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Abstract

A 0
U B
is a (B, A)-bimodule. We first give some computing formulas of projective, injective, flat
and F'P-injective dimensions of special left T-modules. Then we establish some formulas
of (weak) global dimensions of T'. It is proven that (1) If Uy is flat and U is projective,
ID(A) #1D(B), then ID(T) = max{ID(A),ID(B)}; (2) If Us and gU are flat, wD(A) #
wD(B), then wD(T') = max{wD(A),wD(B)}.
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Let T = ( ) be a formal triangular matrix ring, where A and B are rings and U

1. Introduction

Formal triangular matrix rings play an important role in ring theory and the represen-
tation theory of algebras. This kind of rings are often used to construct examples and
counterexamples [7, 13]. Homological properties on formal triangular matrix rings have
also attracted more and more interest. For example, Fossum, Griffith and Reiten gave
some estimations of global dimension of a formal triangular matrix ring in [6]. Asadollahi
and Salarian studied the vanishing of the extension functor Ext over a formal triangular
matrix ring and explicitly described the structure of modules of finite projective (resp.
injective) dimension in [1]. Loustaunau and Shapiro obtained some bounds on global di-
mensions and weak global dimensions in a Morita context under certain assumptions [14]
(The notion of Morita context is a generalization of formal triangular matrix rings). More
generally, Psaroudakis provided bounds for global dimensions, finitistic dimensions and
representation dimensions under recollement of abelian categories and then gave applica-
tions to formal triangular matrix rings [19]. Recently, the author also established some
formulas of homological dimensions of special modules over a formal triangular matrix ring
in [18]. In this note, we will continue to provide other computing formulas of homological
dimensions of formal triangular matrix rings and modules over them.

Section 2 is devoted to some formulas of homological dimensions of special modules

A 0 : .
U B>’ where A and B are rings and U is

over a formal triangular matrix ring T' = <

Email address: maolx2@hotmail.com
Received: 24.10.2021; Accepted: 17.05.2022


https://orcid.org/0000-0001-7225-928X

Homological aspects of formal triangular matriz rings 1505

M,
My
M; and Ms are projective, then pd(M) = 0 or pd(U @4 M) + 1; (2) If My and Mo
are injective, then id(M) = 0 or id(Homp(U, M2)) + 1; (3) If My and M, are flat, then
fd(M) = 0 or fd(U ®4 M;) + 1. Moreover, we establish the computing formulas of
homological dimensions of simple left T-modules. On the other hand, let T" be a left

Ml) # 0 be a left T-module such
M, oM

that Ext’y (U, My) = 0 for any i > 1, we prove that (1) If $™ is an epimorphism, then
FP-id(M) = max{FP-id(Ms), FP-id(ker(g™))}; (2) If 3™ is a monomorphism, then
FP-id(M) = max{F P-id(Ms), F' P-id(coker(pM)) + 1}.

In Section 3, we give some computing formulas of global homological dimensions of a

fUl g) For example, we prove that (1) If Uy is flat

and pU is projective, ID(A) # [D(B), then {D(T') = max{lD(A),ID(B)}; (2) If U4 and
pU are flat, wD(A) # wD(B), then wD(T) = max{wD(A),wD(B)}. In addition, we give
some estimations of other “global" dimensions of 7" such as (I FD(T), (IPD(T), IPID(T)
and [FID(T).

Throughout this paper, all rings are nonzero associative rings with identity and all
modules are unitary. For a ring R, we write R-Mod (resp. Mod-R) for the category of
left (resp. right) R-modules. grM (resp. Mp) denotes a left (resp. right) R-module.
For a module M, pd(M), id(M) and fd(M) denote the projective, injective and flat
dimensions of M, respectively, the character module Homyz(M,Q/Z) of M is denoted
by M, Gen(M) is the class consisting of quotients of direct sums of copies of M and
Cogen(M) is the class consisting of submodules of direct products of copies of M. [D(R)
and wD(R) denote the left global dimension and weak global dimension of R, respectively.

a (B, A)-bimodule. Let M = ( ) # 0 be a left T-module. We prove that (1) If
S0]\/[

coherent ring and U be finitely presented, M = (

formal triangular matrix ring T =

T= (é g) always means a formal triangular matrix ring, where A and B are rings and

U is a (B, A)-bimodule. By [9, Theorem 1.5], the category T-Mod of left T-modules is

