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ABSTRACT 

 

In the present study, the effect of geometrical imperfections on the load carrying capacity of conical shells 

under axial loading was investigated. In accordance with this purpose, limit loads for both ideal and imperfect 

conical shells were utilized via a series of numerical analysis. Numerical analyses were made for radially 

constrained conical shells at various shell thicknesses and semi-vertex angles. Thus, it is aimed to evaluate the 

effect of the geometric imperfections on shells with various geometrical parameters. In all numerical 

simulations, nonlinear geometry influences were included (GNIA – Geometrically nonlinear analysis with 

imperfection included). It is found that with increasing semi-vertex angle, the sensitivity of the structures to 

imperfection also reduces. Shell thickness 𝑡𝑠ℎ𝑒𝑙𝑙 has almost no effect on the sensitivity to imperfection. 

Keywords: Conical shell, elastic buckling, axial compression, imperfection. 

 

 

1. INTRODUCTION 

 

One of the main circumstances to take into consideration for conical shells under axial 

loading is the loss of stability. When constituting a design of conical shells, it must be paid 

sufficient attention to any probable imperfection of the structure. Aforementioned imperfections 

might be either geometrical or material basis. Geometrical imperfections are mostly originated 

from the production stage. A structure with a possible geometrical imperfection can lose its 

stability at a much lower load value contrary to calculations. Another point to take into 

consideration is the characteristics of the imperfection. The effect of the magnitude of the 

imperfection on the stability must be known. Thus, the production tolerances can be specified for 

different cases.  

The effect of the geometrical imperfections on the loss of stability of truncated conical shells 

has been investigated by many prominent authors. 

Cooper and Dexter investigated the effect of a particular type of local imperfection on the 

buckling of an axially compressed thin-walled conical shell. A two-dimensional shell analysis 

program was used in the buckling calculations. The study presented for bifurcation buckling 
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analysis of a  highly localized imperfection resulted in no significant drop in buckling load. 

However, linear static stress analyses revealed that the imperfection causes a local stress rise over 

50% higher than the maximum stress in the ideal cone. Additionally, increase in the 

circumferential arc length of the imperfection causes a reduction up to 50% of the critical load of 

the ideal shell. 

Wunderlich and Albertin studied the effect of four different boundary conditions and initial 

geometric imperfections on the load carrying capacity of conical shells, numerically. Initial 

geometrical imperfections were modeled with respect to the shape of the lowest bifurcation mode. 

It was seen in the results that both boundary conditions and magnitudes of the initial geometric 

imperfections have a significant effect on the load carrying capacity. Also excepting one case 

(cone-cylinder case), the lowest bifurcation mode has a great usability as the initial imperfection 

shape for limit load estimation of imperfect conical shells. 

Zielnica performed an analysis and a numerical study for inelastic large deformation 

instability of conical shells under axisymmetric loading. The Prandtl-Reuss incremental plastic 

flow theory was considered for the bilinear elastic-plastic material model. It was found that the 

incremental flow theory was quite easy to apply in the current case because of its simplicity in the 

mathematical representation. The study pointed out that the inelastic deformations and buckling 

loads of conical shells under axisymmetric load can be determined by the currently developed 

iterative method. 

Goldfield et al. studied the imperfection sensitivity of isotropic conical shells using initial 

post-buckling analysis. Three different shell theories were considered and a general code was 

developed to use in the parametric analysis with respect to the cone semi-vertex angle. Cone 

vertex half angle was found to be highly influent on the imperfection sensitivity of the structure. 

The most sensitive behavior was detected up to ∝=20° and beyond this value (up to ∝=80°), the 

structure becomes more insensitive to imperfections. It is stated that the level of sensitivity 

depends on the angle, length to radius ratio and the boundary conditions. 

Jabareen and Sheinman developed post-buckling analyses for imperfect conical shells. By 

including the geometrically nonlinear behavior of the structure, a Fortran code which uses 

Galerkin, Newton-Rapson and arc-length procedures and the finite-differences scheme were 

developed. A Fortran code was used for a parametric study to investigate the nonlinear behavior 

of conical shells in a wide range of cone semi-vertex angles. The study stated that the 

imperfection shape and amplitude has a strong effect on the limit load of the structure. 

