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Abstract. We propose a third order convergent finite-difference method for the approximate solution of the
boundary value problems. We developed our numerical technique by employing Taylor series expansion and
method of undetermined coefficients. The convergence property of the proposed finite difference method discussed.
To demonstrate the computational accuracy and effectiveness of the proposed method numerical results presented.
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1. Introduction

In this article, we consider following third order boundary value problem which occurs in fluid dynamics, obstacle
problems, moving boundary value problems and many other areas of studies;

u′′′(x) = f (x, u(x), u′(x), u′′(x)), a < x < b (1.1)

subject to the boundary conditions

u(a) = α, u′(a) = β and u′(b) = γ,

where α, β and γ are real constants.

The solution of these problems is an important and interesting area of research. But it is not possible to find a
solution for these problems for an arbitrary forcing function f (x, u(x), u′(x), u′′(x)).

Thus, the existence and uniqueness of the solution to the problem (1.1) is assumed. However, the theory on the
existence and uniqueness of the solution of higher order boundary value problems can be found in [1, 6] and for spe-
cific problem (1.1) in [4, 5, 9] and references there. Some solution method for problem (1.1) are finite difference
method [2, 13], non polynomial spline method [7], quintic splines [8] and references therein.

The purpose of this article is to develop computationally efficient, inexpensive and third order accurate finite differ-
ence method to deal with the numerical solution of problems (1.1).
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In this article, we have presented our work in six sections including introduction. In Section 2, we have described
finite difference method. In Section 3, we have outlined the derivation of the finite difference method. In Section 4, un-
der proper condition, we have discussed and analysed the convergence of the proposed method. Numerical experiment
and illustrative results presented in Section 5. A meaningful discussion on computational performance of the proposed
method is presented in Section 6.

2. The DifferenceMethod

We substitute domain [a, b] by a discrete set of points and we wish to determine the numerical solution at these
points. Thus, we define N-1 numbers of a ≤ x0 < x1 < · · · < xN ≤ b nodal points in the domain of [a, b] using a
uniform step length h such that xi = a + ih, i = 0, 1, · · · ,N. We wish to determine the numerical approximation of
the theoretical solution u(x) of the problem (1.1) at the nodal points xi, i = 1, 2, · · · ,N − 1. We denote the numerical
approximation of u(x) at node x = xi as ui, i = 1, 2, · · · ,N − 1. Let us denote fi as the approximation of the theoretical
value of the source function f (x, u(x), u′(x), u′′(x)) at node x = xi, i = 0, 1, 2, · · · ,N. Thus, the finite difference method
reduces the problem (1.1) to the following discrete problem at node x = xi,

u′′′i = fi, a ≤ xi ≤ b (2.1)

subject to the boundary conditions

u0 = α, u′0 = β and u′N = γ.

Let we define nodes xi± 1
2
= xi ±

h
2 , i = 1, 2, ....,N − 1 and denote the solution of the problem (1.1) at these nodes as

ui± 1
2
. Following the idea in [10], we descretize problem (2.1) at these nodes in [a, b] as follows,

u′i− 5
2
=

1
12h

(−19ui− 5
2
+ 27ui− 3

2
− 8ui− 1

2
+ hu′i), i = N, (2.2)

u′i− 3
2
=


1

30h (15ui− 3
2
+ 20ui− 1

2
− 3ui+ 1

2
− 32ui−2), i = 2

1
6h (−2ui− 5

2
− 3ui− 3

2
+ 6ui− 1

2
− ui+ 1

2
), 3 ≤ i ≤ N − 1

1
8h (−3ui− 5

2
− 3ui− 3

2
+ 6ui− 1

2
− hu′i), i = N,

(2.3)

u′i− 1
2
=


1
9h (−28ui−1 + 27ui− 1

2
+ ui+ 1

2
− 6hu′i−1), i = 1

1
60h (−90ui− 3

2
+ 40ui− 1

2
+ 18ui+ 1

2
+ 32ui−2), i = 2

1
6h (ui− 5

2
− 6ui− 3

2
+ 3ui− 1

2
+ 2ui+ 1

2
), 3 ≤ i ≤ N − 1

1
6h (ui− 5

2
− 6ui− 3

2
+ 5ui− 1

2
+ 2hu′i), i = N,

(2.4)

