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ABSTRACT 

 
This paper introduces a hazard rate function for the time of ruin to calculate the conditional probability of ruin 

for very small time intervals. We call this function as the force of ruin (FoR). We obtain the expected time of 
ruin and conditional expected time of ruin from the exact finite time ruin probability with exponential claim 

amounts. Then, we introduce the FoR which gives the conditional probability of ruin and the condition is that 

ruin has not occurred at time t. We analyse the behaviour of the FoR function for different initial surpluses 
over a specific time interval. We also obtain FoR under the excess of loss reinsurance arrangement and 

examine the effect of reinsurance on the FoR. 

Keywords: conditional time of ruin, exact finite time ruin probability, the force of ruin, reinsurance. 
 

 

1. INTRODUCTION 

 

The literature of ruin theory focuses on two particular questions: the time of ruin and the 

severity of ruin. Over the past two decades, there has been considerable research interest in the 

analysis of the distributions of the time of ruin. Gerber [12], Delbaen [4] and Picard and Lefevre 

[20] deal with the moments of the time of ruin. Gerber and Shiu [13], [14] explain the joint 

distribution of the time of ruin, the surplus before the time of ruin, and the deficit at the time of 

ruin by considering an expected discounted penalty function. Lin and Willmot [17] improve the 

idea of Gerber and Shiu [14] about the defective renewal equation. They indicate an explicit 

solution of a defective renewal equation according to the time of ruin, the surplus immediately 

before ruin, and the deficit at the time of ruin. Egidio Dos Reis [10] studies the moments of the 

time of ruin and the duration of the first period of negative surplus under the discrete time 

compound Poisson process. Dickson and Waters [7] study the distribution of the time of ruin in 

the classical risk model. They aim to calculate the moments of time of ruin and to investigate the 

shape of the density of the time of ruin for different approaches. They use the conditional 

distribution of the time of ruin to obtain the density functions. Drekic and Wilmott [9] investigate 

the probability density function of the time of ruin in the classical model with exponential claim 

sizes. In this study, the probability density function of the time of ruin is obtained directly by 

using the inversion of the associated Laplace transform. They also provide the explicit expression 
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for the kth moment of the time of ruin. In addition, they obtain the moment-based quantities such 

as mean, variance, the coefficient of variation, the coefficient of skewness and the coefficient of 

kurtosis of the time of ruin.  

Although the literature mainly discusses the time of ruin, we believe that the probability of the 

conditional time of ruin is also important for practical purposes. There are few studies Young 

[18], Moore and Young [19] and Weert et al. [26] which discuss the conditional time of (lifetime) 

ruin in the literature. Young [18] uses inverse Gaussian distribution and analyses the distribution 

of the conditional time of lifetime ruin given that ruin occurs. She also introduces the conditional 

distribution of bequest, given that ruin does not occur. However, Young [18] uses the constant 

force of mortality which is an unrealistic assumption. Moore and Young [19] improve the idea of 

Young [18] by considering the lifetime ruin probability and different investment strategies for 

optimal asset allocation under the general mortality assumptions. Weert et al. [26] discuss the 

lifetime ruin which is defined as running out of money before death. They particularly focus on 

investment strategies in order to avoid lifetime ruin and discuss the conditional time of lifetime 

ruin and the wealth at death. The main difference between Moore and Young [19] and Weert et al. 

[26] is that the later one works in a discrete-time setting and uses comonotonic approximations for 

the probability of lifetime ruin.  

Weert et al. [26] use the conditional time of lifetime ruin to compare different investment 

strategies for a retiree who has a specific amount of initial wealth. They show that different 

investment strategies may lead quite similar ruin probabilities and the retiree will be indecisive 

between the strategies. However, the conditional time of ruin is significantly different and the 

retiree will choose the strategy which leads the ruin in later years. Thus, the conditional 

probability and the expected conditional time of ruin are crucial for a retiree. 

Inspired by Weert et al. [26], we propose a formula for the probability of the conditional time 

of ruin which we call as the force of ruin (FoR). While Weert et al. [26] derive the conditional 

time of lifetime ruin by multiplying the conditional probability with the survival probability for 

specific ages, we derive a hazard rate function based on the density of the time of ruin. Therefore, 

we obtain a general formula for the probability of the conditional time of ruin. FoR enables one to 

calculate the conditional probability of ruin for very small time intervals. This information might 

be important for companies which have solvency issues. If the company is close to bankruptcy, 

the FoR provides an important information about the conditional ruin probability on the condition 

that the company is solvent until a specific time. 