Ml) , where M1 € A-Mod,
M2 oM

M, € B-Mod and @M : U ®4 M; — My is a B-morphism, and whose morphisms from
(Ml) to (%1> are pairs (f1> such that f; € Homa (M, N1), fo € Homp(Ma, No)
oM 2 oN

equivalent to the category 2 whose objects are triples M = (

Ms f2
and oV (1 ® f1) = fooM. Given a triple M = (Ml

My

the A-morphism from M; to Hompg(U, M2) given by c?‘//[(:v)(u) = pM(u ® ) for each
u € U and x € M. Analogously, the category Mod-T of right T-modules is equivalent
to the category I' whose objects are triples M = (M, Ms),,,, where M; € Mod-A,
Ms € Mod-B and ¢y @ My ®p U — M; is an A-morphism, and whose morphisms
from (M, Ms),,, to (X1, X2),, are pairs (g1,92) such that g; € Homa (M1, X1),92 €
Homp(Ms, X3) and px(g2®1) = gi1par. In the paper, we will identify T-Mod (resp. Mod-
T') with this category Q (resp. I'). Whenever there is no possible confusion, we will omit
M,
U®aM)® M2)’
the B-morphism U ® 4 M7 — (U ®4 M) @ My is just the injection and for the left T-
module (Ml @ HO]\I?B(U’ MQ)), the A-morphism M; & Homp (U, M) — Homp(U, M3) is
2
just the projection.

) in Q, we will denote by oM
sD]VI

the morphism @™ (resp. ¢ar). For example, for the left T-module ( (
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2. Homological dimensions of special modules over formal triangular ma-
trix rings

M,

Lemma 2.1. Let M = (M2

> be a left T-module.

oM

(1) [11, Theorem 3.1] M is a projective left T-module if and only if o™ is a monomor-
phism, M is a projective left A-module and coker(o™) is a projective left B-
module.

(2) [10, Proposition 5.1] and [1, p.956] M is an injective left T-module if and only
if ©M is an epimorphism, ker(oM) is an injective left A-module and My is an
injective left B-module.

(3) [6, Proposition 1.14] M is a flat left T-module if and only if ¢™ is a monomor-
phism, My is a flat left A-module and coker(o™) is a flat left B-module.

In [18], we establish some computing formulas of projective, injective and flat dimensions

for those left T-modules M = (%1) with @™ (resp. ™) a monomorphism or an
2/ oM

epimorphism. Now we give some computing formulas of homological dimensions of other
special left T-modules.

M,y

Proposition 2.2. Let M = (
My

) # 0 be a left T-module.
SOJM

(1) If Tor (U, My) = 0 for any i > 1, coker(¢™M) is a projective left B-module, then
pd(M) = max{pd(M), pd(ker(p™)) + 1}.

(2) If Extl (U, Ma) = 0 for any i > 1, ker(g™) is an injective left A-module, then
id(M) = max{id(My), id(coker(g™)) + 1}.

(3) If Tor;A(U, My) =0 for any i > 1 and coker(¢™) is a flat left B-module, then
Fd(M) = max{ fd(My), fd(ker(g™)) T 1}.

Proof. (1) There exists an exact sequence in T-Mod

= (i) = (), = oty =0

0 . -
coker(goM)) is projective. So by [18, Theorem 2.4], we have
0

pd(M) = max{pd(im](\folM))’pd(coker(goM)>} = max{pd(M;), pd(ker(o™)) + 1}.

(2) There exists an exact sequence in T-Mod

() (), () -

By Lemma 2.1(1), (

ker(@™)\ . . . .
By Lemma 2.1(2), 0 is injective. So by [18, Theorem 2.4], we have
~M . ~M
id(M) = max{id(ker%p )) , id(lm](\? )>} = max{id(Ms), id(coker(3M)) + 1}.
2

(3) There exists an exact sequence in T-Mod

(i) = (312) L, = (cotentony) =0

By Lemma 2.1(3), ( is flat. Therefore by [18, Theorem 2.4], we have

)
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) = max(1a( ;) ) F( o) )} = MU FAOR), Fdller(eM) + 1.

O

My

Theorem 2.3. Let M = (M2

(1) If My and My are projective, then pd(M) =0 or pd(U @4 M;) + 1.
(2) If My and My are injective, then id(M) =0 or id(Hompg(U, M2)) + 1.
(3) If My and My are flat, then fd(M) =0 or fd(U ®4 M;) + 1.