u′i+ 1
2
=

 1
177h (−20ui−1 − 243ui− 1

2
+ 263ui + 1

2 − 96hu′i−1), i = 1
1

30h (75ui− 3
2
− 100ui− 1

2
+ 57ui+ 1

2
− 32ui−2), i = 2,

(2.5)

u′′i− 5
2
=

1
2h2 (3ui− 5

2
− 7ui− 3

2
+ 4ui− 1

2
− hu′i), i = N.

u′′i− 3
2
=

 1
5h2 (−25ui− 3

2
+ 10ui− 1

2
− ui+ 1

2
+ 16ui−2), i = 2

1
h2 (ui− 5

2
− 2ui− 3

2
+ ui− 1

2
), 3 ≤ i ≤ N,

u′′i−1 =
1

9h2 (−104ui−1 + 108ui− 1
2
− 4ui+ 1

2
− 48hu′i−1), i = 1, (2.6)

u′′i− 1
2
=


1

9h2 (−8ui−1 + 8ui+ 1
2
− 12hu′i−1), i = 1

1
h2 (ui− 3

2
− 2ui− 1

2
+ ui+ 1

2
), 2 ≤ i ≤ N − 1

1
h2 (ui− 3

2
− ui− 1

2
+ hu′i), i = N,

(2.7)

u′′i+ 1
2
=

 1
9h2 (184ui−1 − 216ui−1/2 + 32ui+1/2 + 60hu′i−1), i = 1

1
15h2 (105ui− 3

2
− 90ui− 1

2
+ 33ui+ 1

2
− 48ui−2), i = 2,

(2.8)
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f i− 5
2
= f (xi− 5

2
, ui− 5

2
, u′i− 5

2
, u′′i− 5

2
), f i− 3

2
= f (xi− 3

2
, ui− 3

2
, u′i− 3

2
, u′′i− 3

2
),

f i−1 = f (xi−1, ui−1, u
′
i−1, u

′′
i−1), f i− 1

2
= f (xi− 1

2
, ui− 1

2
, u′i− 1

2
, u′′i− 1

2
), (2.9)

f i+ 1
2
= f (xi+ 1

2
, ui+ 1

2
, u′i+ 1

2
, u′′i+ 1

2
), i = 1, 2, · · · ,N,

u
′′

i− 1
2
= u′′i− 1

2
−


58

1003 h( f i+ 1
2
− f i−1), i = 1

59
1296 h( f i+ 1

2
− f i− 3

2
), i = 2

1
6 h( f i− 1

2
− f i− 3

2
), 3 ≤ i ≤ N − 1

13691
77664 h( f i− 3

2
− f i− 5

2
), i = N,

f i− 1
2
= f (xi− 1

2
, ui− 1

2
, u′i− 1

2
, u
′′

i− 1
2
), i = 1, 2, · · · ,N, (2.10)

9ui− 1
2
− ui+ 1

2
= 8ui−1 + 3hu′i−1 −

3h3

160
(2 f i−1 + 17 f i− 1

2
+ f i+ 1

2
) + Ti, i = 1

−15ui− 3
2
+ 10ui− 1

2
− 3ui+ 1

2
= −8ui−2 −

h3

16
(14 f i− 3

2
+ 27 f i− 1

2
− f i+ 1

2
) + Ti, i = 2

ui− 5
2
− 3ui− 3

2
+ 3ui− 1

2
− ui+ 1

2
= −

h3

2
( f i− 3

2
+ f i− 1

2
) + Ti, 3 ≤ i ≤ N − 1

ui− 5
2
− 3ui− 3

2
+ 2ui− 1

2
= hu′i +

h3

1920
(31 f i− 5

2
− 1062 f i− 3

2
− 809 f i− 1

2
) + Ti, i = N,

(2.11)

where Ti, i = 1, 2, ...,N is truncation error.