Additionally, it was pointed out that a small imperfection amplitude leads to a localized buckling 

pattern while a large imperfection amplitude causes a global buckling behavior. 

Goldfield investigated the imperfection sensitivity of filament wound laminated conical shells 

with respect to three different shell theories using initial post-buckling analysis. The influence of 

the variation of the stiffness coefficients on the buckling behavior was also studied. The study 

states that laminated conical shells are usually sensitive to imperfection and the sensitivity does 

not reduce at higher semi-vertex angles contrary to isotropic conical shells. 

Jabareen and Sheinman investigated the influence of the nonlinear pre-buckling deformations 

on the buckling load of stiffened conical shells. Ideal and imperfect conical shells under random 

axial, torsional and hydrostatic-pressure loading were examined with a user-defined computer 

code in order to estimate the bifurcation point. It was found that external stiffening tended to 

increase the buckling load and sensitivity. 

Ifayefunmi and Blachut analyzed three types of imperfections, initial geometric 

imperfections, variations in wall thickness and imperfect boundary conditions. Buckling strength 

of imperfect cones was investigated under three types of loading: axial compression, radial 

pressure and combined loading with compression and pressure. In numerical analyses, cones were 

modeled as mild steel with elastic-perfect plastic material behavior. Results of the current 

numerical study showed that cones analyzed in the study are more sensitive to imperfection under 
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combined loading than the case under single loading case. Loss of buckling strength of cones 

were about 64% for axial c ompression and 34% for radial pressure in the worst cases. 

Blachut investigated the effect of axisymmetric bulge-type shape imperfections on the 

buckling strength of conical shells. Numerical examinations to mild-steel cones subjected to axial 

load and the lateral pressure were made. Inward, outward and both inward and outward shape 

imperfections were investigated in order to obtain information about the imperfection sensitivity 

of buckling load of the structures. The author used Tabu search algorithm and found that both 

inward and outward shape imperfections caused a significant reduction in the load carrying 

capacity of the structures. 

In the present study, the effect of geometrical imperfections on the load carrying capacity of 

conical shells under axial loading was investigated. In accordance with this purpose, limit loads 

for both ideal and imperfect conical shells were utilized via a series of numerical analyses. 

Numerical analyses were accomplished for radially constrained conical shells with various shell 

thicknesses and semi-vertex angles. Thus it is aimed to observe the effect of the geometric 

imperfections on the shells at various geometrical parameters.  

 

2. MATERIAL AND METHOD 

 

Numerical analyses for the current study were carried out with two different commercial finite 

element package programs; Cosmos/M and Abaqus. FE models were generated using the user 

interface of the both programs and a basic sketch of the models are presented in Figure 1. 

In Figure 1, the geometrical parameters are called as; 𝑟1: upper radius, 𝑟2: bottom radius, h: 

height of the stiff pipe, L: conical shell length, 𝑟e: equivalent cylinder radius, 𝛼𝑐: angle of lower 

edge, 𝛽𝑐: semi-vertex angle, 𝑡𝑠ℎ𝑒𝑙𝑙: shell thickness and 𝐹: axial load. Upper radius “𝑟1” and 

bottom radius “𝑟2” were defined as 50 mm and 250 mm, respectively. A relatively stiff pipe is 

modelled the with a height “h=10mm” located at the top of the truncated conical shell. 

 

 
 

Figure 1. Front (on the left) and top view (on the right) of the conical shell. 

 

Equivalent cylinder radius 𝑟𝑒 is individually calculated by recommendations stated in 

“Buckling of steel shells European design recommendations (ECCS)”. According to the ECCS 

recommendation, it is firstly needed to be determined either short or long conical shell is being 

studied based on the equations given below [1,2]. 
 

