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Abstract. The Berezin transform T̃ and the Berezin radius of an operator T on the reproducing kernel Hilbert
spaceH (Q) over some set Q with the reproducing kernel Kη are defined, respectively, by

T̃ (η) =
〈
T

Kη∥∥∥Kη
∥∥∥ , Kη∥∥∥Kη

∥∥∥
〉
, η ∈ Q and ber(T ) := sup

η∈Q

∣∣∣T̃ (η)
∣∣∣ .

We study several sharp inequalities by using this bounded function T̃ , involving powers of the Berezin radius and
the Berezin norms of reproducing kernel Hilbert space operators. We also give some inequalities regarding the
Berezin transforms of sum of two operators.

2010 AMS Classification: 47A30, 47A63

Keywords: Reproducing kernel Hilbert space, Berezin transform, Berezin radius, Jensen’s inequality, mixed Schwarz
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1. Introduction

In this paper, we present some inequalities for Berezin transforms of some operators on the reproducing kernel
Hilbert space H (Q) over some set Q. By using Berezin transforms, we study several sharp inequalities involving
powers of Berezin radius of some operators.

A reproducing kernel Hilbert space (shortly, RKHS) is the Hilbert space H = H (Q) of complex-valued functions
on some set Q such that:

(a) the evaluation functionals
φη( f ) = f (η), η ∈ Q,

are continuous onH ;
(b) for every η ∈ Q there exists a function fη ∈ H such that fη (η) , 0.
Then, via the classical Riesz representation theorem, we know if H is an RKHS on Q, there is a unique element

Kη ∈ H such that h(η) =
〈
h,Kη

〉
H

for every η ∈ Q and all h ∈ H . The element Kη is called the reproducing kernel at

η. Further, we will denote the normalized reproducing kernel at η as kη := Kη
∥Kη∥
. Let L (H) denote the C∗-algebra of
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all bounded linear operators on a complex Hilbert space (H , ⟨., .⟩) with the identity operator 1H in L (H). The Berezin
transform (symbol) of T is the complex-valued function on Q defined by

T̃ (η) :=
〈
Tkη, kη

〉
,

for an operator T ∈ L (H).
The concept of the Berezin transform was initiated by F. Berezin in [4].
It is obvious that, the Berezin transform T̃ is a bounded function on Q and supη∈Q

∣∣∣T̃ (η)
∣∣∣, which is called the Berezin

radius (number) of operator T [22, 23], does not exceed ∥T∥, i.e.,

ber(T ) := sup
η∈Q

∣∣∣T̃ (η)
∣∣∣ ≤ ∥T∥ .

It is also clear from the definition of Berezin transform that, the range of the Berezin transform T̃ , which is said to
be the Berezin set of operator T , lies in the numerical range W(T ) of operator T , i.e.,

Ber (T ) := Range
(
T̃
)
=

{
T̃ (η) : η ∈ Q

}
⊂ W (T ) := {⟨T x, x⟩ : x ∈ H and ∥x∥ = 1}

which implies that ber(T ) ≤ w (T ) := sup∥x∥=1 |⟨T x, x⟩| (numerical radius of operator T ).
Berezin set and Berezin radius of operators are new numerical characteristics of operators on the RKHS which are

introduced by Karaev in [22]. For the basic properties and facts on these new concepts, see [1, 3, 24, 32].
It is well-known that

ber (T ) ≤ w (T ) ≤ ∥T∥

and
1
2
∥T∥ ≤ w (T ) ≤ ∥T∥ , (1.1)

for any T ∈ L (H). For more information about the numerical radius, one can refer to [6–8, 17, 18, 28, 29, 31].
In [20], Huban et al. gave the following inequality for T ∈ L (H) as :

1
4
∥T ∗T + TT ∗∥ ≤ (ber (T ))2 ≤

1
2
∥T ∗T + TT ∗∥ . (1.2)

Now, let T = T1 + iT2 be the Cartesian decomposition of T . Then T1 and T2 are self-adjoint, and T ∗T + TT ∗ =
2
(
T 2