We introduce the FoR step by step. First, we derive the density function of time of ruin. 

Second, we calculate both the expected and the conditional expected time of ruin. Third, we 

obtain FoR, the conditional probability of ruin given that ruin has not occurred until a specific 

time point. Those steps enable us to compare our results with the ones obtained from the formulas 

for the density of time of ruin in the literature. Finally, we analyse the effect of a reinsurance on 

the FoR by using the excess of loss reinsurance arrangement.  

The paper is organised as follows. In Section 2, we present the finite time ruin probability 

including the exact formula and the approximations. In Section 3, we derive the density for the 

time of ruin and obtain the expected and the conditional expected time of ruin. We also conduct a 

numerical analysis and compare our results with the previous studies. Section 4 introduces the 

FoR formula and illustrates the numerical results with the graphs. Section 5 presents an analysis 

of the effect of the excess of loss reinsurance arrangement on the FoR. In Section 6, we conclude 

with some final remarks.  

 

2. THE FINITE TIME RUIN PROBABILITY 

 

In the classical risk process, it is assumed that the surplus process starts with an initial level u 

and continues according to two opposing cash flows: the premium income per unit of time, 
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denoted by c and the aggregate claim amount up to time t,  denoted by S(t). The insurer’s surplus 

(or risk) process, {𝑈(𝑡)}𝑡≥0 is defined by 
 

U(t) = u + ct − S(t). 
 

The aggregate claim amount up to time t, S(t), is 
 

S(t)= ∑ Xi

N(t)

i=1

 

 

where N(t) denotes the number of claims that occur in the fixed time interval [0, t]. The 

individual claim amounts, modelled as independent and identically distributed (i.i.d.) random 

variables {𝑋𝑖}𝑖=1
∞  with distribution function 𝐹(𝑥) = 𝑃𝑟(𝑋𝑖 ≤  𝑥) such that 𝐹(0) = 0 and 𝑋𝑖 is the 

amount of the ith claim. We use the notation 𝑓 and 𝑚𝑘  to represent the density function 

and 𝑘𝑡ℎ moment of 𝑋1, respectively, and it is assumed that 𝑐 > 𝐸[𝑁]𝑚1. The finite time ruin 

probability 𝜓(𝑢, 𝑡) is defined by 
 

ψ(u,t)=Pr(U(s)<0   for  some s,   0<s<t) 
 

where 𝜓(𝑢, 𝑡) is the probability that the insurer’s surplus falls below zero in the finite time 

interval (0, t]. In this paper, it is assumed that we have a Poisson process for claim frequency with 

rate 𝜆 and thus a compound Poisson process for the aggregate claims. Premiums are assumed as 

payable with a rate c per unit time. 

 

2.1. Exact Finite Time Ruin Probability with Exponential Claim Amounts 

 

There are many approximations and formulas for the calculation of the finite time ruin 

probability in the literature. Unlike the infinite time case, there is no general finite time ruin 

probability formula such as Pollaczek-Khinchine formula. A few approximations are obtained by 

making some adjustments to the infinite time methods. Prabhu [21] gives a formula for the finite 

time ruin probability in the classical risk process for 𝑢 ≥ 0. In this formula,  𝜓(0, t) is expressed 

in terms of the distribution function. Seal [22] considers the exponential claims and shows how to 

apply Prabhu’s formula. Seal’s approach provides a closed form for 𝐹𝑛∗(𝑥) and its derivative. De 

Vylder [5] proposes a simple method that approximates a classical risk process {𝑈(𝑡)}𝑡≥0 by 

another classical risk process {�̂�(𝑡)}𝑡≥0. Segerdahl [23] suggests a formula to obtain the finite 

time ruin probability. This method extends the Cramer-Lundberg approximation by adding a time 

factor. This approximation requires the existence of the adjustment coefficient R and the moment 

generating function 𝑀𝑋. Therefore, it can only be used for the light-tailed distributions. Some 

diffusion approximations are also developed for the calculation of the finite time ruin probability. 

In these approximations, it is assumed that the claim amount distributions belong to the domain of 

attraction of the normal law or have a light tail Iglehart [16] (see also Grandell [15] and Asmussen 

[2]). Dickson and Waters [6] discuss how to approximate ruin probabilities in the classical risk 

model by using a Gamma process and a translated Gamma process. 

