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ABSTRACT

In this paper, we define the Cheeger-Gromoll metric in the cotangent bundle T*M", which is
completely determined by its actionon complete lifts of vector fields. Later, we obtain the
covariant and Lie derivatives applied to Cheeger-Gromoll metrics with respect to the complete
and vertical lifts of vector and kovector fields, respectively.

Keywords: Covarient derivative, lie derivative, Cheeger-Gromoll metric, complete lift, vertical
lift.

1. INTRODUCTION

Cheeger-Gromoll metric was defined by Cheeger and Gromoll in [2] and the explicit formula

for this metric was given by Musso and Tricerri in [12]. The Levi-Civita connection of ce g and

its Riemannian curvature tensor are calculated by Sekizawa in [17] and corrected by
Gudmundsson and Kappos in [9]. In [16] Salimov and Kazimova studied geodesics of the
Cheeger-Gromoll metric on the tangent bundle. The similar metric in theoritical physics has been
obtained by Tamm (Nobel Laureate in Physics for the year 1958, see [18]). The geometry of the
tangent bundle equipped with Cheeger-Gromoll metric is well known and intensively studied (see
for example [8, 9, 11, 15, 16]). In [1] Agca and Salimov investigate curvature properties and
geodesics on the cotangent bundle with respect to the Cheeger-Gromoll metric.

The tangent bundles of differentiable manifolds are very important in many areas of
mathematics and physics. Cotangent bundle is dual of the tangent bundle. Because of this duality,
some of the geometric results are similar to each other. The most significant difference between
them is construction of lifts (see [19] for more details). In this paper, we define the Cheeger-

Gromoll metric in the cotangent bundle T*M", which is completely determined by its action on
complete lifts of vector fields. Later, we obtain the covariant and Lie derivatives applied to
Cheeger-Gromoll metrics with respect to the complete and vertical lifts of vector and kovector
fields, respectively.
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Let (M", g) be N— dimensiona | Riemannian manifold T"M" be the cotangent bundle

of M" and 7 the natural projection T"M"™ —M". A system of local coordinates
U,x"),i=1,..,n in M" induces on T°M" a system of local coordinates

(z7'(U), X', x" = p;), i=n+i= n+1,...,2n, where X' = P, are the components
of the covector P in each cotangent space Tx*l\/l " xeU with respect to the natural coframe
{dx'}.i=1

We denote I (M") the set of all tensor fields of type (r,S) on M" and by
J(T"M") the corresponding set on the cotangent bundle T "M ". During this paper,

manifolds, tensor fields and connections are always supposed to be differentiable of class C”

The local expressions a vector and a covector (1-form) field X ES(l)(Mn) and
0

eI (M") ae X = XIF and @=c@dX' in U M", respectively. Then the
X

complete and horizontal lifts © X, X € Jp(T'M") of X € (M ") and the vertical

lift YweJ;(T*M") of weJ)(M") are given, with respect to the natural frame

{a i !_} by

ox'

X x'——thaxh (11)

‘ ox'
x“:x‘iiJerhrgxii_, (12)

OX i i

OX

0

=> 0 -—— (13)

i axi
where Fir} are the components of the Levi-Civita connection Vg on M" [13](see [19] for
more details).

Definition 1.1 A Cheeger-Gromoll metric ce g is defined on T"M" by the following three
equations [1, 13]

Co" X,"Y) =" (g(X,Y))=g(X,Y)er, (1.4)
“g(w"Y)=0, (15)
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“9(' 0 0)= —— (g (©.0)+3 (P (. p) w9

1+
forany X,Y € 5;(M") and,0 € I2(M "), where 1> =g~*(p, p)=g"p, p;

Since any tensor field of type (0,2) on T*M" is completely determined by its action on

vector fields of type X and Va), it follows that “© g is completely determined by its
equations (1.4), (1.5) and (1.6).

We know see, from (1.1) and (1.2), that the complete lift © X of X ES%)(M ") s
expressed by
X =" X = (p(VX)), (1.7)
where P(VX) = p,(V, X")dX" . Using (1.4), (15), (1.6) and (1.7), we have

“g(X% Y9 =(g(X,Y))’

(@ (R(VX), PV + g H(PVX) PLG (V)P 9

where g (P(VX), p(VY)) = g" (p,V, X" )(p,V,Y").
g (P(VX), p) = g"p,(P(VX));.