Let truncate the terms Ti in (2.11). Thus, at nodes xi− 1
2
, i = 1, 2, ....,N we obtain the N system of equations in N

unknown namely ui− 1
2
. If source function f (x, u, u′, u′′) is linear then system of equations will linear otherwise nonlin-

ear. We obtain an approximate solution of the problem (1.1) by solving system of equations (2.11) by an appropriate
method. However, we have applied an iterative method either Gauss Seidel or Newton-Raphson to solve a system of
equations respectively for linear and nonlinear system of equations.

We computed numerical value of ui, i = 1, 2, ....,N using following third order approximation,

ui =


−3ui−1 + 4ui− 1

2
− hu′i−1, i = 1

1
8 (−ui− 3

2
+ 6ui− 1

2
+ 3ui+ 1

2
), i = 2, ...,N − 1

1
8 (−ui− 3

2
+ 9ui− 1

2
+ 3hu′i), i = N.

3. Derivation of the Finite DifferenceMethod

In this section, we will outline the derivation of proposed method (2.11). In detail we discuss equation for i = 1 here.
It easy to verify that the approximations (2.2)-(2.5) provide O(h3) to respectively u′

i− 5
2
, u′

i− 3
2
, u′

i− 1
2

and u′
i+ 1

2
. Employing

Taylor series expansion and from (2.6), (2.7) and (2.8) we will obtain

u′′i−1 = u′′i−1 −
h2

16
u(4)

i− 1
2
+ O(h3),

u′′i− 1
2
= u′′

i− 1
2
+

h2

16
u(4)

i− 1
2
+ O(h3), (3.1)

u′′i+ 1
2
= u′′

i+ 1
2
−

7h2

16
u(4)

i− 1
2
+ O(h3). (3.2)

Let us define
u
′′

i− 1
2
= u′i− 1

2
+ h(a0 f i−1 + a1 f i+ 1

2
).
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Hence, from (2.9), (2.10) and (3.1)-(3.2) we will obtain

2 f i−1 + 17 f i− 1
2
+ f i+ 1

2
= 2 fi−1 + 17 fi− 1

2
+ fi+ 1

2
+ h(a0 + a1)u(3)

i− 1
2
+

h2

2
(1 + 17(2a1 − a0))(u(4) ∂ f

∂u′′
)i− 1

2
+ O(h3). (3.3)

Thus, from (3.3) we conclude that, 2 f i−1 + 17 f i− 1
2
+ f i+ 1

2
will provide O(h3) approximation for 2 fi−1 + 17 fi− 1

2
+ fi+ 1

2

if

a0 + a1 = 0
1 + 17(2a1 − a0) = 0

Solving above system of equations, we will obtain a0 =
1

51 = −a1. Thus, for i = 1 in equation in (2.11) reduced to

9ui− 1
2
− ui+ 1

2
= 8ui−1 + 3hu′i−1 −

3h3

160
(2 f i−1 + 17 f i− 1

2
+ f i+ 1

2
) + Ti

= 8ui−1 + 3hu′i−1 −
3h3

160
(2 fi−1 + 17 fi− 1

2
+ fi+ 1

2
) + O(h6)

Following the above discussions, similarly, we can derive other equations in (2.11).

4. Convergence Analysis

We will consider following test equation for the purpose of convergence analysis of the proposed method (2.11);

u′′′(x) = f (x, u(x), u′(x), u′′(x)), a < x < b

subject to the boundary conditions
u0 = α, u′0 = β and u′N = γ.

Let
(i) f (x, u(x), u′(x), u′′(x)) is continuous,

(ii) ∂ f
∂u ,

∂ f
∂u′ and ∂ f

∂u′′ exist and continuous,

(iii) ∂ f
∂u > 0, | ∂ f

∂u′ | < W1 and | ∂ f
∂u′′ | < W2,W1,W2 > 0.

Let us define a source function Fi = f (xi, ui, u′i , u
′′
i ) and fi = f (xi,Ui,U′i ,U

′′
i ). We can linearize source function Fi by

the application of Taylor series expansion method, i.e.,

Fi − fi = (ui − Ui)(
∂ f
∂U

)i + (u′i − U′i )(
∂ f
∂U′

)i + (u′′i − U′′i )(
∂ f
∂U′′

)i.