Asmussen [1] presents an exact finite time ruin probability formula when the individual claim 

amounts are exponentially distributed with parameter 𝛽 = 1, the number of claims has a Poisson 

distribution with the parameter 𝜆 and the premium rate per unit time, c,  is equal to 1 (𝑐 = 1). 

Then the finite time ruin probability is 
 

𝜓(𝑢, 𝑡) = 𝜆 𝑒𝑥𝑝{−(1 − 𝜆)𝑢} −
1

𝜋
∫

𝑓1(𝑥,𝑡) 𝑓2(𝑥)

𝑓3(𝑥)

𝜋

0
𝑑𝑥                                                                        (1)  

 

where 
 

𝑓1(𝑥, 𝑡) = 𝜆 exp{2√𝜆 t cos(𝑥) − (1 + 𝜆)𝑡 + 𝑢(√𝜆 cos(𝑥) − 1)}, 
 

𝑓2(𝑥) = 𝑐𝑜𝑠(𝑢√𝜆 𝑠𝑖𝑛 (𝑥)) − 𝑐𝑜𝑠(𝑢√𝜆 𝑠𝑖𝑛(𝑥) + 2𝑥), 
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and 
 

𝑓3(𝑥) = 1 + 𝜆 − 2√𝜆 cos(𝑥). 
 

An important implication of this method is that it removes the restriction on the parameter of 

individual claims distribution and premium rate. When 𝛽 ≠ 1, the following equation is applied 

[2]: 
 

𝜓𝜆,𝛽(𝑢, 𝑡) = 𝜓𝜆

𝛽
,1

(𝛽𝑢, 𝛽𝑡),                                                                    (2) 

 

and the following equation is valid when 𝑐 ≠ 1, [3] 
 

𝜓𝜆,𝑐(𝑢, 𝑡) = 𝜓𝜆

𝑐
,1

(𝑢, 𝑐𝑡).                                                                                                                  (3) 
 

There are two more finite time ruin probability formulas which are suggested by Seal [22] and 

Takács [24]. Both methods depend on different numerical integrations. However, these methods 

may not be practical because they produce unstable results for large values of 𝑡 [2]. 

 

3. THE TIME OF RUIN 

 

One of the particular questions of interest in the classical ruin theory is the time of ruin. With 

the distribution of time of ruin, we obtain the probability of ruin. In this section, we derive the 

density of the time of ruin for the exact finite time ruin probability with exponential claims and 

obtain the expected and conditional expected time of ruin. We use the exponential distribution for 

the claim amounts in order to compare our results with the ones in Dickson [8]. 

 

3.1. Density 

 

Dickson [8] defines the density function of the time of ruin, 𝑤𝑐(𝑢, 𝑡) , by using the Laplace 

transform and assuming the individual claim amounts have an exponential distribution with 

parameter 𝛽 as 
 

𝑤𝑐(𝑢, 𝑡) =
1

𝜓(𝑢)

𝜕

𝜕𝑡
𝜓(𝑢, 𝑡),                                                                                                              (4) 

 

and the density of the time of ruin is obtained as 
 

𝑤𝑐(𝑢, 𝑡) =
exp{−(𝜆+𝑐𝛽)𝑡−

𝜆𝑢

𝑐
}

2𝜆𝑡
× ∑ (

𝑢

2𝑐
)

𝑗 (𝑗+1)(2√𝑐𝛽𝜆)
𝑗+1

𝑗!

∞
𝑗=0 𝜤𝑗+1(2𝑡√𝑐𝛽𝜆),                                     (5) 

 

where 𝜤𝜐(𝑡) is called a modified Bessel function of order 𝜐 and defined as 
 

𝜤𝜐(𝑡) = ∑
(𝑡 2)⁄ 2𝑛+𝜐

𝑛! (𝑛 + 𝜐)!

∞

𝑛=0

. 