1 + T 2
2

)
. Thus, the inequalities in (1.2) can be written as

1
4

∥∥∥T 2
1 + T 2

2

∥∥∥
ber ≤ (ber (T ))2 ≤

1
2

∥∥∥T 2
1 + T 2

2

∥∥∥
ber , (1.3)

or equivalently, as

1
4

∥∥∥(T1 + T2)2 + (T1 − T2)2
∥∥∥

ber ≤ (ber (T ))2 ≤
1
2

∥∥∥(T1 + T2)2 + (T1 − T2)2
∥∥∥

ber . (1.4)

Also, Berezin radius inequalities were given by using the other inequalities in [10–12, 14, 15, 34–36].
In the present paper, we investigate considerable generalizations of Berezin radius inequalities by using some clas-

sical convexity inequalities and some RKHS operator inequalities. The related results are obtained in [8].

2. Auxiliary Theorems

In this section, we present some required lemmas and related inequalities.
A simple consequence of the classical Jensen’s inequality says that for T, b ≥ 0, 0 < ζ < 1, ε , 0, Mε (T, b, ζ) =

(ζT ε + (1 − ζ) bε)
1
ε and M0 (T, b, ζ) = T ζb1−ζ , we have

Mε (T, b, ζ) ≤ Mδ (T, b, ζ) (2.1)

for ε ≤ δ [19].
The following inequality is another application of Jensen’s inequality : for T, b ≥ 0, and ε > 0, we have

Nδ (T, b) ≤ Nε (T, b) for δ ≥ ε ≥ 0, (2.2)

where Nε (T, b) = (T ε + bε)
1
ε .
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Lemma 2.1 ( [25]). If T ∈ L (H) , T ≥ 0, and x ∈ H is an any unit vector, then

⟨T x, x⟩ε ≤ ⟨T εx, x⟩ for ε ≥ 1, (2.3)

⟨T εx, x⟩ ≤ ⟨T x, x⟩ε for 0 < ε ≤ 1. (2.4)

Now, we need several well-known lemmas which are respectively the simple consequences of the classical Jensen
and Young inequalities [19]; spectral theorem for positive operators and Jensen’s inequality [25,30]; and the generalized
mixed Schwarz inequality [25].

Lemma 2.2. If T ∈ L (H) is self-adjoint and x ∈ H is an any vector, then

|⟨T x, x⟩| ≤ ⟨|T | x, x⟩ . (2.5)

Lemma 2.3. If T ∈ L (H) and 0 ≤ ζ ≤ 1, then we have

|⟨T x1, x2⟩|
2 ≤

〈
|T |2ζ x1, x1

〉 〈
|T ∗|2(1−ζ) x2, x2

〉
, (2.6)

for all x1, x2 ∈ H .

Lemma 2.4 ( [5]). If T1,T2 ∈ L (H), and T1,T2 ≥ 0, then we have

∥(T1 + T2)ε∥ ≤
∥∥∥T ε1 + T ε2

∥∥∥ for 0 < ε ≤ 1. (2.7)

Lemma 2.5 ( [18]). Let T ∈ L (H). Then,

|⟨T x1, x2⟩|
2 ≤ ⟨|T | x1, x1⟩

1/2 ⟨|T ∗| x2, x2⟩
1/2 , (2.8)

for all x1, x2 ∈ H .

Lemma 2.6 ( [9, 26]). If T1,T2 ∈ L (H), and T1,T2 ≥ 0, then we have∥∥∥T 1/2
1 T 1/2

2

∥∥∥ ≤ ∥T1T2∥
1/2 .

Lemma 2.7 ( [27]). If T1,T2 ∈ L (H), and T1,T2 ≥ 0, then we have

∥T1 + T2∥ ≤
1
2

(
∥T1∥ + ∥T2∥ +

√
(∥T1∥ − ∥T2∥)2 + 4

∥∥∥T 1/2
1 T 1/2

2

∥∥∥2
)
.

