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ABSTRACT 
In this study, firstly, we analyzed power Fibonacci sequences defined by Ide and Renault in [13]. Then, we 

described two power Horadam sequences modulo 𝑠 for 𝑢 = 1, 𝑣 = 3 and 𝑢 = 3, 𝑣 = 1, respectively. We 

determined those modulus 𝑠 for which the two power Horadam sequences exist and the number of such 

sequences for a given 𝑠. We formulated the periods of these power Horadam sequences in terms of the periods of 

Horadam sequences for 𝑢 = 1, 𝑣 = 3 and 𝑢 = 3, 𝑣 = 1. Finally, we compared that the period formulas of power 

Horadam sequences which we obtained and the period formulas of power Fibonacci sequences. We found that, 

the periods formulas of the power Horadam sequences for 𝑢 = 3, 𝑣 = 1 are the same as the period formulas of 

the power Fibonacci sequences; but for 𝑢 = 1, 𝑣 = 3, a certain relationship couldn’t be established between the 

periods of these power sequences.  
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Belirli Horadam Kuvvet Dizileri Üzerine  
 

ÖZ 

Bu çalışmada, ilk olarak, kaynak [13]de Ide ve Renault tarafından tanımlanan Fibonacci kuvvet dizilerini 

inceledik. Sonrasında, sırasıyla 𝑢 = 1, 𝑣 = 3 ve 𝑢 = 3, 𝑣 = 1 için modül 𝑠 de iki tane Horadam kuvvet dizisi 

tanımladık. Bu iki kuvvet dizisinin var olduğu 𝑠 modüllerini ve verilen bir 𝑠  modülü için bu dizilerin sayısını 

belirledik. 𝑢 = 1, 𝑣 = 3 ve 𝑢 = 3, 𝑣 = 1 durumları için tanımladığımız bu Horadam kuvvet dizilerinin 

periyotlarını, Horadam dizilerinin periyotları cinsinden formülize ettik. Son olarak, Horadam kuvvet dizilerinin 

elde ettiğimiz periyot formülleri ile Fibonacci kuvvet dizilerinin periyot formüllerini karşılaştırdık. 𝑢 = 3, 𝑣 = 1 

için Horadam kuvvet dizilerinin periyot formülleri Fibonacci kuvvet dizilerinin periyot formülleri ile aynı iken 

𝑢 = 1, 𝑣 = 3 durumunda bu iki kuvvet dizisinin periyotları arasında belirli bir ilişki kurulamadığını elde ettik. 

 

Anahtar Kelimeler: Horadam dizisi, Fibonacci kuvvet dizisi, Periyot 

 

 

 

 

 

Received: 26/10/2021, Revised: 07/12/2021, Accepted: 12/12/2021 

 

 

Düzce University 

Journal of Science &Technology 

Düzce University Journal of Science & Technology, 10 (2022) 1255-1262 

0000-0003-0572-8132
0000-0003-2026-3345
0000-0002-8277-8056


1256 

 

I. INTRODUCTION 
 
If any term of sequence can be calculated with the predecessor terms, these sequences are called 

recurrence sequence. For example, Fibonacci sequence. The Fibonacci sequence,  {𝐹𝑛}0
∞, is a sequence 

of numbers, beginning with the integer couple 0 and 1, in which the value of any element is computed 

by taking the sum of the two antecedent numbers. If so, for 𝑛 ≥ 2, 𝐹𝑛 =  𝐹𝑛−1 + 𝐹𝑛−2 [1].  This 

number sequence, which was previously found by Indian mathematicians in the sixth century. But the 

sequence was introduced by Fibonacci as a result of calculating the problem related to the 

reproduction of rabbits in 1202. The first terms of this sequence are 1, 1, 2, 3, 5, 8, 13, 21. Fibonacci 

has not done any work using these sequences. In fact, the first researches on these sequences were 

made about 600 years later. However, the subsequent research has increased substantially. There have 

been many studies in the literature dealing with the quadratic number sequences. Some authors have 

obtained generalization of the Fibonacci sequence by changing only the first two terms of the sequence 

or with minor changes only the recurrence relation, while others have obtained generalizations of the 

Fibonacci sequence by changing both of them. Some of these sequences are chronologically as 

follows: 

 

Lucas, Pell, Pell Lucas, Horadam, Jacobsthal and Jacobsthal–Lucas, 𝑘 − Fibonacci and 𝑘 −Lucas, 

generalized 𝑘 −Fibonacci and generalized 𝑘 −Lucas, generalized 𝑘 −Horadam, power Fibonacci 

sequence modulo 𝑚 [2-13].  