 

We use equation (4) to obtain the density for the time of ruin, 𝜓𝑑(𝑢, 𝑡), based on the exact 

ruin probability formula with exponential claims given in equation (1) as below: 
 

𝜓𝑑(𝑢, 𝑡) =  
𝜕𝜓(𝑢,𝑡)

𝜕𝑡

𝜓(𝑢)
.                                                                                                                           (6) 

 

The ultimate ruin probability when 𝐹(𝑥) =  1 − 𝑒𝑥𝑝 (−𝛽𝑥), 𝑥 >  0 is 
 

𝜓(𝑢) =
𝜆

𝛽𝑐
𝑒𝑥𝑝 {− (𝛽 −

𝜆

𝑐
) 𝑢}.                                                                                                        (7) 

 

Thus the following equation is obtained: 
 

𝜓𝑑(𝑢, 𝑡) =

𝑑

𝑑𝑡
( 𝜆𝑒𝑥𝑝{−(1−𝜆)𝑢}−

1

𝜋
∫

𝑓1(𝑥,𝑡)𝑓2(𝑥)

𝑓3(𝑥)
𝑑𝑥

𝜋

0
)

𝜆

𝛽𝑐
𝑒𝑥𝑝{−(𝛽−

𝜆

𝑐
)𝑢}

                                                                                  (8) 
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Since it is a well-defined and definite integral, under the assumption of Leibniz rule, we may 

interchange of a derivative and an integral. Thus, we derive the formula for  𝜓𝑑(𝑢, 𝑡) as follow: 
 

𝜓𝑑(𝑢, 𝑡) =
(−

1

𝜋
∫

(𝜕𝑓1(𝑥,𝑡)/𝜕𝑡)𝑓2(𝑥)

𝑓3(𝑥)
𝑑𝑥

𝜋

0
)

𝜆

𝛽𝑐
𝑒𝑥𝑝{−(𝛽−

𝜆

𝑐
)𝑢}

.                                                                                                  (9) 

  

Then, we take the numerical integral to obtain the probabilities based on the density function. 

Table 1 presents the exact values of the density of the time of ruin obtained from Dickson [8] 

which is given as 𝑤𝑐(𝑢, 𝑡) and the values obtained from the density function we derived, 𝜓𝑑(𝑢, 𝑡) 

for 𝑢 =  40,  𝛽 = 1 and c=1.1. 

 

Table 1. Exact values of the density of time of ruin 
 

t 𝑤𝑐(40, 𝑡) 𝜓𝑑(40, 𝑡) 

5 0.00000000 0.00000000 

10 0.00000026 0.00000026 

20 0.00001227 0.00001227 

50 0.00047403 0.00047403 

100 0.00185866 0.00185866 

200 0.00241480 0.00241480 

300 0.00182732 0.00182732 

400 0.00125698 0.00125698 

500 0.00085022 0.00085022 

 

We obtain the same values for different t which proves that our density function is consistent. 

We observe that the probabilities obtained from two densities differ from the fifth decimal point 

for 𝑡 >  500. While density 𝑤𝑐(𝑢, 𝑡) is only valid for exponential claim amounts, 𝜓𝑑(𝑢, 𝑡) can be 

derived for other claim amount distributions. Figure 1 presents the graph of the density function 

obtained from 𝜓𝑑(40, 𝑡). 

 

 
 

Figure 1. The density of time of ruin 
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3.2. Expected Time of Ruin 

 

Dickson [8] introduces the random variable 𝑇𝑢, denoting the time of ruin, and calculates the 

expected time of ruin, given that ruin occurs as: 
 

𝐸[𝑇𝑢,𝑐] =
𝑅0

′

𝛽 − 𝑅0
+ 𝑅0

′ 𝑢, 
 

              =
𝑐 + 𝜆𝑢

𝑐(𝑐𝛽 − 𝜆)
. 

 

where 𝑇𝑢,𝑐  =  𝑇𝑢|𝑇𝑢  < ∞ and 𝑅0
′ = 𝜆 𝑐(𝑐𝛽 − 𝜆)⁄ . We derive the expected time of ruin, 

𝐸[𝑇𝑢], by using our density function which is introduced in Section 3.1, 𝜓𝑑(𝑢, 𝑡), as below. 

𝐹𝑢(𝑡) is the distribution function of  𝜓𝑑(𝑢, 𝑡) where: 
 

𝐹𝑢(𝑡) = ∫ 𝜓𝑑(𝑢, 𝑘) 𝑑𝑘     
𝑡

0
                                                                                                            (10) 

 

Substituting equation (9) into equation (10), we obtain 
 

𝐹𝑢(𝑡) =
−1

𝜋𝜓(𝑢)
[∫

𝑓2(𝑥)

𝑓3(𝑥)
[𝑓1(𝑥, 𝑡) − 𝑓1(𝑥, 0)]

𝜋

0
𝑑𝑥].                                                                          (11) 

 