Since the tensor field ° ge Sg(T*l\/l n) is completely determined also by its action on

+

vector fields type X and Y (see [19], p.237), we have an alternative characterization of
ce g on T*M" ¢ g is completely determined by the condition (1.8). Similarly, we get the
following results

“g(X%,0") =" g(X" =(p(VX))", ") (1.9

=-"¢g(p(vVX))",@")

= (@ (VX)) + g (B(VX), ) (@ D)
+r

(0’ X%) =" g(@’, X" =(p(VX))") (1.10)
= g(o’, X") = g( . (P(VX))")
1

R (97 (@, P(VX))+ 97 (@, )9 (P(VX), P))
+r

CGg(C()V,HV):

1r2 (97 (®,0)+9 (@, p)g (6, p))

1+ (111)
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2. MAIN RESULTS

Definition 2.1 Let M" be an N—dimensional diferentiable manifold. Differantial
transformation of algebra T (M "), defined by
D=V, T(M")>T(M"),X eZ(M")
is called as covariant derivation with respect to vector field X if
gt = TV t+gVit, (2.1)
Vv, f=Xf,
where Vf,g e 3p(M"), VX,Y e 5;(M"), Vte F(M") (see [10], p.123).

On the other hand, a transformation defined by
L~ ~1 ~1
V:S,(MM)xJ,(M") > 3,(M")

is called as an affin connection (see for details [10, 14]).

\%

Proposition 2.1 Covarient differentiation with respect to the complete lift VE ofa symetric
affine connection V in M " to T*(M") has the following properties:

VC 0" =0, vc Y = —y(wo(VY)) = —(p(w0(VY)))", v° 0" =(v,0)",
ViCYC =(V,.Y)  +7(V(V,Y +V, X)) = 7(V, VY +V,VX)
= (VXY)C +(P(V(VLY +V, X)) = (Vi VY +V, VX )
for X,Y e 5(M"), 6,0 3] (M") [19].
Proposition 2.2 Covarient differentiation with respect to the horizontal lift V" ofa symetric
affine connection V in M" to T"(M ") satisfies
v“ YR =(v,Y)" v“ =0,
VXHa) =(V, w)" ,V:VYH =0,
forany X,Y € 5;(M"), 8,0 € 3 (M ") [19].

Theorem 2.1 Let “© g be the Cheeger-Gromoll metric, is defined by (1.8),(1.9),(1.10) and the

complete litt V of symetric affine connection V in M " to T*(M™) . From proposition (1)
and proposition (2), we get the following results

i) (V5,%9)(0".¢")=0,

i) (V5 °0)(6".£") = (Y, = (9’1(9 &)+97 (@, p)g (& )
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1

1+r?
1

1+r?

—(

(07 ((V40),E)+ a7 (V< 6), P)I (& p))’

—( (076, (V, ) +97 (6, pP)a (V). ),

i) (ve,<g)(0",2°) =

T (970, p(@(VZ))+97' (6, )9 (P(&(VZ)), P)),

V) (VS 00", Z) = ~(V( L (g7(0. p(V2))+ (0. )3 (P(V2), PY)"

1+r?
(@ (V0. PV2) + 9 (V,0, PG (R(V2), )
+1+1r2 (970, P(V(VLZ)) +97 (8, p)9 ' (P(V(VLZ)))
(@ ORIV, Z 4V, X) = (7, (V2)+V,(V, )
L (@O PT PV Z+V,X) = (Vo (V2) 4V, (VO )
V) (V6,%0)(Y©, &) = 1+1r2 (97 (P(@(VY)), &) + 97 (P(@(VY), P)I (£, P)),

Vi) (VELEQIYE,e") = (7, = (@ (R(VY). )+ 9 (YY), P)G (€. )

+ 1+1r2 (@7 (P(V(VY ). E)+ a7 (P(V(V4 X)), P)I (& P))
e (@ ROV, 9, X) = (V, (V) 4V, (VX)) )
L @RV, 9, X)~(V, (V) +V, (VX)) PG, P)
1
+

s (@7 (P(VY), V&) + 97 (P(VY), )G (V4 E P)),

Vil) (72, 0) (Y€, 2%) = -5 (g (P@AY), PV2) + 6 (P Y)), PG (P(V2), P)

—ﬁ(gl(p(VY), P((VZ))+g7(P(VY), P9 (P(@(VZ)), P)),

where the complete and horizontal lifts X© € J5(T*M ™) of X € J5(M") and the

vertical lift @" € 3%) (T°'M") of w e S‘l)(M ") defined by (1.1) and (1.3), respectively.
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Proof. 1) (V,g)(6",&") = V¢, “g(6",&") " g(V5,8",8") - g(¢" V', &)

-1 -1 -1
’

=0
i) (V5c%0)(¢".&") = VCCCGQ(HV,ch)—CG g(V5c0".&") - g(60", V&)

=iz (9‘1(0 £)+97(6,p)g (& P)))

-1 -1 -1

-1 -1 -1
)

|||) (VCVCGg)(HV,ZC):VCVCGQ(QV ZC)_CG g(VC ev ZC)_CG g(ev VC ZC)

=V’ (——(9*1(9 P(VZ))+97(6, p)g(P(VZ), p))
CG@J(«9V,—(|0(60(VZ))) )

+ -1
1+r?

