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ABSTRACT 

 

The optimistic and pessimistic values of uncertain random variable have been presented for handling both 
uncertainty and randomness.  In this paper, some extensions of optimistic and pessimistic values of uncertain 

random variable are investigated.As a sample, the optimistic and pessimistic values of an uncertain random 

variable are expressed. 
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1. INTRODUCTION 

 

The presented formula which models a system, reaching a result is normally a simple rule 

which includes evaluating the formula using the estimates for all variable held within the formula. 

Derived from simple formulas with random variables having insignificant uncertainty will be 

influenced minimally by not performing uncertainty analysis. However, for complex systems or 

models that have random variables with non-trivial uncertainties, neglecting uncertainty may 

cause deceptive conclusions. Estimating the uncertainty of a function of random variables can be 

performed by many distinct techniques. However, a general application of probability theory is 

that the estimated probability is near enough to the real frequency. Since the data is deficient 

generally, we must ask some experts to estimate their belief degree that each case will occur. In 

this condition, the usage of probability theory is no more practicable. To deal with this difficulty, 

an uncertainty theory was constructed by Liu Liu [1] and reconstructed by Liu [2]. Thus he 

introduced to model the information and knowledge In many events, human uncertainty and 

randomness concurrently appear in a system. In order to describe this event, uncertain random 

variable is presented by  Liu [3]. 

Some scholars have studied some problems including both human uncertainty and chance 

theory.  Liu and Ralescu [5] introduced uncertain random risk index with applications. Liu [6] 

presented uncertain random graphs and uncertain random networks. Zhou et al. [7]presented 

multi-objective optimization in uncertain random environments. Gao and Yao [8] gave some 

theories and outcomes of uncertain random processes. Ke et al. [10] presented uncertain random 

multilevel programming with application to product control problem. Yao and Gao [9] offered 
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uncertain random alternating renewal processes with applications to interval availability.  

Ahmadzade et al. [11] derived some properties of uncertain random partial quadratic entropy. 

Dalman [12] studied uncertain random fixed multi-item solid transportation problem. Sheng and 

Gao [13] presented a simulation algorithm to solve uncertain random shortest path problem. 

By using concepts and theorems of chance theory, this paper investigates the concepts of 

  pessimistic value and    optimistic value for uncertain random variables. 

The rest of this paper is organized as follows. Section 2 presents some basic knowledge on  

uncertainty theory and chance theory. Section 3 proves some formulas for uncertain random 

variables. a conclusion is given in Section 4. 

 

2. PRELIMINARIES 

 

2.1. Uncertainty Theory 

 

Let  be a nonempty set, L  be a  -algebra over   and   be an uncertain measure.  

Then  , ,L M is a measurable space.  A set function  : 0,1M L  is called an uncertain 

measure if it satisfies the following four axioms: 
 

Axiom 1 (Normality Axiom) (Liu [1]):    1    for the universal set .   

Axiom 2 (Duality Axiom) (Liu [1]):      1c     for any event .   

Axiom 3 (Subadditivity Axiom) (Liu [1]): For every countable sequence of events 

1 2, , , ,n  L  we obtain 
 

11
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Axiom 3  (Product Axiom) (Liu [14]): Let ( , , )k k kL M  be uncertainty spaces for 

1,2, .k  L  The product uncertain measure M  is an uncertain measure satisfying 

1
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 
  where k are arbitrarily chosen events from kL  for 

1,2, ,k  L  respectively. 
 

Definition 1 (Liu [2]) An uncertain variable is a function  from an uncertainty space 

 , ,L M to the set of real numbers such that { }B  is an event for any Borel set B of real 

numbers.  
 

Remark 1 Note that the event { }B   is a subset of the universal set 

{ } { | ( ) }.B B         
 

Definition 2 (Liu [2]) An uncertainty distribution ( )x is said to be regular if it is a continuous 

and strictly increasing function with respect to x  at which 0 ( ) 1,x   and 
 

lim ( ) 0, lim ( ) 1.
x x

x x
 

     
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Definitio n 3 (Liu [2]) Let   be an uncertain variable with regular uncertainty distribution 

( ).x Then the inverse function 
1( )  is called the inverse uncertainty distribution of .   

 

Theorem 1 (Liu [2]) Let 
1 2, , , n  L  be independent uncertain variables with regular 

uncertainty distributions 
1 2, , , ,n    respectively. If 

1 2( , , , )nf   L  is strictly increasing 

with respect to  
1 2, , , m  L  and strictly decreasing with respect to 

1 2, , , ,m m n    L  then 
 

1 2( , , , )nf    L                                                                                                                     (1) 
 

has an inverse uncertainty distribution. 
 

1 1 1 1 1

1 1( ) ( ( ), , ( ),..., (1 ), , (1 )).m m nf        

       L L                                          (2) 

 

2.2. Chance Theory  

 

Definition 4 (Liu [3]) Let ( , , )L M  be an uncertainty space and let ( , ,Pr)  be a probability 

space. Then the product ( , , ) (  , ,Pr)L     is called a chance space 
 

( , , ) ( , ,Pr) ( , , Pr . )L L          
 

Definition 5 (Liu [3]) An uncertain random variable is a function   from a chance space 

( , , ) (  , ,Pr)L     to the set of real numbers such that { }B   is an event in an event in 

L  for any Borel set B  of real numbers. 
 