Then the expected time of ruin, [𝑇𝑢,𝑑] is 
 

𝐸[𝑇𝑢,𝑑] =  𝐸[𝑇𝑢|𝑇𝑢  <  ∞] =
∫ (1−𝐹𝑢(𝑡))𝑑𝑡

∞

0

1−𝐹𝑢(𝑡)
,                                                                                 (12) 

    

where 𝐹𝑢(𝑡) is obtained as in equation (11) and 𝐸[𝑇𝑢,𝑑] is 
 

𝐸[𝑇𝑢,𝑑] =
1

𝜋 𝜓(𝑢)
∫

𝑓2(𝑥)

𝑓3(𝑥)
[∫ 𝑓1(𝑥, 𝑡)𝑑𝑡

∞

0
]𝑑𝑥,   

𝜋

0
                                                                              (13) 

   

Equation (13) seems complicated, however taking the numerical integral with respect to x is 

straightforward using programming languages. Table 2 and Figure 2 present the expected time of 

ruin for different initial surpluses. Both indicate that as initial surplus increases, the expected time 

of ruin increases. Although it is not obvious from equation (13), there is almost a linear 

relationship between the initial surplus and the expected time of ruin. 

 

 
 

Figure 2. Expected time of Ruin 𝐸[𝑇𝑢,𝑑]  
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Table 2. Expected Time of Ruin 
 

u 𝐸[𝑇𝑢,𝑑] 

1 19.09 

5 55.45 

10 100.91 

15 146.36 

20 191.82 

25 237.27 

50 464.55 

75 691.82 

100 919.09 

200 1828.18 

       

3.3. Expected Conditional Time of Ruin 

 

As we explained in Section 1, we propose a general formula (or a function) for the probability 

of the conditional expected time of ruin. Based on previous studies of Young [18], Moore and 

Young [19] and Weert et al. [26], conditional time of ruin has an important field of application in 

pension and investment. We believe that the scope is wider because the conditional time of ruin is 

a substantial information for any company and financial institution. This is the principal 

motivation to derive a density function for finite time ruin probability for different claim amount 

distributions. The expected conditional time of ruin given that ruin does not occur until time t, 

𝐸[𝑇𝑢,𝑡] is: 
 

𝐸[𝑇𝑢,𝑡] =  𝐸[𝑇𝑢 − 𝑡|𝑇 𝑢 >  𝑡] =
∫ (1−𝐹𝑢(𝑘))𝑑𝑘

∞

𝑡

1−𝐹𝑢(𝑡)
,                                                                           (14) 

 

which leads to 
 

𝐸[𝑇𝑢,𝑡] =
−𝑡+

1

𝜋𝜓(𝑢)
∫

𝑓2(𝑥)

𝑓3(𝑥)
[∫ 𝑓1(𝑥,𝑡)𝑑𝑡

∞

𝑡
]𝑑𝑥

𝜋

0

1+
1

𝜋𝜓(𝑢)
[∫

𝑓2(𝑥)

𝑓3(𝑥)
[𝑓1(𝑥,𝑡)−𝑓1(𝑥,0)]𝑑𝑥

𝜋

0
]
.                                                                                     (15) 

 

When we take the numerical integral in equation (15), we obtain the expected conditional 

time of ruin. Table 3 and Figure 3 present the expected conditional time of ruin for initial surplus, 

𝑢 = 25. As time t increases, the expected conditional time of ruin decreases and there is almost a 

linear relationship between time and the expected conditional time of ruin. When 𝑡 = 0, the 

expected conditional time of ruin is equal to the expected time of ruin. Thus, Table 2 and Table 3 

give the same result, 237.27 for 𝑢 = 25 and 𝑡 = 0. 

 

Table 3. Expected conditional time of ruin 
 

t 𝐸[𝑇𝑢,𝑑] 

0 237.27 

1 235.27 

5 227.27 

10 217.27 

15 207.28 

25 187.33 

50 138.32 

75 91.49 

100 47.22 

 

The Force of Ruin      /   Sigma J Eng & Nat Sci 36 (2), 563-575, 2018 



570 

 

 
 

Figure 3. Expected conditional time of ruin 𝐸[𝑇𝑢,𝑑] 

 

4. FORCE OF RUIN 

 

We take our study one step further and derive a formula to calculate the conditional ruin 

probability for small time intervals ∆𝑡 given that the ruin does not occur until a time point, 𝑡. We 

achieve this by defining a hazard rate function based on the density, 𝜓𝑑(𝑢, 𝑡). We call this hazard 

rate function as force of ruin akin to the force of mortality in survival analysis. Therefore, we 

derive a conditional (instantaneous) probability of ruin and the condition is that ruin has not 

occurred at time t. By introducing the force of ruin, we build a bridge between the risk theory and 

survival analysis. The force of ruin is treated as a similar way to the force of mortality. 