 

All of these sequences are based on the Fibonacci sequence. The Fibonacci sequence has many 

impressive features. Studies on the properties of these impressive sequences are still ongoing. There 

are quite a lot applications of these number sequences different areas like engineering, nature and 

cryptography and coding theory.   

 

Also, there are many of study on the period of the Fibonacci sequences and some sequences are based 

on the Fibonacci sequence modulo 𝑚 in literature. Authors built some methods and obtained some 

equations related to the length of period related to Fibonacci numbers modulo 𝑚, even though there is 

no known explicit formula for length of period [4, 14-16].  

 

In this study, firstly, we examined power Fibonacci sequences defined by Ide and Renault in [13]. 

Then, we described two power Horadam sequences modulo 𝑠 for 𝑢 = 1, 𝑣 = 3 and 𝑢 = 3, 𝑣 = 1, 

respectively. We determined those modulus 𝑠 for which the two power Horadam sequences exist and 

the number of such sequences for a given 𝑠. Also, we investigated that the periods of these special 

power sequences for both 𝑢 = 1, 𝑣 = 3 and 𝑢 = 3, 𝑣 = 1. Finally, we compared that the period 

formulas of power Horadam sequences which we obtained and the period formulas of power 

Fibonacci sequences. We found that, the periods formulas of the power Horadam sequences for 𝑢 =
3, 𝑣 = 1 are the same as the period formulas of the power Fibonacci sequences; however for 𝑢 =
1, 𝑣 = 3, a certain relationship couldn’t be established between the periods of these power sequences.  

 

 

II. MATERIALS AND METHODS  
 

Here, some Horadam sequences, power Fibonacci sequences are used as material, and periodic 

relations of these sequences with the Fibonacci sequence modulo 𝑠 are used as method. 

 

Definition 2.1. Horadam sequences are defined by recurrence relation 𝐻𝑘 =  𝑢𝐻𝑘−1 + 𝑣𝐻𝑘−2  with 

initial conditions 𝐻0 = 𝑎, 𝐻1 = 𝑏  where 𝑎, 𝑏  are real numbers and 𝑢, 𝑣 are non zero numbers [2].  

 

In this study, particularly, we used Horadam sequences for 𝑢 = 1, 𝑣 = 3 and 𝑢 = 3, 𝑣 = 1. 
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Moreover, it can be easily seen that standard Fibonacci sequence obtained when 𝑢 = 1 , 𝑣 = 1, 𝑎 = 0, 
𝑏 = 1. 

 

Definition 2.2. Let 𝐺 be a bi-infinite integer sequence providing the recurrence relation 𝐺𝑘 =  𝐺𝑘−1 +
𝐺𝑘−2. Providing 𝐺 ≡ 1, 𝛾, 𝛾2, 𝛾3, … (𝑚𝑜𝑑 𝑠) for some modulus 𝑠, then 𝐺 is named a power Fibonacci 

sequence modulo 𝑠 [13].  

 

Example 2.3. For modulo 𝑠 = 31, the two power Fibonacci sequences are following: 

 

1, 13, 14, 27, 10, 6, 16, 22, 7, 29, 5, 3, 8, 11, 19, 30, 18, 17, 4, 21, 25, 15, 9, 24, 2, 26, 28, 23, 20, 12, 

1, 13, …  and 1, 19, 20, 8, 28, 5, 2, 7, 9, 16, 25, 10, 4, 14, 18, 1, 19, 20, . . .   

 

Theorem 2.4. There is precisely one power Fibonacci sequence modulo 5. For 𝑠 ≠ 5, there exist 

power Fibonacci sequences modulo 𝑠 certainly when 𝑠 has prime factorization 𝑠 = 𝑝1
𝑒1𝑝2

𝑒2 … 𝑝𝑘
𝑒𝑘 or 

𝑠 = 5𝑝1
𝑒1𝑝2

𝑒2 … 𝑝𝑘
𝑒𝑘 , where each 𝑝𝑖 ≡ ∓1(𝑚𝑜𝑑 10); in either case there are definitely 2𝑘 power 

Fibonacci sequences modulo 𝑠 [13]. 

