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ABSTRACT 
 
The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation 
using Mindlin’s theory with shear locking free fourth order finite element, to determine the effects of the 
thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the 
frequency paramerets of thick plates subjected to free vibration. In the analysis, finite element method is used 
for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using 
second order displacement shape functions. A computer program using finite element method is coded in C++ 
to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 8-noded finite 
element is used. Graphs are presented that should help engineers in the design of thick plates subjected to 
earthquake excitations. It is concluded that 8-noded finite element can be effectively used in the free vibration 
analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more 
effective on the maximum responses considered in this study than the changes in the aspect ratio 
Keywords: Free vibration parametric analysis, thick plate, mindlin’s theory, second order finite element, 
winkler foundation. 
 
 
1. INTRODUCTION 
 

Plates are structural elements which are commonly used in the building industry. A plate is 
considered to be a thin plate if the ratio of the plate thickness to the smaller span length is less 
than 1/20; it is considered to be a thick plate if this ratio is larger than 1/20 [1]. 

The dynamic behavior of thin plates has been investigated by many researchers [2- 17]. There 
are also many references on the behavior of the thick plates subjected to different loads. The 
studies made on the behavior of the thick plates are based on the Reissner-Mindlin plate theory 
[18, 19, 20, 21]. This theory requires only C0 continuity for the finite elements in the analysis of 
thin and thick plates. Therefore, it appears as an alternative to the thin plate theory which also 
requires C1 continuity. This requirement in the thin plate theory is solved easily if Mindlin theory 
is used in the analysis of thin plates. Despite the simple formulation of this theory, discretization 
of the plate by means of the finite element comes out to be an important parameter. In many 
cases, numerical solution can have lack of convergence, which is known as “shear-locking”. 
Shear locking can be avoided by increasing the mesh size, i.e. using finer mesh, but if the 
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thickness/span ratio is “to o small”, convergence may not be achieved even if the finer mesh is 
used for the low order displacement shape functions. 

In order to avoid shear locking problem, the different methods and techniques, such as 
reduced and selective reduced integration, the substitute shear strain method, etc., are used by 
several researchers [22, 23, 24, 25, 26]. The same problem can also be prevented by using higher 
order displacement shape function [27, 28]. Wanji and Cheung [29] proposed a new quadrilateral 
thin/thick plate element based on the Mindlin-Reissner theory. Soh et al. [30] improved a new 
element ARS-Q12 which is a simple quadrilateral 12 DOF plate bending element based on 
Reissner-Mindlin theory for analysis of thick and thin plates. Brezzi and Marini [31] developped a 
locking free nonconforming element for the Reissner-Mindlin plate using discontinuous Galarkin 
techniques. Belounar and Guenfound [32] improved a nev rectangular finite element based on the 
strain approach and the Reissner-Mindlin theory is presented for the analysis of plates in bending 
either thick or thin. Vibration analysis made by Senjanovic et al. [33], in the paper the modified 
Mindlin theory is used for the construction of the dynamic stiffness matrix, the flexibility matrix, 
and the transfer matrix of a thick plate simply supported at two opposite edges. They presented 
natural frequencies and modes of panel Mindlin plates. Si et al. [16] studied vibration analysis of 
rectangular plates with one or more guided edges via bicubic B-spline method, Cen et al. [34] 
developped a new high performance quadrilateral element for analysis of thick and thin plates. 
This distinguishing character of the new element is that all formulations are expressed in the 
quadrilateral area co-ordinate system. Shen et al. [35] studied free and forced vibration of 
Reissner-Mindlin plates with free edges resting on elastic foundations. Woo et al. [36] found 
accurate natural frequencies and mode shapes of skew plates with and without cutouts by p-
version finite element method using integrals of Legendre polynomial for p=1-14. Qian et al. [37] 
studied free and forced vibrations of thick rectangular plates using higher-order shear and normal 
deformable plate theory and meshless Petrov-Galarkin method. Özdemir and Ayvaz [38] studied 
shear locking free earthquake analysis of thick and thin plates using Mindlin’s theory. GuangPeng 
et al. [39] studied free vibration analysis of plates on Winkler elastic foundation by boundary 
element method. Fallah et. al. [40] analyzed free vibration of moderately thick rectangular FG 
plates on elastic foundation with various combinations of simply supported and clamed boundary 
conditions. Governing equations of motion were obtained based on the Mindlin plate theory. 
Jahromi et al. [41] analyzed free vibration analysis of Mindlin plates partially resting on 
Pasternak foundation. The governing equations which consist of a system of partial differential 
equations are obtained based on the first-order shear deformation theory. Özgan and Daloğlu [42] 
studied free vibration analysis of thick plates on elastic foundations using modified Vlasov model 
with higher order finite elements, also same writers [43] studied the effects of various parameters 
such as the aspect ratio, subgrade reaction modulus and thickness/span ratio on the frequency 
parameters of thick plates resting on Winkler elastic foundations.  