 

4.1. Hazard Rate Function 

 

Let T be a continuous lifetime random variable with a cumulative distribution function F and 

a probability density function f. Consider an interval of time (𝑡, 𝑡 + ∆𝑡] and we are interested in 

the probability of failure in this interval given that it did not occur before in [0, 𝑡]. This 

probability can be interpreted as the risk of failure in (𝑡, 𝑡 + ∆𝑡] given the stated condition, i.e.,   
 

Pr[𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡 | 𝑇 > 𝑡] =
Pr[𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡]

Pr[𝑇 > 𝑡]
=

𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)

𝐹(𝑡)
 

 

and its limit when ∆𝑡 ⟶0 gives the hazard rate function, denoted by ℎ(𝑡) [11]. 
 

ℎ(𝑡) = lim
∆𝑡→0

Pr[𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡 | 𝑇 > 𝑡]

∆𝑡
 

   = lim∆𝑡→0
𝐹(𝑡+∆𝑡)−𝐹(𝑡)

𝐹(𝑡) ∆𝑡
=

𝑓(𝑡)

𝐹(𝑡)
.                                                                                                    (16) 

 

The hazard rate function is also called failure rate function, intensity rate function, force of 

defaults and force of mortality [25]. 

 

4.2. Force of Ruin 

 

We use the exact finite time ruin probability formula to derive the force of ruin, 𝜓(𝑢, 𝑡, Δ𝑡), 

which is defined as 
 

 𝜓 (𝑢, 𝑡, Δ𝑡) =
𝜓𝑑(𝑢,𝑡+Δ𝑡)

1−𝐹𝑢(𝑡)
 ,                                                                                                             (17) 
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where  𝜓𝑑(𝑢, 𝑡) is given in equation (9) and we put (𝑡 + Δ𝑡) instead of 𝑡. Thus, based on 

equation (17), we derive the formula for 𝜓(𝑢, 𝑡, Δ𝑡) by using equation (9) and the denominator of 

equation (15). 
 

𝜓(𝑢, 𝑡, Δ𝑡) =
𝜓𝑑(𝑢,𝑡+Δ𝑡)

1+
1

𝜋𝜓(𝑢)
[∫

𝑓2(𝑥)

𝑓3(𝑥)

𝜋

0
[𝑓1(𝑥,𝑡)−𝑓1(𝑥,0)]𝑑𝑥]

.                                                                               (18) 

     

Then, we take the numerical integral for various 𝜆, 𝜃 and 𝑢 values. The 𝜓(𝑢, 𝑡, Δ𝑡) is a hazard 

rate function which must be non-negative, 𝜓(𝑢, 𝑡, 𝛥𝑡) ≥ 0 and non-decreasing. 

Table 4 presents the mean, variance and skewness of 𝜓(𝑢, 𝑡, Δ𝑡)𝑠 for 𝑢 =  10, 𝑢 =  25 and 

𝑢 =  50. We divide each time interval into 1000; thus take Δ𝑡 = 0.001 and calculate the 

descriptive statistics for the force of ruin from 𝑡 =  1 to 𝑡 =  10. Mean values indicate that as 𝑡 

increases the force of ruin increases, while as initial surplus u increases the force of ruin 

decreases. The variances are quite small and very close to zero. The skewness of the force of ruin 

is relatively high for small 𝑡 and large 𝑢 but not significantly different from zero. 

 

Table 4. Force of Ruin 
 

𝜓(𝑢, 𝑡, Δ𝑡) 

𝜆 = 1, 𝜃 = 0.1 

 u=10 u=25 u=50 

t Mean Var Skewness Mean Var Skewness Mean Var Skewness 

1 2.33E-05 2.86E-11 3.65E-02 8.48E-10 2.41E-19 5.40E-01 3.37E-17 1.31E-34 8.29E-01 
2 4.25E-05 2.94E-11 -2.58E-02 4.47E-09 3.11E-18 3.59E-01 2.11E-16 1.59E-32 7.37E-01 