 

We know that 𝜋(𝑠)
 
denote the period of the Fibonacci sequence modulo 𝑠  and there is no known 

explicit formula for 𝜋(𝑠). But, providing (𝑠, 𝑚) = 1 then 𝜋(𝑠𝑚) = [𝜋(𝑠), 𝜋(𝑚)] [14]. It is easily seen 

that, if S is any periodic sequence mod 𝑠𝑚 and (𝑠, 𝑚) = 1, then its period is the least common 

multiple of the period of S taken mod 𝑠 and the period of S taken mod 𝑚. For 𝑢 > 2, 𝜋(𝑠)
 
is even [14, 

15]. 

 

In addition, we know that Ide and Renault established a relationship between 𝜋(𝑠)
 
and the period of 

power Fibonacci sequences modulo 𝑠. And, they obtained following theorems: 

 

Theorem 2.5. Let 𝑝 be a prime of the form 𝑝 ≡ ∓1(𝑚𝑜𝑑 10)
 
and let 𝛽

 
and 𝜎

 
be two roots of 𝑓(𝑥) ≡

𝑥2 − 𝑥 − 1(𝑚𝑜𝑑 𝑝𝑒). Suppose |𝛽| ≥ |𝜎|. 
 

i. For  𝜋(𝑝𝑒) ≡ 0(𝑚𝑜𝑑 4), |𝛽| = |𝜎| = 𝜋(𝑝𝑒).
 

ii. For 𝜋(𝑝𝑒) ≡ 2(𝑚𝑜𝑑 4), |𝛽| = 2|𝜎| = 𝜋(𝑝𝑒) [13]. 

 

Theorem 2.6. Let 𝑠 = 𝑝1
𝑒1𝑝2

𝑒2 … 𝑝𝑘
𝑒𝑘  is the product of the primes of the form 𝑝𝑖 ≡ ∓1(𝑚𝑜𝑑 10).  

 

i. For  𝜋(𝑠) ≡ 0(𝑚𝑜𝑑 4) , the period of each power Fibonacci sequence modulo 𝑠 is 𝜋(𝑠).
 

ii. For  𝜋(𝑠) ≡ 2(𝑚𝑜𝑑 4) , the period of one power Fibonacci sequence modulo 𝑠  is 
𝜋(𝑠)

2
 and

 
the 

periods of the others are 𝜋(𝑠).
 

iii. For 𝜋(𝑠) ≡ 0(𝑚𝑜𝑑 4) , the period of each power Fibonacci sequence modulo 5𝑠 is 𝜋(𝑠).
 

iv. For 𝜋(𝑠) ≡ 2(𝑚𝑜𝑑 4) , the period of each power Fibonacci sequence modulo 5𝑠 is 2𝜋(𝑠)
 
[13]. 

 

 

III. RESULTS AND DISCUSSION 
 

A. SOME SPECIAL POWER HORADAM SEQUENCES   

 
Here, firstly, we defined two special power Horadam sequences modulo 𝑠. 

Definition 3.1. Let 𝐻′ be a bi-infinite integer sequence satisfying the recurrence relation 𝐻′
𝑛 =

𝐻′
𝑛−1 + 3𝐻′

𝑛−2 (or 𝐻′
𝑛 = 3𝐻′

𝑛−1 + 𝐻′
𝑛−2). If 𝐻′  ≡ 1, 𝛾, 𝛾2, 𝛾3, … (𝑚𝑜𝑑 𝑠) for some modulus 𝑠, 

then 𝐻′ is called a special power Horadam sequence modulo 𝑠. 

In this definition, we used Horadam sequences for 𝑢 = 1, 𝑣 = 3 and 𝑢 = 3, 𝑣 = 1. 

 

Example 3.2. For modulo  𝑠 = 17, there are two special power Horadam sequences for 𝑢 = 1, 𝑣 = 3 

as follows: 
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1,5,8,6,13,14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1,5, … and 1,13,16,4,1,13, … 

 

Example 3.3. For modulo 𝑠 = 53, there are two special power Horadam sequences for 𝑢 = 3, 𝑣 = 1 

as follows: 

1,9,28,40,42,7,10, 37, 15, 29, 49, 17, 47, 52, 44, 25, 13, 11, 46, 43, 16, 38, 24, 4, 36, 6, 1, 9, …   and     

1, 47, 36, 49, 24, 15, 16, 10, 46, 42, 13, 28, 44, 1, 47, … 

 

Then, we determined those modulus 𝑠 for which these special power Horadam sequences for 𝑢 =
1, 𝑣 = 3 and 𝑢 = 3, 𝑣 = 1 exist and the number of such sequences for a given 𝑠 by following theorem. 