3. Generalized Berezin Radius Inequalities

Our refined Berezin radius inequality could be presented like this:

Theorem 3.1. If T ∈ L (H (Q)), then we have

ber (T ) ≤
1
2
∥|T | + |T ∗|∥ber ≤

1
2

(
∥T∥ber +

∥∥∥T 2
∥∥∥1/2

ber

)
. (3.1)

Proof. By the inequality (2.8) and by the AM-GM inequality, we obtain∣∣∣∣〈Tkη, kη
〉∣∣∣∣ ≤ 〈

|T | kη, kη
〉1/2 〈

|T ∗| kη, kη
〉1/2

≤
1
2

(〈
|T | kη, kη

〉
+

〈
|T ∗| kη, kη

〉)
=

1
2

(〈
(|T | + |T ∗|) kη, kη

〉)
.

Thus,

ber (T ) = sup
η∈Q

∣∣∣T̃ (η)
∣∣∣ ≤ 1

2
sup
η∈Q

〈
(|T | + |T ∗|) kη, kη

〉
=

1
2
∥|T | + |T ∗|∥ber .

Applying Lemmas 2.6 and 2.7 to the positive operators |T | and |T ∗|, and using the facts that ∥|T |∥ = ∥|T ∗|∥ = ∥T∥ and
∥|T | |T ∗|∥ =

∥∥∥T 2
∥∥∥ , we have

∥|T | + |T ∗|∥ber ≤ ∥T∥ber +
∥∥∥T 2

∥∥∥1/2
ber

as required. □
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Generalization of the first inequality in (3.1) reveals our second result.

Theorem 3.2. If T ∈ L (H (Q)), 0 < ζ < 1 and ε ≥ 1, then we have

(ber (T ))ε ≤
1
2

∥∥∥|T |2ζε + |T ∗|2(1−ζ)ε
∥∥∥

ber . (3.2)

Proof. Let η ∈ Ω be any number. Then, we get∣∣∣∣〈Tkη, kη
〉∣∣∣∣ ≤ 〈

|T |2ζ kη, kη
〉1/2 〈

|T ∗|2(1−ζ) kη, kη
〉1/2

(by the inequality (2.6))

≤


〈
|T |2ζ kη, kη

〉ε
+

〈
|T ∗|2(1−ζ) kη, kη

〉ε
2


1/ε

(by the inequality (2.1))

≤


〈
|T |2ζε kη, kη

〉
+

〈
|T ∗|2(1−ζ)ε kη, kη

〉
2


1/ε

(by the inequality (2.3))

and ∣∣∣∣〈Tkη, kη
〉∣∣∣∣ε ≤ 1

2

〈(
|T |2ζε + |T ∗|2(1−ζ)ε

)
kη, kη

〉
.

So by taking supremum over η ∈ Q, we deduce

sup
η∈Q

∣∣∣∣〈Tkη, kη
〉∣∣∣∣ε ≤ 1

2
sup
η∈Q

〈(
|T |2ζε + |T ∗|2(1−ζ)ε

)
kη, kη

〉
which is equivalent to

(ber (T ))ε ≤
1
2

∥∥∥|T |2ζε + |T ∗|2(1−ζ)ε
∥∥∥

ber .

This inequality gives the inequality (3.2). □

Generalization of the second inequality in (1.2) comes out our third result.

Theorem 3.3. If T ∈ L (H (Q)), 0 < ζ < 1 and ε ≥ 1, then we have

(ber (T ))2ε ≤
∥∥∥ζ |T |2ε + (1 − ζ) |T ∗|2ε

∥∥∥
ber .

Proof. Let η ∈ Ω be any number. Then we get∣∣∣∣〈Tkη, kη
〉∣∣∣∣2 ≤ 〈

|T |2ζ kη, kη
〉 〈
|T ∗|2(1−ζ) kη, kη

〉
(by the inequality (2.6))

≤
〈
|T |2 kη, kη

〉ζ 〈
|T ∗|2 kη, kη

〉(1−ζ)

(by the inequality (2.4))

≤
(
ζ
〈
|T |2 kη, kη

〉ε
+ (1 − ζ)

〈
|T ∗|2 kη, kη

〉ε)1/ε

(by the inequality (2.1))

≤
(
ζ
〈
|T |2ε kη, kη

〉
+ (1 − ζ)