The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler 
foundation using Mindlin’s theory with second order finite element, to determine the effects of 
the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions 
on the frequency paramerets of thick plates subjected to free vibration. A computer program using 
finite element method is coded in C++ to analyze the plates free, clamped or simply supported 
along all four edges. In the program, the finite element method is used for spatial integration. 
Finite element formulation of the equations of the thick plate theory is derived by using higher 
order displacement shape functions. In the analysis, 8-noded finite element is used to construct 
the stiffness and mass matrices of the thick and thin plates [27].  
 
2. MATHEMATICAL MODEL  
 

The governing equation for a flexural plate (Fig. 1) subjected to free vibration without 
damping can be given as 
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      0wKwM                                              (1) 
 

where [K] and [M] are the stiffness matrix and the mass matrix of the plate, respectively, w 

and w are the lateral displacement and the second derivative of the lateral displacement of the 
plate with respect to time, respectively., 

 

 
 

Figure 1. The sample plate used in this study 
 

The total strain energy of plate-soil-structure system (see Fig. 1) can be written as; 
 

П= Пp+ Пs+ V                                                                                                (2) 
 

where Пp is the strain energy in the plate, 
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where Пs is the strain energy stored in the soil, 
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and V is the potential energy of the external loading; 
 

V=- A Awdq                                                      (5) 
 

In this equation  EandE  are the elasticity matrix and these matrices are given below at Eq. 

(17), q  shows applied distributed load. 

 
2.1. Evaluation of the stiffness matrix 
 

The total strain energy of the plate-soil system according to Eq. (2) is; 
 

z 

y 
x

xi 
w

yi i 

kw 
a 

b 

t 

Parametric Eigenvalue Analysis of Mindlin Plates    …      /   Sigma J Eng & Nat Sci 36 (1), 191-206, 2018



194 

 
 

Ue A

A

yxyx
T

yxyx d
xyyx

E
xyyx2

1
=  






















































   +

A

A

yx

T

yx d
y

w

x

w
E

y

w

x

w

2

k
 






























  +

    A
A

y,x
T

y,x dww
2

1
                                                                                                         (6) 

 

At this equation the first and second part gives the conventional element stiffness matrix of 
the plate, [kp

e], differentiation of the third integral with respect to the nodal parameters yields a 
matrix, [kw

e], which accounts for the axial strain effect in the soil. Thus the total energy of the 
plate-soil system can be written as; 
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where  
 

   Txnynn1x1y1e w...ww                                     (8) 
 

Assuming that in the plate of Fig. 1 u and v are proportional to z and that w is the independent 
of z [21], one can write the plate displacement at an arbitrary x, y, z in terms of the two slopes and 
a displacement as follows; 

 

ui={w, v, u}={w0(x,y,t), zφy (x,y,t), -zφx (x,y,t)}                                                              (9) 
 

where w0 is average displacement of the plate, and φx and φy are the bending slopes in the x 
and y directions, respectively. 

The nodal displacements for 8-noded finite element (MT8) (Fig. 2) can be written as follows; 
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The displacement function chosen for this element is; 
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From this assumption, it is possible to derive the displacement shape function to be [38]; 
 

]h,h ,h ,h ,h,h ,h ,[hh 87654321                                                             (12) 
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Figure 2. 8- noded finite element(second order),used in this study [47]. 
 

Then, the strain-displacement matrix [B] for this element can be written as follows [44]: 
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The stiffness matrix for MT8 element can be obtained by the following equation [44]: 
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which must be evaluated numerically [26].  
As seen from Eq. (14), in order to obtain the stiffness matrix, the strain-displacement matrix, 

[B], and the flexural rigidity matrix, [D], of the element need to be constructed 
The flexural rigidity matrix, [D], can be obtained by the following equation. 
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In this equation, [ kE ] is of size 3x3 and [ E ] is of size 2x2. [ kE ], and [ E ] can be 

written as follows [45, 47]: 
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where E, υ, and t are modulus of the elasticity, Poisson’s ratio, and the thickness of the plate, 
respectively, k is a constant to account for the actual non-uniformity of the shearing stresses. By 
assembling the element stiffness matrices obtained, the system stiffness matrix is obtained. 