Let Ui− 1
2

and ui− 1
2
, i = 1, 2, · · · ,N are respectively approximate and exact solution of the system of equations (2.11).

Let us define error in solution of the problem (1.1),

ϵi− 1
2
= ui− 1

2
− Ui− 1

2
, i = 1, 2, · · · ,N.

Thus, we define N-dimensional vectors namely approximate solution U, exact solution u and error E. Also, we have
truncation error vector T = (T1,T2, · · · ,TN) associated with the proposed difference method (2.11).

Thus, we write a simplified form of error equation as matrix equation for the proposed method (2.11).

JE = T (4.1)

where J = A + B. These matrices A, B = (bl,m) and T = (Tl,1) are,

A =



9 −1 0
−15 10 −3

1 −3 3 −1
. . .

. . .
. . .

. . .

1 −3 3 −1
0 1 −3 2


N×N

,
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b1,m =
3h3

160


17G0,1 +

2928
59h G1,1 +

20544
531h2 G2,1 −

58h
59 (G0,1 −

81
59hG1,1 +

154
59h2 G2,1)G2,1, m = 1

G0,1 +
1792
531hG1,1 +

4
59h2 G2,1 −

58
59 ( 263

177G1,1 +
248
177hG2,1)G2,1, m = 2

0, otherwise,

b2,m =
h3

16


14G0,2 −

36
h G1,2 −

50
h2 G2,2 +

59h
48 (G0,2 −

2
hG1,2 −

2
h2 G2,2)G2,2, m = 1

27G0,2 +
319
6h G1,2 −

20
h2 G2,2 +

59
12 (G1,2 +

2
hG2,2)G2,2, m = 2

−G0,2 +
24
5hG1,2 +

22
h2 G2,2 −

59h
48 (G0,2 +

2
hG1,2 +

12
5h2 G2,2)G2,2, m = 3

0, otherwise,

bl,m =
h3

2



− 1
6hG1,l +

1
h2 G2,l −

1
6 ( 1

2G1,l −
1
hG2,l)G2,l, m = l − 2

G0,l −
3
2hG1,l −

1
h2 G2,l +

h
6 (G0,l +

1
2hG1,l −

3
h2 G2,l)G2,l, m = l − 1

G0,l +
3
2hG1,l −

1
h2 G2,l −

h
6 (G0,l −

1
2hG1,l −

3
h2 G2,l)G2,l, m = l

1
3hG1,l +

1
h2 G2,l −

1
6 ( 1

3G1,l +
1
hG2,l)G2,l, m = l + 1

0, otherwise,
and 3 ≤ l ≤ N − 1.

bN,m =
h3

1920


−31G0,N −

643
3h G1,N +

2031
2h2 G2,N +

13691h
96 (G0,N −

29
24hG1,N +

1
h2 G2,N)G2,N , m = N − 2

1062G0,N −
1277

h G1,N −
2413
2h2 G2,N −

13691h
96 (G0,N −

21
8hG1,N +

3
2h2 G2,N)G2,N , m = N − 1

809G0,N +
2237

3h G1,N −
618
h2 G2,N −

13691
96 ( 17

12G1,N −
1
hG2,N)G2,N , m = N

0, otherwise,

where G0,l = ( ∂ f
∂U )l− 1

2
, G1,l = ( ∂ f

∂U′ )l− 1
2
, G2,l = ( ∂ f

∂U′′ )l− 1
2

and

Tl = Tl,1 = h6



( 1
640 u(6)

l− 1
2
+ · · · ), l = 1

(− 1
28 u(6)

l− 1
2
+ · · · ), l = 2

o(h), 3 ≤ l ≤ N − 1
( 159

11520 u(6)
l− 1

2
+ · · · ), l = N.

Let order of square matrix S and identity matrix I are same. If ||S|| < 1 then matrix (I + S) is invertible [3, 12] and

||(I + S)−1|| <
1

1 − ||S||
,

where I is an identity matrix and same order of S. Let us assume

||A−1||||B|| < 1.