𝑙𝑒 = 𝑚𝑖𝑛 [𝐿; (
𝑟2

𝑠𝑖𝑛𝛽𝑐
) (0.53 + 0.125𝛽𝑐)]                                                                                        (1) 

 

where 𝛽𝑐 is the semi vertex angle of conical shell in [Rad], 
 

𝛽𝑐 =
𝜋

2
− 𝛼𝑐                                                                                                                                    (2) 
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if, 𝑙𝑒 = 𝐿,, it means this structure is a short conical shell, equivalent radius is; 
 

𝑟𝑒 =
0.55𝑟1+0.45𝑟2

𝑐𝑜𝑠𝛽𝑐
                                                                                                                             (3) 

 

if, 𝑙𝑒 = (
𝑟2

𝑠𝑖𝑛𝛽𝑐
) (0.53 + 0.125𝛽𝑐) , it means this structure is a long conical shell and the 

equivalent radius 𝑟𝑒 is; 
 

𝑟𝑒 = 0.71𝑟2
1−0.1𝛽𝑐

𝑐𝑜𝑠𝛽𝑐
                                                                                                                          (4) 

 

According to the abovementioned equations taken from ECCS, for the current case, all 

models were determined as a long conical shell and each equivalent cylinder radius was 

calculated using equation (4). Calculated equivalent cylinder radius re  were later used to obtain 

the re/tshell dimensionless parameter. The range of the shell thickness tshell and the 

dimensionless parameter re/tshell are presented in Table 1 for each individual semi vertex angle 

βc. 

 

Table. 1 Variable geometrical parameters of the models. 
 

Semi Vertex Angle 𝜷𝒄 
[°] 

Shell Thickness 𝒕𝒔𝒉𝒆𝒍𝒍 
[mm] 

𝒓𝒆/𝒕𝒔𝒉𝒆𝒍𝒍 

[-] 

10 0.6 – 1 177 – 295 

20 0.6 – 1 182 – 304 

30 0.6 – 1 194 – 324 

40 0.6 – 1 215 – 359 

50 0.6 – 1 252 – 420 

60 0.6 – 1 317 – 530 

70 0.6 – 1 455 – 759 

80 0.6 – 1   879 – 1465 

 

Geometrical imperfections were formed via numerical model in the central region of the wall 

of the conical shell. The shape of the dent is circular with diameter 𝐷𝑖𝑚𝑝 = 𝑙𝑔. The length of the 

imperfection was considered as 𝑙𝑔 = 4√𝑟2𝑡𝑠ℎ𝑒𝑙𝑙 and characteristic depth of the imperfection was 

assessed to be equal to the shell thickness; ∆𝑤 = 𝑡𝑠ℎ𝑒𝑙𝑙. Geometrical parameters of the 

geometrical imperfection generated on the model is given in Figure 2 (on the left). 

 

   
 

Figure 2. Geometrical parameters of the geometrical imperfection (on the left) and loads and 

boundary conditions to generate the imperfection (on the right). 
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The geometrical imperfection was created using an anticipatory static analysis. Edge of the 

imperfection was clamped in the simulations. Proper pressure value for generation of the 

imperfection was applied to only imperfection area in order to get the proper depth of the 

imperfection. Applied load and boundary conditions for static analysis are given in Figure 2 (on 

the right). 

 

  
 

Figure 3. Mesh structure of the models in Cosmos/M (on the left) and Abaqus (on the right). 

(Deformation Scale factor = 15) 

 

Generated imperfections through Cosmos/M and Abaqus using static analysis are exhibited in 

Figure 3. Characteristic depth of the imperfection was adjusted equal to the shell thickness of 

1mm for the geometry corresponding 1mm of shell thickness and 40° of semi-vertex angle as 

mentioned above. 

 

 
 

Figure 4. Basic truncated conical shell geometry and notations [12]. 

 

In all models, upper and lower circular ends of the truncated conical shells were constrained 

in the radial direction. In other words, these constraints are defined using the coordinates given in 

Figure 4 and 5. Boundary conditions are also shown in Figure 5 in detail. 
 

𝑢1 = 𝑢 sin 𝛽𝑐 − 𝑤 cos 𝛽𝑐 = 0   𝑎𝑛𝑑   𝑣 = 0                                                                                  (5) 
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Figure 5. Schematic representation of the boundary conditions of FE models. 

 

Material assigned for the models was chosen S235 steel and assumed to have a linear elastic 

and isotropic material behavior. The mechanical properties of the material for numerical analysis 

are; modulus of elasticity “𝐸” of 200 𝐺𝑃𝑎, Poisson’s ratio “𝜐”of 0.3, and mass density “𝜌”of 

7850 𝑘𝑔 𝑚3⁄ . 