3 6.09E-05 2.35E-11 -5.59E-02 1.46E-08 1.83E-17 2.53E-01 1.63E-15 7.72E-31 5.90E-01 
4 7.70E-05 1.64E-11 -7.40E-02 3.60E-08 6.84E-17 1.98E-01 9.29E-15 1.77E-29 4.86E-01 

5 9.04E-05 1.05E-11 -8.74E-02 7.39E-08 1.90E-16 1.55E-01 4.00E-14 2.37E-28 4.10E-01 

6 1.01E-04 6.24E-12 -9.95E-02 1.34E-07 4.26E-16 1.24E-01 1.40E-13 2.16E-27 3.52E-01 
7 1.10E-04 3.45E-12 -1.13E-01 2.19E-07 8.20E-16 1.01E-01 4.14E-13 1.46E-26 3.07E-01 

8 1.17E-04 1.74E-12 -1.32E-01 3.35E-07 1.40E-15 8.28E-02 1.08E-12 7.78E-26 2.71E-01 

9 1.22E-04 7.68E-13 -1.62E-01 4.82E-07 2.19E-15 6.85E-02 2.53E-12 3.43E-25 2.41E-01 
10 1.25E-04 2.65E-13 -2.22E-01 6.63E-07 3.17E-15 5.70E-02 5.44E-12 1.29E-24 2.17E-01 

 

Figure 4 illustrates the expected force of ruin from 𝑡 = 1 to 𝑡 = 10 for initial surpluses, 

𝑢 = 10, 𝑢 = 15, 𝑢 = 25 and 𝑢 = 50 on four different scales. Those scales enable us to present 

each graph on their own y-axes and observe the shape of the hazard rate functions better. All four 

functions are increasing. However, while the shape of the force of ruin function for 𝑢 = 10 is 

concave, the shape for the function 𝑢 = 15 is quite flat and the shape for the functions for 𝑢 = 25 

and 𝑢 = 50 are convex. The evolution of the functions proves that as initial surplus increases the 

increase in the force of ruin decreases. 
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Figure 4. Force of ruin, 𝜓(𝑢, 𝑡, Δ𝑡) 

 

5. REINSURANCE AND THE FORCE OF RUIN 

 

We use the excess of loss reinsurance arrangement to illustrate the effect of the reinsurance on 

the force of ruin. 

 

5.1. Excess of Loss Reinsurance 

 

The insurer and the reinsurer’s expected individual claim amounts are calculated according to 

a constant retention level 𝑀 under an excess of loss reinsurance arrangement. When a claim 𝑋 

occurs, the insurer pays 𝑌 =  𝑚𝑖𝑛(𝑋, 𝑀) and the reinsurer pays 𝑍 =  𝑚𝑎𝑥(0, 𝑋 − 𝑀) with 

𝑋 =  𝑌 +  𝑍. Hence, the distribution function of Y , 𝐹𝑌 (𝑥), is  
 

𝐹𝑌(𝑥) = {
𝐹𝑋(𝑥)     𝑓𝑜𝑟    𝑥 < 𝑀,
1          𝑓𝑜𝑟     𝑥 ≥ 𝑀,

 
 

and the moments of 𝑌 are 
 

𝐸[𝑌𝑛] = ∫ 𝑥𝑛𝑓(𝑥)𝑑𝑥 + 𝑀𝑛(1 − 𝐹(𝑀)).   
𝑀

0
                                                                               (19) 

 

Similarly, the moments of 𝑍 are 
 

𝐸[𝑍𝑛] = ∫ (𝑥 − 𝑀)𝑛𝑓(𝑥) 𝑑𝑥.  
∞

𝑀
                                                                                                  (20) 

 

In the classical risk model, it is assumed that the number of claims has a Poisson distribution 

with parameter 𝜆. According to the expected value premium principle with the insurance loading 

factor 𝜃 and the reinsurance loading factor 𝜉, the insurer’s premium income per unit time after the 

reinsurance premium (i.e. net of reinsurance) is defined as 
 

𝑐∗ = (1 + 𝜃) λ 𝐸[𝑋] − (1 + 𝜉) λ 𝐸[𝑍],                                                                                        (21) 
 

where we assume that 𝜉 ≥ 𝜃 > 0  and 𝑐∗ > 𝐸[𝑌]. 
The finite time ruin probability for the exponential claim amounts with parameter 𝛽 = 1 can 

be obtained by using equation (2) and equation (3). We use the net of reinsurance premium 

instead of the premium rate per unit time. The expected individual claim amount of the insurance 

company will change according to the retention level 𝑀. The expected individual claim amount 

for the insurance company 𝐸[𝑋𝐼] and the reinsurance company 𝐸[𝑋𝑅] are obtained as follows 
 

𝐸[𝑋𝐼] =
1 − exp (−𝛽𝑀)

𝛽
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and 
 

𝐸[𝑋𝑅] =
exp (−𝛽𝑀)

𝛽
 

 

where 𝐸[𝑋𝐼 ] +  𝐸[𝑋𝑅] = 1 𝛽⁄ . 