Proof. (1) There exists an exact sequence in 7-Mod
(5)

0
0= <U ®S M1) (i) <(U ®a %1) @ M2) % (%;)@M — 0,

where f : U4 M1 — (U®aM;)® M, is defined by f(z) = (x, ™ (z)) forany z € U4 M1,

g: (U®a M) ® My — My is defined by g(z,y) = @™ (x) —y for any € U ®4 M; and
M,

U®a M) ® M,

) %0 be a left T-module.
(pl\/f

y € My. Since M7 and M, are projective, <(
2.1(1).

For any left T-module X = <§1> and i > 1, by [15, Lemma 3.2], we have
2/) ,x
©

> is projective by Lemma

(M X - 0 X |
Etz+1< 1) ,( 1) >~ Extl ( >7< 1) &~ Fxti, (U My, Xs).

Thus pd(M) = pd(U @4 M) + 1 if pd(M) # 0.
(2) There exists an exact sequence in T-Mod

M, <(‘f> My ® Homp(U, My) <g> Homp (U, M,)
0= (), = (M) S )~ 0

where v : My — M @ Homp (U, M) is defined by a(z) = (:c,cpNM(x)) for any = € Mj,
B : My @®Hompg (U, My) — Homp (U, Ms) is defined by (x,y) = oM (z) —y for any x € M,

and y € Homp(U, M>3). By Lemma 2.1(2), (Ml ® Homp (U, M)

is injective since M;
Mo

and M> are injective.

For any left T-module X = (§1> and i > 1, by [15, Lemma 3.2], we have
2 X
©

; X M (X Hompg (U, M>)
i+l 1 1 ~ i 1 (U, My
Bt (<X2>¢,x’ (M2>@M) _EXtT(<X2)¢X’< 0 >)

>~ ExtYy (X1, Homp(U, My)).
Hence id(M) = id(Homp(U, M2)) + 1 if id(M) # 0.
(5)

(3) There exists an exact sequence in T-Mod
(7
0+ (5l a) Y (o VY )
U®a M; (U@A Ml)@Mg M, oM ’

where f : U4 My — (U®4 M) Ms is defined by f(x) = (2, oM (x)) forany z € U® 4 Mj,
g: (U®a M) ® My — My is defined by g(z,y) = oM (x) —y for any € U ®4 M; and
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. My
M. M M- fl
y € Ms. Since M and M> are flat, <(U @4 M) & My
2.1(3).
For any right T-module Y = (Y1,Y2),, and ¢ > 1, by [15, Lemma 3.5], we have
My ~ 0 ~
Torla (05 30)ovs (1) )= T (05100 (7 g ))& TorP 02,0 @000

So fd(M) = fd(U ®4 M) + 1 if fd(M) # 0. 0

My
My

(1) If Tor (U, My) = 0 for any i > 1, then
pd(M) = max{pd(M),pd(U @4 M) + 1} or pd(Ms),
fd(M) = max{fd(M), fd(U ®a M) + 1} or fd(M2).
(2) If Ext'z(U, M) =0 for any i > 1, then
id(M) = max{id(M2),id(Homp (U, M2)) + 1} or id(M;).

Proof. By [12, Corollary 3.3.2], M; is simple and My = 0, or M; = 0 and My is simple.
(1) Case (i): If M, is simple and My = 0, then pd(M) = max{pd(M, ), pd(U®M;)+1}
and fd(M) = max{fd(M,), fd(U ®4 M) + 1} by Proposition 2.2(1,3).
Case (ii): If M; = 0 and M> is simple, then pd(M) = pd(Msz) and fd(M) = fd(M>)
by [18, Theorem 2.4].
(2) Case (i): If M; is simple and My = 0, then id(M) = id(M;) by [18, Theorem 2.4].
Case (ii): If M; = 0 and M is simple, then id(M) = max{id(Ms), id(Homp (U, M2))+
1} by Proposition 2.2(2). O

Recall that R is a left SE ring if every simple left R-module is flat. R is called a left
V -ring if every simple left R-module is injective.
As an immediate consequence of Proposition 2.4 and [12, Corollary 3.3.2], we have

) is a flat left T-module by Lemma

Proposition 2.4. Let M = ( ) be a simple left T-module.
SOIM

Corollary 2.5. The following assertions hold.
(1) T is a left SF ring if and only if A and B are left SF rings, U @4 X =0 for any
simple left A-module X .
(2) T is a left V-ring if and only if A and B are left V-rings, Homp(U,Y) = 0 for
any simple left B-module Y .