Theorem 2  (Liu [2]) Let 
1 2, , , n  L  be uncertain random variables on the chance space 

( , , ) (  , ,Pr)L       and let f  be a measurable function. Then 
1 2( , , , )nf    L is an 

uncertain random variable determined by 
 

1 2( , ) ( ( , ), ( , ), , ( , ))nf            L  
 

for all ( , ) .    
 

Definition 6 (Liu [3]) Let   be an uncertain random variable on the chance space 

( , , ) ( ,  ,Pr),L      and let B  be a  Borel set of real numbers. Then { }B   is an 

uncertain random event with chance measure 
 

 
1

0
Ch{ }= Pr | { | ( , ) }B B x           

 

Theorem 3 (Liu [4]) Let 1 2, , , m  L  be independent random variables with probability 

distributions 1 2, , , $,m  L  respectively, and let 
1 2, , , n  L  be independent uncertain 

variables. 

Assume f  is a measurable function. Then the uncertain random variable

1 2 1 2( , , , , , , , )m nf       L L  has a chance distribution  
 

1 2 1 1 2 2 ( ) ( ; , , , ) ( ), ( ), , ( )
m m m mx F x y y y d y d y d y


     L L                                         (3) 

 

where 1 2( ; , , , )mF x y y yL  is the uncertainty distribution of the variable 

1 2 1 2( , , , , , , , ).m nf y y y   L L   
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Definition 7 (Liu [3])Let   be an uncertain random variable. Then its chance distribution is 

defined by  
 

( ) Ch{ }x x                                                                                                                         (4) 
 

for any .x   
 

Theorem 4 Let   be an uncertain random variable. Then its expected value is 
 

+ 0

0 -
[ ] { } { }E Ch r dr Ch r dr  




                                                                                (5) 

 

provided that at least one of the two integrals is finite. 
 

Theorem 5 Let   be an uncertain random variable with regular chance distribution .  If the 

expected value exists, then 
 

1

1

0

[ ] ( ) .E d                                                                                                                       (6) 

 

3. THE CONCEPTS OF   PESSIMISTIC VALUE AND    OPTIMISTIC VALUE 

FOR AN UNCERTAIN RANDOM VARIABLE 
 

In fact, notation (3) is theoretical, which is not easy usage in most conditions because of the 

complexity of chance distribution function. To cope with the complexity, a simulation uncertain 

random is introduced to obtain the chance distribution. 

First, we introduce the concepts of   pessimistic value and    optimistic value for an 

uncertain random variable. Then we approximate the chance distribution,    pessimistic value 

and     optimistic value by using a numerical integration method. 
 

Definition 8    Let  be an uncertain random variable on chance space. Then, 

( , , ) ( , ,Pr)L      and (0,1].   
 

inf ( ) inf{ | Ch{ } }r r                                                                                                 (7) 
 

and 
 

sup ( ) sup{ | Ch{ } }r r                                                                                                 (8) 
 

are called the    pessimistic value and the    optimistic value of ,  respectively. 

Note that Random variables and uncertain variables are special uncertain random variables. 

The    pessimistic value and the    optimistic value of linear uncertain variable ( , )L a b are 

inf ( ) (1 )a b       and sup ( ) (1 ) .a b       
 

Theorem 6 Let   be an ordinary uncertain random variable and (0,1]. Then, we have 
 

infCh{ ( )} .                                                                                                                   (9) 
 

Proof: Since the chance distribution is continuous, it follows from the definition of the     

pessimistic value  for each (0,1],  we have 

inf inf
n

Ch{ ( )}= limCh{ ( )-1/n} ,      


    and 

inf infCh{ ( )} limCh{ ( ) 1/ } ,
n

n      


     which imply that infCh{ ( )}      

holds. The theorem is proved. 
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Theorem 7 Let   be an ordinary uncertain random variable and (0,1].  Then, we have 
 

supCh{ ( )} .                                                                                                                 (10) 
 

Proof: Since the continuity of chance distribution, it follows from the definition of the    

optimistic value  for each (0,1]  that 
 

sup sup
n

Ch{ ( )}= limCh{ ( )-1/n}      


    

 

and 
 

sup supCh{ ( )} limCh{ ( ) 1/ } ,
n

n      


      

 

which imply that 
supCh{ ( )}       holds. The theorem is proved. 

 

Theorem 8 Let   be an uncertain random variable and (0,1]. Then, we have 
 

1

inf ( ) ( ).                                                                                                                      (11) 
 

Proof: It follows from Definition 8 immediately. 
 

Theorem 9 Let   be an uncertain random variable and (0,1]. Then, we have 
 

inf sup( ) (1 ).                                                                                                                 (12) 
 

Proof: It follows from  Equation (8) that supCh{ (1- )}=1- .     Thus, 
 

sup supCh{ (1- )} =1-Ch{ (1- )}=1-(1- )            
 

Thus, we have inf sup( ) (1 ).     The theorem is proved. 
 