Figure 5 shows the values of the force of ruin from 𝑡 = 1 to 𝑡 = 10 for a fix initial surplus 

𝑢 = 25  but different retention levels, 𝑀 = 0.5, 𝑀 = 2.5, 𝑀 = 7.5. As the retention level 

increases, the force of ruin increases. When we compare Figure 4 and Figure 5 for 𝑢 = 25, we see 

that having an excess of loss reinsurance arrangement does not always reduce the force of ruin for 

the insurance company. The probabilities are lower for 𝑀 = 0.5 but higher for 𝑀 = 2.5, 𝑀 = 7.5 

under the reinsurance arrangement. This result indicates that the force of ruin might be considered 

as a criterion to decide the optimal retention level for reinsurance arrangements. 

 

 
 

Figure 5. Force of ruin for different retention levels,  𝜓 (𝑢, 𝑡, Δ𝑡) 

 

Figure 6 illustrates the force of ruin from 𝑡 = 1 to 𝑡 = 10 for different initial surpluses, 

𝑢 = 10; 𝑢 = 15; 𝑢 = 25, 𝑢 = 50 and different retention levels, M = 1, M = 1.5, 𝑀 =  2.5 and 

𝑀 = 5 on four different y−axes. The retention level has been chosen as 10% of the initial surplus. 

 

 
 

Figure 6. Force of ruin for different initial surplus and retention levels,  𝜓 (𝑢, 𝑡, Δ𝑡) 
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Figure 6 shows that the increase in the initial surplus leads a decrease in the force of ruin as in 

Figure 4. Thus, the existence of reinsurance does not make a difference considering the initial 

surplus and the force of ruin relation. As time increases, the force of ruin increases. However, the 

reinsurance arrangement affects the shape of the hazard rate functions by changing the slope of 

the curves. The slopes of the force of ruin functions decrease as the initial surpluses increase 

under the excess of loss reinsurance arrangement. When we compare Figure 4 and Figure 6, we 

see that for 𝑢 = 10, 𝑢 = 15, 𝑢 = 25 the values of the force of ruin are lower, for 𝑢 = 50 the 

values of the force of ruin are higher under reinsurance arrangement. This result indicates that the 

effect of the reinsurance on the force of ruin is determined by both the initial surplus and retention 

level. The existence of excess of loss reinsurance decreases the force of ruin as initial surplus 

increases assuming that the retention level is some proportion of the initial surplus. However, we 

see that the force of ruin function for 𝑢 = 50 and 𝑀 = 5 does not follow this conclusion. This 

means that not only the proportional relation between the initial surplus and the retention level, 

but also the value of the retention level determines the force of ruin. This finding confirms that 

the force of ruin might be considered as a criterion to decide the optimal retention levels for the 

excess of loss reinsurance arrangements. 

 

6. CONCLUSIONS 

 

In this paper, we derived a hazard rate function based on the exact finite time ruin probability 

formula proposed by Asmussen [1] to obtain the probabilities for conditional time of ruin. First, 

we derived the density for the time of ruin based on exponential claim amounts. Besides being 

consistent with the other density functions for the time of ruin in the literature, our approach is 

applicable to the other claim amount distributions. Then we calculated the expected time of ruin 

and conditional expected time of ruin. Following the idea of Weert et al. [26], we obtained the 

probabilities for the conditional time of ruin but we proposed a different method by deriving the 

hazard rate function which we call the force of ruin. Proposing a hazard rate function to find the 

instantaneous ruin probabilities is the main contribution of our study. We analysed the behaviour 

of the force of ruin function based on numerical results. The force of ruin increases as time 

increases and decreases as the initial surplus increases. Although it is non-decreasing, the shape of 

the force of ruin function differs significantly based on initial surpluses. We also investigated the 

effect of an excess of loss reinsurance arrangement on the force of ruin. Our findings suggest that 

the force of ruin might be considered as a criterion to find the optimal retention level but this is 

left as a further research. 
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