Given a left A-module X and a left B-module Y, there are two natural homomorphisms
vy : U®4 Homp(U,Y) — Y defined by vy(u® f) = f(u) for any f € Homp(U,Y) and
u € U, and nx : X — Homp(U,U ®4 X) defined by nx(z)(u) = u® z for any z € X and
uel.

My
My
(1) If Tor (U, My) = 0 for any i > 1, My € Gen(U), @™ is an epimorphism, then
pd(M) = max{pd(M), pd(ker(o™)) + 1},
FA(M) = max{fd(M), fd(ker(¢™)) + 1}.

(2) If Extly (U, M3) = 0 for any i > 1, My € Cogen(U%), o™ is a monomorphism,
then

Proposition 2.6. Let M = ( ) # 0 be a left T-module.
SOJM

id(M) = max{id(My), id(coker(™)) +1}.

Proof. (1) By [3, Lemma 2.1.2], vas, : U ®4 Homp (U, M2) — Ms is an epimorphism
since My € Gen(U). So o™ = vp,(1@ M) : U @4 My — U ®4 Homp(U, Ma) — My is
an epimorphism. By Proposition 2.2(1,3), pd(M) = max{pd(M;), pd(ker(¢™)) + 1} and
fd(M) = max{fd(M), fd(ker(o™)) + 1}.
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(2) By [3, Lemma 2.1.2], nar, : My — Homp(U,U ®4 M;) is a monomorphism since
M; € Cogen(UY). So ¢M = (oM)unry, : My — Homp(U,U @4 M) — Homp(U, My) is a
monomorphism. By Proposition 2.2(2), id(M) = max{id(M>), id(coker(3™)) + 1}. O

My
My

(1) If Tor (U, My) = 0 for any i > 1, My € Gen(U) and M is injective, then
pd(M) = max{pd(My), pd(ker(p™)) + 1},
| fd(M) = max{fd(M), fd(ker(p™)) + 1}.
(2) If Ext'z(U, M) = 0 for any i > 1, My € Cogen(U™) and M is flat, then
id(M) = max{id(My), id(coker(™)) +1}.
Proof. 1t follows from Lemma 2.1(2,3) and Proposition 2.6. O

Following [21], a left R-module X is called FP-injective if Exth(N,X) = 0 for any
finitely presented left R-module N. The F P-injective dimension of X, denoted by F P-
id(X), is defined to be the smallest integer n > 0 such that Ext""(N, X) = 0 for every
finitely presented left R-module N (if no such n exists, set FP-id(X) = 00). If R is a left
coherent ring, then FP-id(X) = fd(X™) by [5, Theorem 2.2].

Let gU be finitely presented, then M = (%1
2

Corollary 2.7. Let M = ( ) £ 0 be a left T-module.
oM

) is an F' P-injective left T-module if
and only if M is an epimorphism, ker(pM) is an F P-injective left A-module and M> is
an F' P-injective left B-module by [16, Theorem 3.3].

Let M = <%1) be a left T-module. Then M+ = (M, My),, . is a character right
2/ M g
)

T-module of M, where ¢+ : My ®@pU — M is defined by ¢y r+ (f@u)(x) = f(M (u@w))
for any f € My, u € U and x € M; (see [12, p.67]).

Next we give some computing formulas of F'P-injective dimensions of special left T-
modules.

Fheorem 2.8. Let T be a left coherent ring, gU be finitely presented, M = (%1> #£0
2 M
©

be a left T-module such that Ext'y(U, M) = 0 for any i > 1.
(1) If M is an epimorphism, then
FP-id(M) = max{FP-id(My), FP-id(ker(3™))}.

(2) If @™ is a monomorphism, then

FP-id(M) = max{F P-id(M,), F P-id(coker(@™)) + 1}.
(3) If M is a monomorphism and My € Cogen(U™), then

FP-id(M) = max{F P-id(Ms), F P-id(coker(p™)) 4 1}.
(4) If ker(@M) is F P-injective, then

FP-id(M) = max{FP-id(M,),F P-id(coker(™)) + 1}.
(5) If My and My are F P-injective, then

FP-id(M) =0 or FP-id(Homp(U, Ms)) + 1.