〈
|T ∗|2ε kη, kη

〉)1/ε

(by the inequality (2.3))

≤
〈(
ζ |T |2ε + (1 − ζ) |T ∗|2ε

)
kη, kη

〉1/ε

and so ∣∣∣∣〈Tkη, kη
〉∣∣∣∣2ε ≤ 〈(

ζ |T |2ε + (1 − ζ) |T ∗|2ε
)

kη, kη
〉

.
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By taking supremum over η ∈ Q above inequality, we reach that

sup
η∈Q

∣∣∣∣〈Tkη, kη
〉∣∣∣∣2ε ≤ sup

η∈Q

〈(
ζ |T |2ε + (1 − ζ) |T ∗|2ε

)
kη, kη

〉
which clearly implies that

(ber (T ))2ε ≤
∥∥∥ζ |T |2ε + (1 − ζ) |T ∗|2ε

∥∥∥
ber .

Then, the desired result has been obtained. □

Our next results are generalizations of the second inequality in (1.3).

Theorem 3.4. If T ∈ L (H (Q)) with the Cartesian decomposition T = T1 + iT2 and 0 < ε ≤ 2, then

(ber (T ))ε ≤ ∥|T1|
ε + |T2|

ε∥ber . (3.3)

Proof. First we prove an inequality stronger than (3.3) for the special case where 1 ≤ ε ≤ 2. Let kη be a normalized
reproducing kernel, and for 1 ≤ ε ≤ 2, we get∣∣∣∣〈Tkη, kη

〉∣∣∣∣ ≤ (〈
T1kη, kη

〉2
+

〈
T2kη, kη

〉2
)1/2

≤

(∣∣∣∣〈T1kη, kη
〉∣∣∣∣ε + ∣∣∣∣〈T2kη, kη

〉∣∣∣∣ε)1/ε
(by the inequality (2.2))

≤
(〈
|T1| kη, kη

〉ε
+

〈
|T2| kη, kη

〉ε)1/ε
(by the inequality (2.5))

≤
(〈
|T1|
ε kη, kη

〉
+

〈
|T2|
ε kη, kη

〉)1/ε
(by the inequality (2.3))

=
(〈

(|T1|
ε + |T2|

ε) kη, kη
〉)1/ε

.

So, we will get a stronger inequality ∣∣∣∣〈Tkη, kη
〉∣∣∣∣ε ≤ 〈

(|T1|
ε + |T2|

ε) kη, kη
〉

,

and so by taking supremum over η ∈ Q above inequality, we deduce

sup
η∈Q

∣∣∣∣〈Tkη, kη
〉∣∣∣∣ε ≤ sup

η∈Q

〈
(|T1|

ε + |T2|
ε) kη, kη

〉
which is equivalent to

berε (T ) ≤ ∥|T1|
ε + |T2|

ε∥ber .

In general, where 0 < ε ≤ 2, we have

berε (T ) ≤
∥∥∥T 2

1 + T 2
2

∥∥∥ ε2 (by the second inequality (1.3))

≤

∥∥∥∥∥(T 2
1 + T 2

2

) ε
2

∥∥∥∥∥
≤ ∥|T1|

ε + |T2|
ε∥ (by the inequality (2.7)),

as required. □

Theorem 3.5. If T ∈ L (H (Q)) with the Cartesian decomposition T = T1 + iT2 and ε ≥ 2, then we have

(ber (T ))ε ≤ 2
ε
2−1 ∥|T1|

ε + |T2|
ε∥ber .
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Proof. Let η ∈ Ω be any number. Then we have

∣∣∣∣〈Tkη, kη
〉∣∣∣∣

√
2

=


〈
T1kη, kη

〉2
+

〈
T2kη, kη

〉2

2


1
2

≤


∣∣∣∣〈T1kη, kη

〉∣∣∣∣ε + ∣∣∣∣〈T2kη, kη
〉∣∣∣∣ε

2


1
ε

(by the inequality (2.1))

≤ 2−
1
ε

(〈
|T1| kη, kη

〉ε
+

〈
|T2|
ε kη, kη

〉) 1
ε

(by the inequality (2.5))

≤ 2−
1
ε

(〈
|T1|
ε kη, kη

〉
+

〈
|T2|
ε kη, kη

〉) 1
ε

(by the inequality (2.3))

= 2−
1
ε

〈
(|T1|

ε + |T2|
ε) kη, kη

〉 1
ε .