And we obtained that these special power Horadam sequences exist for the same modulus.  

 

Theorem 3.4. There is exactly one special power Horadam sequence modulo 𝑠 = 13 in both cases for 

𝑢 = 1, 𝑣 = 3 and 𝑢 = 3, 𝑣 = 1. For 𝑠 ≠ 13, there exist special power Horadam sequence modulo 𝑠 

precisely when 𝑠  has prime factorization 𝑠 = 𝑝1
𝑒1𝑝2

𝑒2 … 𝑝𝑘
𝑒𝑘 or  𝑠 = 13𝑝1

𝑒1𝑝2
𝑒2 … 𝑝𝑘

𝑒𝑘 , where each 

𝑝𝑖 ≡ ±1, ±3, ±4(𝑚𝑜𝑑13); in either case there are exactly 2𝑘 special power Horadam sequences 

modulo 𝑠. 
 

Proof. If ℎ(𝑥) = 𝑥2 − 3𝑥 − 1 (or ℎ(𝑥) = 𝑥2 − 𝑥 − 3) where 𝛾 is a root of ℎ(𝑥), 1, 𝛾, 𝛾2 … is a special 

power Horadam sequences modulo 𝑠. The roots of ℎ(𝑥) are those residues of the form 2−1(3 + 𝑢) (or 

2−1(1 + 𝑢)) where 𝑢2 ≡ 13(𝑚𝑜𝑑𝑠), then 𝑠 is odd. Let 𝑓(𝑥) = 𝑥2 − 13. Counting the number of 

solutions to 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑𝑠). For 𝑠 = 13, the only solution to 𝑥2 ≡ 13(𝑚𝑜𝑑13) is 0 and there are no 

solutions to 𝑥2 ≡ 13(𝑚𝑜𝑑169). Thus, 𝑥2 ≡ 13(𝑚𝑜𝑑13𝑒) has a solution only when 𝑒 = 1 and that 

solution 𝑥 ≡ 0(𝑚𝑜𝑑13). The corresponding special power Horadam sequence is 1,8,12,5,1, 8, … (or 

1,7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, …). For 𝑠 ≠ 13, by use of the law of quadratic reciprocity, is 

found that 13 is a quadratic residue modulo primes of the form 𝑝 ≡ ±1, ±3, ±4(𝑚𝑜𝑑13). Thus, if 𝑝 ≡
±1, ±3, ±4(𝑚𝑜𝑑13), then 𝑓(𝑥)(𝑚𝑜𝑑𝑠) has two distinct roots. Moreover, with 𝑓(𝑥) = 𝑥2 − 13 and 𝑝 

is a prime of the form 𝑝 ≡ ±1, ±3, ±4(𝑚𝑜𝑑13), if 𝑥1 is a root of 𝑓(𝑥)(𝑚𝑜𝑑𝑝), then 𝑓′(𝑥1) = 2𝑥1 ≢
0(𝑚𝑜𝑑𝑝).  By Hensel’s Lemma [17], we obtained that 𝑓(𝑥)(𝑚𝑜𝑑𝑝𝑒) has two distinct roots for every 

positive integer 𝑒. 

 

Lastly, if 𝑠 and 𝑠′ are relatively prime, if 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑𝑠) has 𝑧 solutions and 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑𝑠′)  has 

𝑡 solutions, by Chinese Remainder Theorem, then 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 𝑠. 𝑠′) has 𝑧. 𝑡 solutions ∎. 

 

A. 1. The Periods of Special Power Horadam Sequences 
 

In this section, we studied on the period of two special power Horadam sequences which we described 

and obtained some results. Here, the period of Horadam sequences for 𝑢 = 1, 𝑣 = 3 and 𝑢 = 3, 𝑣 = 1 

modulo 𝑠  is denoted by 𝜌(𝑠).  

 

Firstly, we investigated the period of special power Horadam sequences for 𝑢 = 3, 𝑣 = 1. And we 

obtained following results: 

Lemma 3.5. The prime number 𝑝 is in the form of  𝑝 ≡ ±1, ±3, ±4(𝑚𝑜𝑑13) , and and let 𝜃
 
and 𝜇

 
 be 

the two roots of ℎ(𝑥) ≡ 𝑥2 − 3𝑥 − 1(𝑚𝑜𝑑𝑝𝑒). Suppose |𝜃| ≥ |𝜇|. 
 

i. For  𝜌(𝑝𝑒) ≡ 0(𝑚𝑜𝑑 4), |𝜃| = |𝜇| = 𝜌(𝑝𝑒).
 

ii. For 𝜌(𝑝𝑒) ≡ 2(𝑚𝑜𝑑 4), |𝜃| = 2|𝜇| = 𝜌(𝑝𝑒). 

