques with different feature extraction schemes in the literature. Most of the researches 

employ intelligent techniques to obtain a better classification performance. ANFIS and SVM 

perform with higher accuracy in classification than the other methods including ANN, as was the 

case in this study. Besides, selection of features and/or feature extraction scheme is an important 

issue that affects the performance of the applied techniques. The feature sets are composed of 

either statistical characteristic in time domain or features extracted in frequency domain; or 

features extracted in both time and frequency domain. A combined decision algorithm is 

developed that employ three intelligent methods, namely ANN, ANFIS and SVM based on the 

comparatively easy and cheap feature set composed of nine statistical variables and 10 linear 

prediction coefficients of the time domain vibration signals. The final decision at each model in 

the algorithm is made according to the logical majority gate, i.e., if two out of three methods lead 

the same result for a given feature set input, then the decision is determined according to those 

outputs. Experimental results revealed a 100% success rate for the proposed algorithm whereas 

the ANN, ANFIS and SVM based methods were not as effective when they were used alone.  
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