Thus, ∣∣∣∣〈Tkη, kη
〉∣∣∣∣ε ≤ 2

ε
2−1

〈
(|T1|

ε + |T2|
ε) kη, kη

〉
and so by taking supremum over η ∈ Q

berε (T ) ≤ 2
ε
2−1 ∥|T1|

ε + |T2|
ε∥ber

as required. □

The following is a generalization of the inequalities in (1.4).

Theorem 3.6. If T ∈ L (H (Q)) with the Cartesian decomposition T = T1 + iT2, and ε ≥ 2, then we have

2−
ε
2−1 ∥(T1 + T2)ε + (T1 − T2)ε∥ber ≤ (ber (T ))ε ≤

1
2
∥(T1 + T2)ε + (T1 − T2)ε∥ber . (3.4)

Proof. The proof essentially depends on some general arguments of Huban et al.’s paper (see Theorem 3.1 in [20]).
Therefore, we have

ber2 (T ) ≥
1
2

∥∥∥(T1 ± T2)2
∥∥∥

ber .

Hence,

berε (T ) ≥ 2−
ε
2
∥∥∥(T1 ± T2)2

∥∥∥ε/2
ber = 2−

ε
2 ∥|T1 ± T2|

ε∥ ,

and so

2berε (T ) ≥ 2−
ε
2 (∥|T1 + T2|

ε∥ber + ∥|T1 − T2|
ε∥ber)

≥ 2−
ε
2 ∥|T1 + T2|

ε + |T1 − T2|
ε∥ber (by the triangle inequality).

Hence,

berε (T ) ≥ 2−
ε
2−1 ∥|T1 + T2|

ε + |T1 − T2|
ε∥ber ,
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which could be shown as a proof of the first inequality in (3.4). In order to proof of the second inequality in (3.4), let
kη be a normalized reproducing kernel. Hence, by the convexity of the function f (x) = x

ε
2 on [0,∞) ,

∣∣∣∣〈Tkη, kη
〉∣∣∣∣ε = (〈

T1kη, kη
〉2
+

〈
T2kη, kη

〉2
) ε

2

= 2−
ε
2

(〈
(T1 + T2) kη, kη

〉2
) ε

2
+ 2−

ε
2

(〈
(T1 − T2) kη, kη

〉2
) ε

2

≤ 2−
ε
2 2

ε
2−1

(∣∣∣∣〈(T1 + T2) kη, kη
〉∣∣∣∣ε + 2−

ε
2

∣∣∣∣〈(T1 − T2) kη, kη
〉∣∣∣∣ε)

≤
1
2

(〈
|T1 + T2| kη, kη

〉ε
+

〈
(|T1 − T2|) kη, kη

〉ε)
(by the inequality (2.5))

≤
1
2

(〈
|T1 + T2|

ε kη, kη
〉
+

〈
(|T1 − T2|

ε) kη, kη
〉)

(by the inequality (2.3))

=
1
2

(〈
(|T1 + T2|

ε + |T1 − T2|
ε) kη, kη

〉)
.

Now, by taking supremum over η ∈ Q, we have

berε (T ) ≤
1
2
∥(T1 + T2)ε + (T1 − T2)ε∥ber

which proves the second inequality in (3.4). Then, the desired result has been obtained. □

Now, we present Berezin norm inequalities and a related Berezin radius inequality.