Thus, from (4.1), we have

||E|| <
1

1 − ||A−1||||B||
||A−1||||T||. (4.2)

Let

M = max
x∈[a,b]

|u(6)(x)|, D = max
x∈[a,b]

∂ f
∂U
,

D1 = max
x∈[a,b]

∂ f
∂U′
, and D2 = max

x∈[a,b]

∂ f
∂U′′
, D,D1,D2 > 0,

D1 ≤ W1 and D2 ≤ W2.

Thus, it is easy to compute ||B|| and we have ||A−1|| < (b−a)3

12h3 in [10]. Thus, from (4.2) we obtained,

||E|| <
53(b − a)3Mh3

320(12 − ||B||(b − a)3)
. (4.3)

It follows from equation (4.3) that, ||E|| → 0 as h→ 0. This establishes that our proposed method (2.11) is convergent,
and the order of convergence of the method is at least O(h3).



P.K. Pandey, Turk. J. Math. Comput. Sci., 14(1)(2022), 184–190 189

5. Numerical Results

To test the computational efficiency and validity of the theoretical development of a proposed method, we have
considered linear and nonlinear model problems. In each model problem, we took uniform step size h. In Table 1 -
Table 2, we have shown MAU the maximum absolute error in the solution u(x) of the problem (1.1) for different values
of N. We have used the following formula in computation of MAU,

MAU = max
1≤i≤N

|u(xi) − ui|.

We have used an iterative method to solve system of equations arise from equation (2.11). All computations were
performed on a Windows 2007 Ultimate operating system in the GNU FORTRAN environment version 99 compilers
(2.95 of gcc) on Intel Core i3-2330M, 2.20 GHz PC. The solutions are computed on N nodes and iteration is contin-
ued until either the maximum difference between two successive iterates is less than 10−10 or the number of iterations
reached 103.

Problem 1. The model linear problem in [11] and given by

u′′′(x) = −2u′′(x) + 4u′(x) − u(x) +
1
4

x(8 − x) +
9 exp(−2x) + 2x − 9

4(1 − exp(−2))
, 0 < x < 1

subject to boundary conditions
u(0) = 1 , u′(0) = 1 and u′(1) = 1

The analytical solution of the problem is

u(x) = C1 exp(x) +C2 exp(−
3 −
√

13
2

x) +C3 exp(−
3 +
√

13
2

x) +
1
4

(4 − x2) +
exp(−2x) + 2x − 1

4(1 − exp(−2))
,

where constants C1,C2 and C3 are to be determined so that boundary conditions satisfied exactly. The MAU computed
by a method (2.11) for different values of N are presented in Table 1.

Table 1. Maximum absolute error (Problem 1).

Maximum absolute error

N = 128 N = 256 N = 512 N = 1024

MAU .10943413(-2) .26059151(-3) .23603439(-4) .33378601(-5)

Problem 2. The nonlinear model problem given by

u′′′(x) = x2(u′′(x) − u′(x)) + u2(x) + f (x), 0 < x < 1

subject to boundary conditions

u(0) = 0 , u′(0) = −1 and u′(1) = sin(1),

where f (x) is calculated so that the analytical solution of the problem is u(x) = (x − 1) sin(x). The MAU computed by
a method (2.11) for different values of N are presented in Table 2.

Table 2. Maximum absolute error (Problem 2).

Maximum absolute error

N = 16 N = 32 N = 64 N = 128

MAU .12617186(-3) .34049153(-4) .62119216(-6) .81956387(-7)

We have tested our numerical method for numerical solution of linear and nonlinear model problems. The numerical
result of model problems for different values of N are presented in table 1-2. Numerical result approves the convergence
of the proposed method and consistent with the theoretical development.
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6. Conclusion

We have developed third order finite difference method for the numerical solution of third order boundary value
problem. We discretized the problem (1.1) at a discrete set of points. Thus, we have obtained N × N a system of
algebraic equations (2.11). Our proposed method (2.11) produced a good numerical solution for the considered model
problems. Thus, we arrived at the conclusion that our method is computationally efficient and accurate.
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