All simulations were performed by considering the nonlinear geometry influence, so large 

displacement formulation was enabled in both FEA solutions. All analyses were performed with a 

mesh consisting of quadrilateral shell elements. These elements are called “SHELL4” [13] in 

Cosmos/M and “S4” [14] in Abaqus. In Figure 6, mesh structures of the model with a 40° of 

semi-vertex angle are illustrated for the both programs. 

 

  
 

Figure 6. Mesh structure of the models in Cosmos/M (on the left) and Abaqus (on the right). 

 

3. RESULTS AND DISCUSSION 

 

Load vs. end-shortening curves of imperfect conical shells under axial loading were obtained 

via commercial finite element package programs Cosmos/M and Abaqus.  
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Figure 7. F – End-shortening curve obtained from Cosmos/M for βc = 60° and tshell = 1mm 

 

The FE analysis of the models was performed considering large displacement formulation 

after creating the imperfections in the previous step. Load values were recorded from a specified 

reference point are plotted in Figure 7 with respect to end-shortening of the cone. 

 

   
        Resultant displacement – Step 24                            Resultant displacement – Step 58 

  
        Resultant displacement – Step 94                            Resultant displacement – Step 146 

 

Figure 8. Resultant displacements of the models in Cosmos/M for individual steps. (Deformation 

scale factor = 15) 

 

The load is increased in the simulations until the point at which the structure loses its stability 

at limit load. At this nonlinear buckling point, non-symmetrical deformation was observed, unlike 

the ideal shell structure. Geometrical imperfection on the structure caused a non-uniform 

deformation even though under uni-axial loading. At step 24, structure reaches its maximum load 

carrying capacity and a sudden drop occurs in the cones structural stiffness. At step 58, after some 

deformation, the strength of the structure begins to increase once again until step 94. However, 
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after this point structure loses its stability again and a second imperfection on the structure begins 

to be visible. At step 146, the existence of the second imperfection can be seen clearly. All the 

critical points of progressively deformed structure, where the stiffness has a local maximum and 

minimum (inflection) value, are captured and illustrated in Figure 8. 

Numerical simulations were performed for all shell thicknesses and semi-vertex angles which 

are determined by the current study. Limit load values obtained from the simulations are 

illustrated in Figure 9.  Results are taken from the both finite element package programs and give 

a perfect match with a maximum deviation of 1%. Load carrying capacity of proposed shell 

structure has an inverse proportionality with the 𝑟𝑒 𝑡𝑠ℎ𝑒𝑙𝑙⁄  parameter. The curves at in Figure 9 

have the characteristic of a power function with a decreasing trend. If a curve is fitted to the 

current data taken from the analyses, it is possible to develop an empirical expression with a 

deviation between -5% and +3%. This expression can be written as; 
 

𝐹𝑙𝑖𝑚,𝑖𝑚𝑝 = 7𝑥106𝑥(𝑟𝑒 𝑡𝑠ℎ𝑒𝑙𝑙⁄ )−1.9                         [kN]                                                                 (6) 
 

where, 𝐹𝑙𝑖𝑚,𝑖𝑚𝑝is  the limit load value for the conical shell structure with imperfect geometry.  

 

 
 

Figure 9. Limit load vs. re tshell⁄  curves  

 

It is possible to calculate the load carrying capacity of a conical shell structure which has the 

described boundary conditions, equivalent radius and the shell thickness in the present study. In 

other words, the 𝑟𝑒 𝑡𝑠ℎ𝑒𝑙𝑙⁄  dimensionless parameter indicates the load carrying capacity of a 

structure under given boundary conditions and material properties. In Figure 9, it is obvious that 

the structures having the same 𝑟𝑒 𝑡𝑠ℎ𝑒𝑙𝑙⁄  value should have the same load carrying capacity but 

limited to parameters estimated in the study.  