 
2.2. Evaluation of the mass matrix 
 

The formula for the consistent mass matrix of the plate may be written as 
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In this equation,  is the mass density matrix of the form [46]: 
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where m1=pt, m2=m3=  3
p t

12

1
 , and p is the mass densities of the plate. and Hi can be 

written as follows, 
 

  .8...1ihdy/dhdx/dhH iiii  .                    (19) 
 

It should be noted that the rotation inertia terms are not taken into account. By assembling the 
element mass matrices obtained, the system mass matrix is obtained. 

 
2.3. Evaluation of frequency of plate 
 

The formulation of lateral displacement, w, can be given as motion is sinusoidal; 
 
 

w= W sin ωt                                                                                               (20) 
 

Here ω is the circular frequency. Substitution of Eq. (20) and its second derivation into Eq. 
(1) gives expression as; 

 

[K- ω2 M] {W}=0                                                                                             (21) 
 

Eq. (21) is obtained to calculate the circular frequency, ω, of the plate. Then natural frequency 
can be calculated with the formulation below; 

 

f= ω /2π                                                                                               (22) 
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3. NUMERICAL EXAMPLES 
 
3.1. Data for numerical examples 
 

In the light of the results given in references [27, 28, 38], the aspect ratios, b/a, of the plate are 
taken to be 1, 1.5, and 2.0. The thickness/span ratios, t/a, are taken as 0.01, 0.05, 0.1, 0.2, and 0.3 
for each aspect ratio. The shorter span length of the plate is kept constant to be 10 m. The mass 
density, Poisson’s ratio, and the modulus of elasticity of the plate are taken to be 2.5 kN s2/m2, 
0.2, and 2.7x107 kN/m2. Shear factor k is taken to be 5/6. The subgrade reaction modulus of the 
Winkler-type foundation is taken to be 500 and 5000 kN/m3. 

For the sake of accuracy in the results, rather than starting with a set of a finite element mesh 
size, the mesh size required to obtain the desired accuracy were determined before presenting any 
results. This analysis was performed separately for the mesh size. It was concluded that the results 
have acceptable error when equally spaced 4x4 mesh size for 17-noded elements are used for a 10 
m x 10 m plate. Length of the elements in the x and y directions are kept constant for different 
aspect ratios as in the case of square plate.  

In order to illustrate that the mesh density used in this paper is enough to obtain correct 
results, the first six frequency parameters of the thick plate with b/a=1 and t/a=0.05 is presented in 
Table 1 by comparing with the result obtained SAP2000 program and the results Özgan and 
Daloğlu [2015]. In this study Özgan and Daloğlu used 4-noded and 8-noded quadrilateral finite 
element with 10x10 and 5x5 mesh size. It should be noted that the results presented for MT8 
element are obtained by using equally spaced 2x2, 4x4 and 8x8 mesh sizes. As seen from Table 1, 
the results obtained by using 8-noded quadrilateral finite element have excellent agreement with 
the results obtained by Özgan and Daloğlu [2015] and SAP200 even if 2x2 mesh size is used for 
MT8 element. 

 
3.2. Results 
 

The first six frequency parameters of thick plate resting on Winkler foundation with free 
edges are compared with the same thick plate modeled by Ozgan and Daloğlu (2010) and 
SAP2000 program and it is presented in Table1. The subgrade reaction modulus of the Winkler-
type foundation for this example is taken to be 5000 kN/m3. This thick plate is modeled with MT8 
element 8x8 mesh size for b/a=1.0, t/a=0.05 ratios.  

As seen from Tables 1, the values of the frequency parameters of these analyses are so close 
even if this study mesh size is so poor. And also SAP2000 analysis made by first order finite 
element, writer is use second order finite element as before explained. Then writers enlarged 
parameters of aspect ratio, b/a, thickness/span ratio, t/a, for help the researchers. 

The first six frequency parameters of thick plates resting on Winkler foundation considered 
for different aspect ratio, b/a, thickness/smaller span ratio, t/a, are presented in Table 2 for the 
with free edges , in Table 3 for thick clamped plates. In order to see the effects of the changes in 
these parameters better on the first six frequency parameters, they are also presented in Figs 3-4 
for the thick free plates, in Figs 5-6 for the thick clamped plates. 
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Table 1. The first five natural frequency parameters of plates for b/a=0.1 and t/a=0.05. 
 