Theorem 3.7. If T1,T2 ∈ L (H (Q)), 0 < ζ < 1, and ε ≥ 1, then we have

berε (T1 + T2) ≤ 2ε−2
(∥∥∥|T1|

2ζε + |T2|
2ζε

∥∥∥
ber +

∥∥∥∥∣∣∣T ∗1 ∣∣∣2(1−ζ)ε
+

∣∣∣T ∗2 ∣∣∣2(1−ζ)ε
∥∥∥∥

ber

)
. (3.5)

Proof. For any η, τ ∈ Q, we have

∣∣∣∣〈(T1 + T2) kη, kτ
〉∣∣∣∣ ≤ ∣∣∣∣〈T1kη, kτ

〉∣∣∣∣ + ∣∣∣∣〈T2kη, kτ
〉∣∣∣∣

≤

(〈
|T1|

2ζ kη, kη
〉1/2

〈∣∣∣T ∗1 ∣∣∣2(1−ζ)
kτ, kτ

〉1/2

+
〈
|T2|

2ζ kη, kη
〉1/2

〈∣∣∣T ∗2 ∣∣∣2(1−ζ)
kτ, kτ

〉1/2
)

(by the inequality (2.6))
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≤


〈
|T1|

2ζ kη, kη
〉ε
+

〈∣∣∣T ∗1 ∣∣∣2(1−ζ)
kτ, kτ

〉ε
2


1/ε

+


〈
|T2|

2ζ kη, kη
〉ε
+

〈∣∣∣T ∗2 ∣∣∣2(1−ζ)
kτ, kτ

〉ε
2


1/ε

(by the inequality (2.1))

≤


〈
|T1|

2ζε kη, kη
〉
+

〈∣∣∣T ∗1 ∣∣∣2(1−ζ)ε
kτ, kτ

〉
2


1/ε

+


〈
|T2|

2ζε kη, kη
〉
+

〈∣∣∣T ∗2 ∣∣∣2(1−ζ)ε
kτ, kτ

〉
2


1/ε

(by the inequality (2.3))

≤ 21− 1
ε

(〈
|T1|

2ζε kη, kη
〉
+

〈∣∣∣T ∗1 ∣∣∣2(1−ζ)ε
kτ, kτ

〉
+

〈
|T2|

2ζε kη, kη
〉
+

〈∣∣∣T ∗2 ∣∣∣2(1−ζ)ε
kτ, kτ

〉)1/ε

from the concavity of the function f (x) = x1/ε on [0,∞) . Thus,∣∣∣∣〈(T1 + T2) kη, kτ
〉∣∣∣∣ε ≤ 2ε−2

(〈
|T1|

2ζε kη, kη
〉
+

〈∣∣∣T ∗1 ∣∣∣2(1−ζ)ε
kτ, kτ

〉
+

〈
|T2|

2ζε kη, kη
〉
+

〈∣∣∣T ∗2 ∣∣∣2(1−ζ)ε
kτ, kτ

〉)
.

Now, by taking supremum over η ∈ Q with η = τ, and we have

berε (T1 + T2) ≤ 2ε−2
(∥∥∥|T1|

2ζε + |T2|
2ζε

∥∥∥
ber +

∥∥∥∥∣∣∣T ∗1 ∣∣∣2(1−ζ)ε
+

∣∣∣T ∗2 ∣∣∣2(1−ζ)ε
∥∥∥∥

ber

)
.

□

Putting η = τ in the proof of Theorem 3.7, we get

berε (T1 + T2) ≤ 2ε−2
∥∥∥∥|T1|

2ζε + |T2|
2ζε +

∣∣∣T ∗1 ∣∣∣2(1−ζ)ε
+

∣∣∣T ∗2 ∣∣∣2(1−ζ)ε
∥∥∥∥

ber
. (3.6)

If T1 = T2, then the inequality (3.6) reduces in particular to the inequality (3.2).
The following is an important case of the inequality (3.5).

Corollary 3.8. If T1,T2 ∈ L (H (Q)) , T1, T2 are normal, ζ = 1/2, and ε ≥ 1, then

berε (T1 + T2) ≤ 2ε−1 ∥|T1|
ε + |T2|

ε∥ber .

For more recent results concerning Berezin radius inequalities for operators and other related results, we suggest
[2, 13, 16, 21, 32, 33].
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[2] Başaran, H. Gürdal, M., Berezin number inequalities via Young inequality, Honam Mathematical J., 43(3)(2021), 523–537.
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[9] Furuta, T., Norm inequalities equivalent to Löwner–Heinz theorem, Rev. Math. Phys., 1(1989), 135–137
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