1 1 -1 -1
= 29 (0. p(@(VZ))+ g0, p)g~ (p(@(VZ)), P))
iV) (ViCCGg)(gv ZC)_VCCCGQ(HV,ZC)—CG g(VCCQV’ZC)_CG g(QV,VCCZC)

=—(Vy ( (9*1(9 P(VZ))+97(0, p)g(P(VZ), p))))"

+ - h ;
1
1 _

-1

1412
V) (VZVCGQ)(YC,(?V) VC CGQ(YC £y-=° Q(VszC,sZV)—CG QWC,VZVEV)
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=0 (=5 (@ (PVN.E) + G (V). PG (&, P’

(07 (P(o(VY)),E) + g7 (P(&(VY), P) (&, P))

-1 -1
’

+—
1+r?

- 1+r?
vi) (VicCGg)(Yc,fv):VCcCGg(YC &)= g(V5Y©. &)= g(Ye, Vi L)

= (Vg (g‘l(p(VY) E)+g97(p(VY), p)g (£, p)))

-1 -1

+
1+
Tor (97 (P(V(VLY +Vy X) = (V4 (VY) +V, (VX))), )
1412 ; ;
+ 1 -1 -1
1+

V”) (VC CGg)(Y Z ) VC CGg(YC,ZC)—CG g(VZVYC,ZC)—CG g(YC,VZVZC)

-1 -1 -1
’ ’

+V4(9(Y,2))" +°g((p(a(VY)))",Z%) +° g(Y©, (p((VZ)))")

-1 -1 -1

-1 -1 -1

1+r?
Definition 2.2 Let M" be an N—dimensional diferentiable manifold. Differential
transformation D = L is called as Lie derivation with respect to vector field X € I (|\/| )
if
L, f =Xf,vf e3(M"), (2.2)
LY =[X,Y],¥X,Y e 5, (M").
[X,Y] is called by Lie bracked. The Lie derivative L, F of a tensor field F of type
(1,1) with respect to a vector field X is defined by [3, 4, 5, 6, 7, 19].
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(L, F)Y =[X,FY]-F[X,Y]. 23)
Proposition 23 If X,Y € 3 (M), @,0 € T;(M) and F,G € F;(M), then
[0',6"]=0]a",yF]=(woF)’
[¥F.»G]=7[F.G][X° e |= (L)
[ XS 7F = p(LF)[XCYC =[x, YT,
where @OF is a 1—form defined by (@OF )(Z)=w(FZ) forany Z € J3(M)
and L, the operator of Lie derivation with respectto X [19].
Proposition 24 1f X € J5(M), @€ 3, (M) and F,G € J;(M), then [19]
FCw’ =(woF) ,F%)G = y(GF),
FEXC = (FX)© +7(L F).

Theorem 2.2 Let © g be Cheeger-Gromoll metric, is deffined by (1.8), (1.9), (1.10), and Lx

the operator Lie derivation with respect to X . From proposition (3) and proposition (4), we get
the following results

) (L, @)@ .&)=0,

i) (L D0 &)= (L 0.+ 8 0. P3¢ P
1

1+r?
1

1+r?

i) (Ly9)(0"\2%) = — (90,0} + g0, )3 (Lo, P))

—( (07 (Ly0,8) +97 (L0, P)I (&, P))

(“°9(0, L, &)+ 97 (0, P) g (L&), P)),

V) (L *0)(6",2°)=~(Ly ﬁ(g*(e, P(VZ)+97 (0, p)g " (P(VZ), p)))’

1

1+r?
1

1+r?

v) (L, ®g)(r®,&)=

+ (97(Ly0, P(VZ))+ 97 (L0, P)(P(VZ), P))

(970, P(V(LZ2)))+97(8, P) " (P(V(Ly Z2)), P))

1
1+r?