λi=ω
2 

Ozgan and 
Daloğlu, 2015

PBQ8(FI) 

This Study 

SAP2000 
MT8 

(4 element) 
MT8 

(16 element) 
MT8 

(64 element) 

1 3990.42 3997.94 3851.64 3962.35 4000.00 

2 3990.42 3997.94 3862.49 3962.35 4000.00 

3 4000.40 4004.04 3862.51 3963.71 4000.00 

4 8676.00 8813.62 8489.34 8597.96 8619.60 

5 13957.64 16817.97 13672.78 13798.20 13292.31 

6 17252.34 22889.28 16822.21 16967.53 16380.24 

 
As seen from Tables 2, and Figs. 3, except the value of t/a 0.05,the values of the first six 

frequency parameters for a constant value of t/a decreases as the aspect ratio, b/a, increases. For 
t/a 0.05 the results are the opposite. 

 
Table 2. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters of 

the thick free plates resting on elastic foundation. 
 

a)Subgrade reaction modulus k=500 

k b/a t/a 
λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

500 

1.0 

0.05 373 390 390 5042 10254 13428 
       

0.10 218 218 225 17542 37640 49454 
       

0.20 69 69 73 58673 126701 164565 
        

2.0 

0.05 369 377 386 1087 1532 5752 
       

0.10 218 223 226 2999 4558 20459 
       

0.20 67 72 72 10634 15462 68549 
        

b)Subgrade reaction modulus k=5000 

k b/a t/a 
λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

5000 

1.0 

0.05 3962 3962 3964 8598 13798 16968 
       

0.10 1996 1996 2006 19316 39376 51187 
       

0.20 937 937 967 59525 127495 165364 
        

2.0 

0.05 3962 3962 3963 4664 5102 9318 
       

0.10 1993 2002 2003 4770 6335 22226 
       

0.20 934 959 964 11498 16326 69399 
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Table 3. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters of 
the thick clamped plates resting on elastic foundation. 

 

a)Subgrade reaction modulus k=500 

k b/a t/a 
λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

500 

1.0 

0.05 29759 120226 120226 252899 377489 382001 
       

0.10 102044 376857 376857 745179 1050457 1069678 
       

0.20 278637 864190 864190 1568800 2053714 2110595 
        

2.0 

0.05 14250 23434 4562 90194 92812 113158 
       

0.10 49981 81613 155628 295807 296925 357465 
       

0.20 278307 861812 863825 1566356 2045759 2103845 
        

b)Subgrade reaction modulus k=5000 

k b/a t/a 
λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

5000 

1.0 

0.05 33343 123791 123791 256447 381027 385540 
       

0.10 103782 378568 378568 746871 1052140 1071364 
       

0.20 279493 865025 865025 1569623 2054527 2111418 
        

2.0 

0.05 17840 27018 49199 93760 96382 116723 
       

0.10 51728 83350 157352 297524 298634 359176 
       

0.20 146447 231679 418269 694223 742664 829834 
        

 
As also seen from Tables 2, and Fig.. 3, the values of the first three frequency parameters for 

a constant value of b/a decrease as the thickness/span ratio, b/a, increases up to the 3rd frequency 
parameters, but after the 3rd frequency parameters, the values of the frequency parameters for a 
constant value of b/a increase as the thickness/span ratio, t/a, increases. 

The decreases in the frequency parameters with increasing value of b/a for a constant t/a ratio 
gets less for larger values of b/a up to the 3rd frequency parameters. After the 3rd frequency 
parameters, the decrase in the frequency parameters with increasing value of b/a for a constant t/a 
ratio gets also less for larger values of b/a. 

The changes in the frequency parameters with increasing value of b/a for a constant t/a ratio  
is larger for the smaller values of the b/a ratios. Also, the changes in the frequency parameters 
with increasing value of b/a for a constant t/a ratio is is less than that in the frequency parameters 
with increasing increasing t/a ratios for a constant valueof b/a. 

These observations indicate that the effects of the change in the t/a ratio on the frequency 
parameter of the plate are generally larger than those of the change in the b/a ratios considered in 
this study. 
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Figure 3. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters of 
the thick free plates with subgrade reaction modulus k=500. 

 
As also seen from Tables 3, and Figure. 4, the curves for a constant value of b/a ratio are 

fairly getting closer to each other as the value of t/a increases up to the 3rd frequency parameters. 
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This shows that the curves of the frequency parameters will almost coincide with each other when 
the value of the ratio of t/a increases more. 