Proof. By [17, Theorem 3.2], A and B are left coherent rings.
(1) Since @M is an epimorphism, we get the exact sequence

— M
0 — ker(¢M) — M; % Homp (U, My) — 0,

which induces the exact sequence

MY+
@R My = (ker(2M))F = 0.

0— HOII]B(U, ]\42)+
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Since gU is finitely presented, My ®p U = Homp (U, M2)* by [20, Lemma 3.55]. So we
have the following commutative diagram with exact rows:

0 —— M; U Pt Mfr coker(ppr+) —=0
l (PM)* L
0 — Homp (U, M)+ Mt (ker(M)) T ——0.

By [8, Lemma 1.2.11(d)], Tor? (M}, U) = Ext; (U, M3)* = 0 for any i > 1. By [18, Theo-
rem 2.4], FP-id(M) = fd(M*) = fd(Mf,M;)%ﬁ = max{fd(M,), fd(coker(pp+)} =
max{ fd(My"), fd((ker(pM))")} = max{FP-id(M,), F P-id(ker(3))}.

(2) Since @M is a monomorphism, we get the exact sequence

M
0 — M; % Homp(U, My) — coker(oM) — 0,

which induces the exact sequence

M+
() Mt — 0.

0— (coker(g;]‘vj))Jr — Homp (U, Ma)™
So we have the following commutative diagram with exact rows:

Prr+

0 — ker(¢p+) My @pU M 0
M)+ J/ L P +
0 — (coker(pM))" —— Homp (U, M2) M; 0.

By [18, Theorem 2.4], FP-id(M) = fd(M*) = max{fd(M)), fd(ker(¢opr+)) + 1} =
max{ fd(M;"), fd((coker(™))*) + 1} = max{F P-id(Ms), F P-id(coker(@™)) + 1}.

(3) By [3, Lemma 2.1.2], na, @ My — Homp(U,U ®4 M) is a monomorphism since
M € Cogen(UY). So ¢M = (oM)uny, : My — Homp(U,U @4 M) — Homp(U, M>) is a
monomorphism. By (2), FP-id(M) = max{F P-id(My), F P-id(coker(g™)) + 1}.

(4) There exists an exact sequence in T-Mod

= () ()., (45 -

. ker(EM)\ . o , .
Since 0 is F'P-injective by [16, Theorem 3.3], we have F'P-id(M) = max{F P-

y (ker(ééM)) PP d(im](\ZM)>} = max{F P-id(Ma),F P-id(coker(p™)) + 1} by (2).

(5) There exists an exact sequence in T-Mod

My N Ml@HomB(U,Mg) N HOHIB(U,MQ) 0.
oM M2 0

M @ HOII]B(U, Mg)

Since M7 and My are F P-injective, we have ( M
2

> is F'P-injective by

[16, Theorem 3.3]. Therefore, for any finitely presented left T-module X = (Xl) ,
X

Xo
map((yr) (M)
©

(X M (X Homp (U, M,)
i+1 1 1 ~ i 1 B(U, M2
Bty (<X2>¢x’ (M2>¢M) B EXtT((X2)@x’ ( 0 >)

)) =0 for any ¢ > 1 by [21, Lemma 3.1]. So
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>~ ExtYy (X1, Homp (U, My)).
Note that X is finitely presented. Thus F'P-id(M) = FP-id(Hompg(U, M3)) + 1 if FP-
id(M) # 0. O

Corollary 2.9. Let R be a left coherent ring and T(R) = <g 2), M = <M1> #£0
%)

be a left T(R)-module.
(1) If M s an epimorphism, then
FP-id(M) = max{F P-id(M,), F P-id(ker(p™))}.
(2) If o™ is a monomorphism, then
FP-id(M) = max{F P-id(M,), F P-id(coker(o™)) + 1}.
(3) If ker(oM) is FP-injective, then
FP-id(M) = max{F P-id(My),F P-id(coker(¢™)) + 1}.

Proof. 1t is an immediate consequence of Theorem 2.8 since T'(R) is a left coherent ring
by [16, Corollary 3.7]. d

3. Global dimensions of formal triangular matrix rings

Theorem 3.1. Let Uy be flat. Then the following assertions hold.

(1) If gU is projective and ID(A) # ID(B), then ID(T) = max{lD(A),lD(B)}.
(2) If gU is flat and wD(A) # wD(B), then wD(T) = max{wD(A),wD(B)}.