Theorem 10 Let   be an uncertain random variable and (0,1].  Then, we have 
 

1 -1

sup sup( ) (1 ) and (1- )= ( ).                                                                        (13) 
 

Proof: It follows from Theorems 8 and 9. 
 

Theorem 11 Let   be an ordinary uncertain random variable. Then, we have 
 

1

inf
0

[ ] ( )d .E                                                                                                                       (14) 

 

Proof: Since ( )x  is strictly increasing and continuous, we get 
 

 

inf

1

( ) inf{r|Ch{ r} }

inf{r| (r) }

( ).

   





  

  

 

  

 

Here, we have 
1

inf
0

[ ] ( )d .E      The Theorem is proved. 

 

Theorem 12 Let   be an ordinary uncertain random variable. Then, we have 
 

1

sup
0

[ ] ( )d .E                                                                                                                       (15) 

 

Proof: Since ( )x  is strictly increasing and continuous, we get 
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sup

1

( ) sup{r|Ch{ r} }

sup{r| (r) 1- }

(1 ).

   





  

  

  

  

 

Th us, for all (0,1),  we have 
 

 

1 1
-1

sup
0 0

1
-1

0

( )d = (1- )d

= ( )d =E[ ]

    

  





 


  

 

The theorem is proved. 
 

Theorem 13 Let   be an ordinary uncertain random variable. Then, we have 
 

1

inf sup
0

1
[ ] ( ) ( ) d .

2
E                                                                                                    (16) 

 

Proof: It follows directly from Theorem 11 and Theorem 12. 
 

Theorem 14 Let 1 2, , , m  L  be independent random variables with probability distributions 

1 2, , , ,m  L  and let 
1 2, , , n  L  be independent uncertain variables with regular 

uncertainty distributions 
1 2, , , .n  L   

Assume 
1 2 1 2( , , , , , , , )m nf      L L   is strictly increasing with respect to 

1 2, , , k  L  

and strictly decreasing with respect to 1 2, , , .k k n    L  Then 
 

1 2 1 2( , , , , , , , )m nf       L L  
 

has a chance distribution 
 

1 2 1 1 2 2 d( ) ( ; , , , ) d d( ), ( ), , ( )
m m m mx F x y y y y y y


     L L                                        (17) 

 

where 1 2( ; , , , )mF x y y yL   is determined by its inverse uncertainty distribution 
 

1 1 1 1

1 2 1 2

1

1 2 1 sup

( , , , , ( ), , ( ), , ( ))

( , , , , ( ) (1 ), ,

m n

m

F y y y

F y y y

  

 

   



     

L L
                                                               (18) 

 

sup 1 sup sup( ) (1 ),( ) ( ), , ( ) ( )).k k n      L                                                                              (19) 
 

Proof: It follows from Theorem 1 that inverse uncertainty distribution of 1 2( ; , , , )mF x y y yL  is 

determined by 
 

1 1 1

1 2 1

1 1

1

( , , , , ( ), , ( ),

(1 ), , (1 )).

m k

k n

F y y y  

 

  

 



 

   

L L

L
                                                                                   (20) 

 

According to Theorem 10, we substitute 
1 1

1 ( ), , ( )k   L  with 

1 sup sup( ) (1 ), , ( ) (1 )k    L  and 
1 1

1(1 ), , (1 )k n  

   L  with 

1 sup sup( ) ( ), , ( ) ( ).k n    L  Thus, Formula (19) holds. The theorem is completed. 
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Theorem 15 Let 
1 2, , , m  L  be independent random variables with probability distributions 

1 2, , , ,m  L  and let 
1 2, , , n  L  be independent uncertain variables with regular 

uncertainty distributions 
1 2, , , .n  L   

Assume 
1 2 1 2( , , , , , , , )m nf      L L  is strictly increasing with respect to 

1 2, , , k  L  

and strictly decreasing with respect to 
1 2, , , .k k n    L  Then 

1 2 1 2( , , , , , , , )m nf       L L  has a chance distribution  
 

1 2 1 1 2 2( ) ( ; , , , ) ( ), ( ), , ( ).d
m m m mx F x y y y d y d y y


     L L                                        (21) 

 

where 
1 2( ; , , , )mF x y y yL  is determined by its inverse uncertainty distribution 

 

1 1 1 1

1 2 1 2( , , , , ( ), , ( ), , ( ))m nF y y y                                                                           (22) 
 

1

1 2 1 inf inf

1 inf inf

( , , , , ( ) ( ), , ( ) ( ),

( ) (1 ), , ( ) (1 )).

m k

k n

F y y y    

   







 

L

L
                                                                           (23) 

 

Proof: The proof is similar to that of Theorem 14. 

 

4. CONCLUSIONS 

 

In this paper, the concepts of    pessimistic and   optimistic values are investigated for 

uncertain random variables. Moreover, some concepts and notations for uncertain random 

variables have been extended. 
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