+

(07 (L®,&)+97 (L@ p)g (£ p)),
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i cG C £V — 1 -1 -1 1
VI) (LXC g)(Y vé )_ X1+r2 ' ! !
1 -1 -1
-1 -1 -1
+ ,
1+r?
. 1
vil L. ¢ € z%Y=- -1 , -1 , -1
) (LR Z) =
_ ) -1 -1
1+r?

vii) (L c®)Y©,2%) = (L0, 2)"

+(Ly ﬁ(g*(p(w), P(VZ))+g7(p(VY), p)g(P(VZ), p)))’

-1 -1

-1 -1 -1

141
where the complete lifts X< € Jg(T'M™) of X € F;(M") and the vertical lift
@ €3 T'M") of e T (M") defined by (1.1) and (1.3), respectively.
Proof.
i) (l— VCGg)(ev’gv) =L VCGg(evafv)_CG g(l— Vev'ézv)_ce g(ev’ L vgv)
1 _ - -
=Ly (7 (970.9)+g7 (0. Pg (& P
o 1r
=0
i (LXCCGg)(eV,5V)= L g(0" &)= g(L o0, &) =% g(@" L o&")

= Xc( 7(@70.9)+97@. Py P

o (L) ) a0 (L&)

= (L2 (070, + 370, P)g (& P
+r

-1 -1

1+r?
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_1%(06 9(6,L,&)+ 970, g (L&), p))
+r

|||) (L(UVCGg)(HV’ZC) — LwVCGg(HV,ZC)_CG g(LwV QV,ZC)—CG g(ev , L(UVZC)
_ \Y 1 -1 -1 -1

+
1+r2

-1

:1+ r?
iv) (LXCCGQ)(@V Z9)=L CCGQ(QV,ZC)—CG g(L, c0",z2%)-="° Q(QV,L cZ%)

_Lxc( (070, p(VZ) +97(0. P)g " (P(VZ). P)))"
CG9((th9) ,2°)=°g(0", (L 2)°)
= —(Ly ﬁ(g*(ﬁ, p(VZ))+97'(6, )9~ (p(VZ), p)))"

-1 -1

+
1+r2

-1 -1 -1
)

V) (L, g)Ye,E) =L, Cgre, )= g(L, Yo.E)-C g(YE, L, &)

-1 -1 -1
) )

-1

vi) (L “Ca)Ye, §V)‘ L c®9(Y%, &)= gL Y. - g(Y L &)
—Lxc( 7 (@ (P(VY). O+ 97 (P(VY). P)G (& P
2 g((Ly Y)C &)= g, (L&)")
=L 7 (07 (V). ) g7 (P(VY). )G (5, P
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1

1+r?

1+1r2 (@ (PVY), L&) + 8 (P(VY), P MLy P))

V”) (I—wVCGg)(YCyZC) - LwVCGg(YCyZC)_CG g(LwVYC,ZC)_CG g(YC, vazc)

1 1 -1 1 v

=Ly (2@ (p(VY). p(V2) + g7 (p(VY), PG (p(VZ). P)))
+L (9(Y.2))" +° g(Ly@)", Z°) +%° 9(Y°, L, @)")

=~ 1 (g (Lo p(vZ)+ g (Lo P (p(vVZ), P)

1+r?
(@ (P(VY). L)+ g (P(VY), PG (L, )
Vlii) (LXCCGg)(YC,ZC) - I—XCCGg(YC,ZC)_CG g(LXCYC,ZC)_CG g(YC, LXCZC)
= Lo (r (@ (RVY), PIVZ)) + 6 (P(VY), D) (P(V2), )
Lo (907, 2) —° g((LY)°,Z%) - g(Y©, (L 2)°)
= (L)Y 2

+(Ly ﬁ(g‘l(p(VY), P(VZ))+ 97 (P(VY), p)g(P(VZ), p)))’

+ (07 (P(V(LY)), &)+ 97 (P(V(LY)), P)I (£, p))

—+

1+1r2 (97 (P(V(LY)), P(VZ) + 97 (P(V(L,Y)), PO (P(VZ), P))

1

T (97 (P(VY), P(V(LyZ))+ 97 (P(VY), P)g(P(V(Ly Z)), P))

3. CONCLUSION

In this paper, firstly, we define the Cheeger-Gromoll metric in the cotangent bundle T'M",
which is completely determined by its action on complete lifts of vector fields. Later, we obtain
the covariant and Lie derivatives applied to Cheeger-Gromoll metrics with respect to the complete
and vertical lifts of vector and kovector fields, respectively.
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