Proof. (1) We first note that max{lD(A),!D(B)} <ID(T) < max{lID(A)+1,ID(B)} by
[15, Corollary 3.3].
Next we prove that (D(T) < max{lD(A),ID(B) + 1}. For any left T-module N =

<N1> = 0, there exists an exact sequence in T-Mod

N2 (PN
0 Ny Ny
0—><N2>—><N2> N—><O>—>O.

%)
By [18, Theorem 2.4], pd(N) < max{pd( 0) ( )} = max{max{pd(N1),pd(U @4
(B) +
)

Ni) 4+ 1}, pd(N2)} < max{max{ID(A),ID(B) + 1},ID(B)} = max{ID(A),lD(B) + 1},
which means that [D(T) < max{lD(A ) D(B) + 1}.

Case (i): ID(A) = or ID(B) =

Since max{lD(A),ID(B)} <ID(T ), lD( ) = 00. So ID(T) = max{lD(A),!D(B)}.

Case (ii): ID(A) =m < oo and ID(B) =n < 0.

Since m # n, we have max{m,n} < ID(T) < min{max{m + 1,n}, max{m,n + 1}} =
max{m,n}. So ID(T) = max{m,n}.

It follows that {D(T) = max{lD(A),ID(B)}.

(2) We first note that max{wD(A),wD(B)} < wD(T) < max{wD(A) 4+ 1,wD(B)} by
[15, Corollary 3.6].

Next we prove that wD(T) < max{wD(A),wD(B) + 1}. For any left T-module N =

<%;>@N # 0, we have fd(N) < max{fd( ) < >} = max{max{fd(Ny), fd(U ®4

N1+ 1)}, fd(No)} < masc{max{ fd(A), fd(B)+ 1}, fd(B)} < max{fd(4), fd(B)+ 1} by
[18, Theorem 2.4]. So wD(T) < max{wD(A),wD(B) + 1}.

Case (i): wD(A) = oo or wD(B) = 0.

Since max{wD(A),wD(B)} < wD(T), we have wD(T) = oo. Therefore wD(T) =
max{wD(A),wD(B)}.

Case (ii): wD(A) = m < oo and wD(B) =n < o0.
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Since m # n, we have max{m,n} < wD(T) < min{max{m + 1,n}, max{m,n +1}} =
max{m,n}. So wD(T) = max{m,n}.
Consequently wD(T') = max{wD(A),wD(B)}.

It is well known that if U = 0, then [D(T) = max{lD(A),ID(B)} and wD(T) =
max{wD(A),wD(B)}. However, the conditions “I/D(A) # [D(B)" and “wD(A) # wD(B)"
in Theorem 3.1 is not superfluous.

O

Example 3.2. Let Rbearingand T'(R) = (g ?{)’ then ID(T(R)) = ID(R)+1 # ID(R)

and wD(T(R)) = wD(R) + 1 # wD(R) by [15, Corollaries 3.4 and 3.7].

Example 3.3. Let S be a commutative von Neumann regular ring which is not semisimple
Artinian. Then there is an ideal I such that [ is not a direct summand of S. Let R = S/I
and T = <f€ }O%) Then wD(R) = wD(S) = 0. But wD(T) = 1 # max{wD(S),wD(R)}
(see [13, 2.34, p.47]).

The condition that “gU is projective" in Theorem 3.1 is not superfluous.

Example 3.4. Let T = (8 %) Note that Q is a flat Z-module but is not a projective

Z-module, 1 = wD(Z) = ID(Z) # ID(Q) = wD(Q) = 0. Then we have wD(T) =
max{wD(Q),wD(Z)} = 1 but ID(T) # max{wD(Q),wD(Z)} =1 (see [7, Exercises 11,
p.113]).

By taking the supremums of one of projective, injective or flat dimensions of specified
R-modules, one obtains various “global" dimensions of R. We write

IIFD(R) = sup{fd(F) : E is an injective left R-module} (see [4]);

IIPD(R) = sup{pd(FE) : E is an injective left R-module};

IPID(R) = sup{id(P) : P is a projective left R-module};

IFID(R) = sup{id(F) : F is a flat left R-module}.

The following theorem gives an estimation of these “global" dimensions of a formal
triangular matrix ring 7.

Theorem 3.5. Let Ua be flat. Then the following assertions hold.