The effect of an imperfection which can occur either in operating conditions or in the 

manufacturing process is investigated in this study with respect to different shell thicknesses and 

semi-vertex angles. Structures without ideal geometric conditions have definitely lower load 

carrying capacity than the ideal shell structures. This reduction in the load carrying capacity can 

be represented with an “𝛼” reduction coefficient and can be expressed as; 
 

𝐹𝑙𝑖𝑚,𝑖𝑚𝑝 =  𝛼𝐹𝑙𝑖𝑚,𝑝                                                                                                                         (7) 
 

where, 𝐹𝑙𝑖𝑚,𝑝 is the limit load of an ideal conical shell structure. Hence, the lower the 

reduction coefficient means the lower the load carrying capacity of an imperfect structure. By 

considering the results obtained from two different finite element programs, calculated reduction 

coefficients are given in Figure 10.  
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Figure 10. F vs. re tshell⁄  curves for the results of Abaqus 

 

It is obviously seen in the bar graphs that the reduction coefficient of the structure increases 

with increasing semi-vertex angle. In the case of semi-vertex angle 𝛽𝑐 is equal to 10°, reduction 

coefficient of the structures for all shell thicknesses are nearly the same and equal to 0.5. In this 

case, load carrying capacity of a conical shell reduces nearly to the half load carrying capacity of 

an ideal shell structure.  With increasing semi-vertex angle, sensitivity of the structures to 

imperfection also reduces.  

Shell thickness 𝑡𝑠ℎ𝑒𝑙𝑙 has almost no effect on the sensitivity to imperfection. Only in higher 

semi-vertex angles such as 𝛽𝑐 = 80°, thickness barely affects the imperfection sensitivity of the 

structure. For instance, for the structure with semi-vertex angle 𝛽𝑐 = 80°, if shell thickness 

increases from 𝑡𝑠ℎ𝑒𝑙𝑙 = 0.6𝑚𝑚 to 𝑡𝑠ℎ𝑒𝑙𝑙 = 1𝑚𝑚, reduction coefficient reduces from 𝛼 = 0.91 to 

𝛼 = 0.84. 

The magnitude of the semi-vertex angle of the conical shell strongly affects components of 

the applied axial load. With increasing semi-vertex angle, the load component which tends to 

bend the structure increases and the other component(meridional) in pure compression decreases. 

The reason for high sensitivity values at lower semi-vertex angles can be explained as the 

followings; 

Imperfection on the shell surface distorts the stress flow on the side surface of the conical 

shell and causes stress concentrations on the imperfect area. At lower semi-vertex angles, the 

geometry of the structure approaches cylindrical shape which corresponds extremely high load 

carrying capacity. Therefore, an imperfection in the meridional direction leads severe amount of 

bending stresses under elevated loads. For this reason, amount of bending stresses due to 

imperfection (eccentricity in loading path) becomes highly dominant at lower semi-vertex angles.  

It is seen that the more meridional force acting on the structure makes the structure more sensitive 

to imperfections. 

 

4. CONCLUDING REMARKS 

 

In this study, the effect of a geometrical imperfection on the surface of a conical shell 

structure subjected to axial compression was investigated. All results obtained from numerical 

simulations (GNIA- geometrically nonlinear analysis with imperfection included) were compared. 

Main concluding remarks obtained from the present study are listed below.   
 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 0,9 0,8 0,7 0,6

R
ed

u
ct

io
n
 C

o
ef

fi
ci

en
t 

Shell Thickness tshell [mm] 

10 20 30 40 50 60 70 80

Semi Vertex Angle [°] 

Prediction of the Influence of Geometrical Imperfection  …      /   Sigma J Eng & Nat Sci 36 (1), 11-20, 2018 



20 

 

 

 In accordance with the numerical simulations, the effect of the geometrical imperfections 

on the load carrying capacity of the conical shells can be represented by an empirical expression. 

This expression is based on the dimensionless parameter 𝑟𝑒 𝑡𝑠ℎ𝑒𝑙𝑙⁄  and characterised by a power 

function. 

 The sensitivity of the structure against imperfections with a characteristic depth is not 

affected by the shell thickness.  

 Influence of the imperfection quite changes with the semi-vertex angles. Especially, in the 

design process of a conical shell, it is necessary to take into consideration of a possible 

geometrical imperfection that the structure can include.  
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