 

Proof. Due to 𝜃 and 𝜇 are roots of  ℎ(𝑥) = 𝑥2 − 3𝑥 − 1(𝑚𝑜𝑑𝑝𝑒), 𝜃. 𝜇 ≡ −1 and 
(𝜃. 𝜇)𝑛 ≡ 𝜃𝑛𝜇𝑛 ≡ (−1)𝑛(𝑚𝑜𝑑𝑝𝑒) 

for any 𝑛 (𝑛 is a positive integer). So, the proof of Lemma 3.5. can be easily obtained similarly to the 

proof of Lemma 3.2. in [13]. 

 

Theorem 3.6. Suppose that 𝑠 = 𝑝1
𝑒1𝑝2

𝑒2 … 𝑝𝑘
𝑒𝑘  in the form of 𝑝𝑖 ≡ ±1, ±3, ±4(𝑚𝑜𝑑13). 
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i. For 𝜌(𝑠) ≡ 0(𝑚𝑜𝑑4), the period of each special power Horadam sequence modulo 𝑠 is 𝜌(𝑠). 

ii. For 𝜌(𝑠) ≡ 2(𝑚𝑜𝑑4), the period of one of special power Horadam sequences modulo 𝑠 is 
1

2
𝜌(𝑠), 

and the periods of others are 𝜌(𝑠). 
iii. For 𝜌(𝑠) ≡ 0(𝑚𝑜𝑑4), the period of each special power Horadam sequence modulo 13𝑠 is 𝜌(𝑠). 
iv. For 𝜌(𝑠) ≡ 2(𝑚𝑜𝑑4), the period of each special power Horadam sequence modulo 13𝑠 is 2𝜌(𝑠). 
 

Proof. Firstly, if 𝑠 = 𝑝𝑒  , then it can be easily seen that the conditions i and ii has been provided 

according to Lemma 3.5. Let 𝑠 and 𝑚 be relatively prime, and for induction, suppose that theorem is 

provided for modulo 𝑠 and 𝑚. Now, if we show that it holds for modulo 𝑠. 𝑚, then the conditions i and 

ii will be proved. 

 

Denote the roots of ℎ(𝑥) ≡ 𝑥2 − 3𝑥 − 1(𝑚𝑜𝑑𝑠) by 𝑎1, 𝑎2, … 𝑎𝑘 and denote the roots of ℎ(𝑥)(𝑚𝑜𝑑𝑚) 

by 𝑏1, 𝑏2, … 𝑏𝑡. Then 𝑘. 𝑡 roots of ℎ(𝑥)(𝑚𝑜𝑑 𝑠. 𝑚) are represented 𝑑𝑖𝑗  for 1 ≤ 𝑖 ≤ 𝑘 , 1 ≤ 𝑗 ≤ 𝑡 with 

root 𝑑𝑖𝑗  satisfying the following congruences: 

𝑑𝑖𝑗 ≡ 𝑎𝑖(𝑚𝑜𝑑𝑠) 

𝑑𝑖𝑗 ≡ 𝑏𝑗(𝑚𝑜𝑑𝑚) 

One easily sees that |𝑑𝑖𝑗|
𝑠.𝑚

= [|𝑎𝑖|𝑠 , |𝑏𝑗|
𝑚  

]. 

 

To build i in theorem, assume that either 𝜌(𝑠) ≡ 0(𝑚𝑜𝑑4) or 𝜌(𝑚) ≡ 0(𝑚𝑜𝑑4). Then |𝑑𝑖𝑗|
𝑠.𝑚

=

[|𝑎𝑖|𝑠 , |𝑏𝑗|
𝑚

] or [𝜌(𝑠),
1

2
𝜌(𝑚)] or [

1

2
𝜌(𝑠), 𝜌(𝑚)], but from all these results it is seen that |𝑑𝑖𝑗|

𝑠.m
=

𝜌(𝑠. 𝑚) ≡ 0(𝑚𝑜𝑑4). 
 