(1) If gU is flat, then

max{I{IFD(A), IFD(B)} < UIFD(T) < max{I{IFD(A) + 1,IIFD(B)}.
(2) If gU is projective, then

max{{IPD(A), I IPD(B)} < LIPD(T) < max{IIPD(A) + 1,IIPD(B)}.
(3) If gU is projective, then

max{IPID(A),IPID(B)} < IPID(T) < max{IPID(A),IPID(B) + 1}.
(4) If pU is projective, then

max{{FID(A),IFID(B)} <IFID(T) < max{{FID(A),I[FID(B) + 1}.

M,y

Proof. (1) Let M = (M2

) be an injective left T-module. By Lemma 2.1(2), we get
SD]\/f

the exact sequence

0 — ker(eM) — M, Y Hompg (U, M) — 0
with ker(;]\v/[) and Mo injective. Since Uy is flat, Homp(U, M>) is injective and so M is
injective. By [15, Corollary 3.6], fd(M) < max{fd(M;)+1, fd(M2)} < max{{IFD(A)+
1,LIFD(B)}. So LIFD(T) < max{lIFD(A) + 1,.IFD(B)}.

Let N be an injective left A-module. Then <N

0> is injective by Lemma 2.1(2). So

fd(N) < fd<](\)[> <IIFD(T) by [15, Corollary 3.6]. Let G be an injective left B-module.
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Then HomBGSU, G)> is injective by Lemma 2.1(2). So fd(G) < fd(
IIFD(T) by [15, Corollary 3.6]. Thus max{l{IFD(A),IIFD(B)} < IIFD(T).

(2) Let M = (%1> be an injective left T-module. Then M; and M> are injective. By
2/ M
©

[15, Corollary 3.3], pd(M) < max{pd(M;) + 1,pd(M2)} < max{IIPD(A)+ 1,lIPD(B)}.
So IIPD(T) < max{IIPD(A) + 1,IIPD(B)}.
Let N be an injective left A-module. Then pd(N) < pd<](\)[> < UIPD(T) by [15,

HomBGEU, G)) <

Homp (U, G)) .

G

Corollary 3.3]. Let G be an injective left B-module. Then pd(G) < pd(
IIPD(T) by [15, Corollary 3.3]. So max{l{IPD(A),lIIPD(B)} <IIPD(T).

(3) Let M = (Ml

M ) be a projective left T-module. By Lemma 2.1(1), we get the
2 M
©

exact sequence

o M
0—U®a M = My — coker(¢™) — 0

with M7 and coker(p™) projective. Since gU is projective, U ® 4 M is projective and so
My is projective. By [15, Corollary 3.3], we have

id(M) < max{id(M,),id(M,) + 1} < max{IPID(A),IPID(B) + 1}.
So IPID(T) < max{IPID(A),IPID(B) + 1}.

Let N be a projective left A-module. Then < is a projective left T-module

N
Ua N
by Lemma 2.1(1). So id(N) < id(U é\; N) < IPID(T) by [15, Corollary 3.3]. Let G be

a projective left B-module. Then (g

) < IPID(T) by [15, Corollary 3.3]. Thus max{IPID(A),IPID(B)} <

) is a projective left T-module by Lemma 2.1(1).

So id(Q) < z’d(o

G
IPID(T).
(4) Let M = (%1> be a flat left T-module. By Lemma 2.1(3), there exists the exact
2/ M
sequence v

M
0—>U®4s M LN My — Coker(goM) —0

with M; and coker(¢™) flat. Since gU is projective, U @4 M is flat and so M, is flat. By
[15, Corollary 3.3], id(M) < max{id(M;),id(Ms) + 1} < max{IFID(A),IFID(B) + 1}.
So IFID(T) < max{IFID(A),IFID(B) + 1}.

Let N be a flat left A-module. Then < ) is a flat left T-module by Lemma 2.1(3).

N
Ua N

Soid(N) < id( ) < IFID(T) by [15, Corollary 3.3]. Let G be a flat left B-module.

N
U®a N
Then (g) is a flat left T-module by Lemma 2.1(3). So id(G) < zd(g) < IFID(T) by
[15, Corollary 3.3]. Thus max{IFID(A),IFID(B)} <IFID(T). O

Remark 3.6. It is easy to verify that if U = 0, then

IIFD(T) = max{IIFD(A),IIFD(B)},
IIPD(T) = max{lIPD(A),1IPD(B)},
IPID(T) = max{IPID(A),IPID(B)},
IFID(T) = max{IFID(A),IFID(B)}
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It is known that R is a quasi-Frobenius ring if and only if every injective left R-module
is projective if and only if every projective (flat) left R-module is injective.
Recall that R is a left IF ring [2] if every injective left R-module is flat.