 

  

  

  

 
 

Figure 4. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters of 
the thick free plates with subgrade reaction modulus k=5000. 
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After the 3rd frequency parameters, the curves for a constant value of t/a ratio are fairly getting 
closer to each other as the value of b/a increases. This also shows that the curves of the frequency 
parameters will almost coincide with each other when the value of the ratio of b/a increases more. 

In other words, up to the 3rd ferquency parameters, the increase in the t/a ratio will not affect 
the frequency parameters after a determined value of t/a. After  the 3rd ferquency parameters, the 
increase in the b/a ratio will not affect the frequency parameters after a determined value of b/a. 

As seen from Tables 2, and 3, and Figures. 3, and 4, the values of the frequency parameters 
for a constant value of t/a decrease as the aspect ratio, b/a, increases. This behavior is 
understandable in that a thick plate with a larger aspect ratio becomes more flexible and has 
smaller frequency parameters. The decreases in the frequency parameters with increasing value of 
b/a ratio gets less for a constant value of t/a.  

As seen from Tables 3, and Figures. 4,, the values of the frequency parameters for a constant 
value of b/a increase as the thickness/span ratio, t/a, increases. This behavior is also 
understandable in that a thick plate with a larger thickness/span ratio becomes more rigid and has 
larger frequency parameters. The increases in the frequency parameters with increasing value of 
t/a ratio gets larger for a constant value of b/a. 

 

 
 

Figure 5. The first six mode shapes of the thick free plates for b/a=1.0 and t/a=0.05 with subgrade 
reaction modulus k=5000. 

 
It should be noted that the increase in the frequency parameters with increasing t/a ratios for a 

constant value of b/a ratio gets larger for larger values of the frequency parameters. 

The first mode shape 
(1=3962.35) 

The third mode shape 
(3=3963.71) 

The fifth mode shape 
(5=13798.20) 

The second mode shape 
(2=3962.35) 

The fourth mode shape 
(4=8597.96) 

The sixth mode shape 
(6=16967.53) 
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These observations indicate that the effects of the change in the t/a ratio on the frequency 
parameter of the thick plates clamped along all four edges are always larger than those of the 
change in the aspect ratio. 

 

  
 

Figure 6. The first six mode shapes of the thick clamped plates for b/a=1.0 and t/a=0.05 with 
subgrade reaction modulus k=5000. 

 
As also seen from Figure 4, the curves for a constant value of the aspect ratio, b/a are fairly 

getting closer to each other as the value of t/a decreases. This shows that the curves of the 
frequency parameters will almost coincide with each other when the value of the thickness/span 
ratio, t/a, decreases more. In other words, the decrease in the thickness/span ratio will not affect 
the frequency parameters after a determined value of t/a.  

In this study, the mode shapes of the thick plates are also obtained for all parameters 
considered. Since presentation of all of these mode shapes would take up excessive space, only 
the mode shapes corresponding to the six lowest frequency parameters of the thick plate free, 
clamped along all four edges for b/a = 1 and  t/a = 0.05 are presented. These mode shapes are 
given in Figures 5, and 6, respectively. In order to make the visibility better, the mode shapes are 
plotted with exaggerated amplitudes.  

As seen from these figures, the number of half wave increases as the mode number increases. 
It should be noted that appearances of the mode shapes not given here for the thick plates clamped 
along all four edges are similar to those of the mode shapes presented here.  

 
 

The first mode shape 
(1=33343.05) 

The third mode shape 
(3=123790.51) 

The fifth mode shape 
(5=381026.62) 

The second mode shape 
(2=123790.49) 

The fourth mode shape 
(4=256446.91) 

The sixth mode shape 
(6=385539.73) 
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4. CONCLUSIONS 
 

The purpose of this paper was to study parametric free vibration analysis of thick plates using 
higher order finite elements with Mindlin’s theory and to determine the effects of the 
thickness/span ratio, the aspect ratio and the boundary conditions on the linear responses of thick 
plates subjected to vibration. As a result, free vibration analyze of the thick plates were done by 
using p version serendipity element, and the coded program on the purpose is effectively used. In 
addition, the following conclusions can also be drawn from the results obtained in this study. 

The frequency parameters increases with increasing b/a ratio for a constant value of t/a up to 
the 3rd ferquency parameters, but after that the frequency parameters decrases with increasing b/a 
ratio for a constant value of t/a. 

The frequency parameters decreases with increasing t/a ratio for a constant value of b/a up to 
the 3rd ferquency parameters, but after that the frequency parameters increases with increasing t/a 
ratio for a constant value of b/a. 

The effects of the change in the t/a ratio on the frequency parameter of the thick plate are 
generally larger than those of the change in the b/a ratios considered in this study. 
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