Proposition 3.7. Let R be a ring and T'(R) = (g ]g) Then

(1) IFD(T(R)) =UFD(R) +

(2) IPD(T(R)) =UPD(R) +

(3) IPID(T(R)) =IPID(R) +

(4) IFID(T(R)) =IFID(R) +

Consequently, R is a left IF ring if and only if IFD(T(R)) = 1; R is a quasi-
Frobenius ring if and only if IPD(T(R)) = 1 if and only if IPID(T(R)) = 1 if and

only if IFID(T(R)) = 1.

Proof. (1) Let IIFD(R) =n < .

Case (i): If n =0, then IIFD(T(R)) < 1 by Theorem 3.5. Since (RO+
left T (R) module but not a flat left T'(R)-module by Lemma 2.1(2,3), IIF (R)) >
fd( ) > 1. So IIFD(T(R)) = 1.

Case (ii): If n > 1, then there is an injective left R-module G such that fd(G)
n. So there is a right R-module X such that Tor?(X,G) # 0. By [15, Lemma 3.5

-
)) ~ TorR(X,G) # 0 and Torl®((0, X), <G>) TorR(0,G) = 0.

> is an injective

Tor((0.), ( c
0 G G .
The exact sequence 0 — al 7 \a) 7o) 0 induces the exact sequence

Tort (0,0, () > Torf (0,20, () = Tl ™ ((0.%), (G)) = 0.

So Torzg)((O,X), (g)) # 0. Since fd(g) < fd(G) +1=n+1 by [15, Corollary 3.6],

fd(§> =n+1. Also (g) is injective, hence IIFD(T(R)) > fd(%:) — n+1. But
IIFD(T(R)) < n+1 by Theorem 3.5. So IIFD(T(R)) =n+ 1.
(2) Let LIPD(R) = m < oc.

+
Case (i): If m = 0, then [IPD(T(R)) < 1 by Theorem 3.5. Since (% ) is an

injective left T'(R)-module but not a projective left T'(R)-module by Lemma 2.1(1,2),
+
IIPD(T(R)) > pd(% ) > 1. So LIPD(T(R)) = 1.
Case (ii): If m > 1, then there exists an injective left R-module E such that pd(E) = m.
So there exists a left R-module Y such that Ext%(E,Y) # 0. By [15, Lemma 3.2],

Ext?(R)(<g>, (3)) ~ Bxt7(E,0) = 0 and Extgb(R)(@), (3)) ~ Ext(E,Y) £ 0. The

exact sequence 0 — (g) — (g) — (g) — 0 induces the exact sequence

0= Ext?(R)((g>, @)) o Ext$(R)(<]g), (3)) N Ext%l)((@, @))
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Therefore Ext?(%((?), (3)) # 0. But pd(ﬁ) < m + 1 by [15, Corollary 3.4]. So

pd(f;) = m + 1. Hence LIP(T(R)) > pd<§> =m+1. Also IIPD(T(R)) < m+ 1 by

Theorem 3.5. Thus I/P(T(R)) =m + 1.
(3) Let IPID(R) = k < co.

Case (i): If k = 0, then I[PID(T(R)) < 1 by Theorem 3.5. Since (1%) is a projective left
T(R)-module but not an injective left T'(R)-module by Lemma 2.1(1,2), IPID(T(R)) >
id(]%) > 1. So IPID(T(R)) = 1.

Case (ii): If £ > 1, then there exists a projective left R-module P such that id(P) = k.
So there exists a left R-module H such that Ext%(H,P) # 0. By [15, Lemma 3.2],

Extg(R)(Gg), <§>) >~ Extf(0, P) = 0 and Ext§(R)(<Ig>, (103>) >~ Ext¥(H, P) # 0. The

exact sequence 0 — (g) — <§) — (]g) — 0 induces the exact sequence

o=t (). (5) > b () () w2 (2

Whence ExtkJrl ( ) ( ) # 0. Since zd(]O3> < k+1 by [15, Lemma 3.2], zd(]OD) =

k + 1. Hence I[PI(T(R)) > pd< ) =k +1. But IPID(T(R)) < k+ 1 by Theorem 3.5.

Thus IPI(T(R)) = k + 1.
The proof of (4) is similar to that of (3). O
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