To prove ii in theorem, suppose that either 𝜌(𝑠) ≡ 2(𝑚𝑜𝑑4) or 𝜌(𝑚) ≡ 2(𝑚𝑜𝑑4). If |𝑑𝑖𝑗|
𝑠.𝑚

=

[|𝑎𝑖|𝑠 , |𝑏𝑗|
𝑚

] or [𝜌(𝑠),
1

2
𝜌(𝑚)] or [

1

2
𝜌(𝑠), 𝜌(𝑚)] then we have |𝑑𝑖𝑗|

𝑠.m
= 𝜌(𝑠. 𝑚) ≡ 2(𝑚𝑜𝑑4) for all 

these cases. The one remaining case is |𝑑𝑖𝑗|
𝑠.𝑚

= [
1

2
𝜌(𝑠),

1

2
𝜌(𝑚)] =

1

2
𝜌(𝑠. 𝑚), which is odd. 

For iii and iv in theorem, let show the roots of ℎ(𝑥) ≡ 𝑥2 − 3𝑥 − 1(𝑚𝑜𝑑𝑠) by 𝑎1, 𝑎2, … , 𝑎𝑘 and 

obtain that the only root of ℎ(𝑥)(𝑚𝑜𝑑13) is 8. In addition, let the roots of ℎ(𝑥) 𝑚𝑜𝑑 13𝑠 are 

represented 𝑑𝑖. 

 

𝑑𝑖 ≡ 8(𝑚𝑜𝑑13) 

𝑑𝑖 ≡ 𝑎𝑖(𝑚𝑜𝑑𝑠) 

 

Now, |𝑑𝑖|13𝑠 = [|8|13, |𝑎𝑖|𝑠] = [4, |𝑎𝑖|𝑠]. If 𝜌(𝑠) ≡ 0(𝑚𝑜𝑑4), then |𝑎𝑖|𝑠 = 𝜌(𝑠) ≡ 0(𝑚𝑜𝑑4). 

Therefore |𝑑𝑖|13𝑠 = [4, |𝑎𝑖|𝑠] = 𝜌(𝑠). 

 

Finally, if 𝜌(𝑠) ≡ 2(𝑚𝑜𝑑4), then either |𝑎𝑖|𝑠 = 𝜌(𝑠) ≡ 2(𝑚𝑜𝑑4) or |𝑎𝑖|𝑠 =
1

2
𝜌(𝑠) ≡ 1(𝑚𝑜𝑑2). 

And, for the both cases, we obtained |𝑑𝑖|13𝑠 = 2𝜌(𝑠)∎. 

 

According to the Theorem 3.5 and Theorem 3.6, we obtained the periodic relations between special 

power Horadam sequence and Horadam sequence for 𝑢 = 3, 𝑣 = 1 are the same as the periodic 

relations between power Fibonacci sequence and the Fibonacci sequence. Then, we examined the 

periods of special power Horadam sequences for 𝑢 = 1, 𝑣 = 3. And we obtained following results: 

 

If 𝑢 = 1, 𝑣 = 3, then we obtained that the periods of the special power Horadam sequences can’t been 

formulated similar to the period of power Fibonacci sequences. And even, we obtained that periods of 

the special power Horadam sequences for 𝑢 = 1, 𝑣 = 3 can’t been characterized based on Horadam 

sequences in a certain formula. Let illustrate this situation as follows: 

 

Example 3.7. For modulo 𝑠 = 43, 𝑠 ≡ +4(13), Horadam sequence is 
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0,1,1,3,6,15,33,35,5,24,39,25,13,2,41,4,41,10,4,34,3,19,28,42,40,37,28,10,8,38,19,4,18,30,41 

2,39,2,33,39,9,40,24,15,1,3 … , then  𝜌(43) = 42. 

 

There are two special power Horadam sequences: 

• 1,12,15,8,10,34,21,37,14,39,38,26,11,3,36,2,24,30,16,20,25,42,31,28,35,33,9,27,6,29, 
4,5,17,32,40,7,41,19,13,27,23,18,1,12 …  , then |12|43 = 42 

• 1,32,35,2,21,27,4,42,11,8,41,22,16,39,1,32 … , then |32|43 = 14.  

In this situation, we obtained  |12|53 = 3|32|43 = 𝜌(43).  

 

Example 3.8. For modulo 𝑠 = 17, 𝑠 ≡ +4(13), Horadam sequence is 

0,1,1,4,7,2,6,12, 13, 15, 3, 14, 6, 14, 15, 6, 0,1,1, then 𝜌(17) = 16. 

There are two special power Horadam sequences: 

• 1,5,8,6,13,14,2,10,16,12,9,11,4,3,15,7,1,5, … , then |5|17 = 16 
• 1,13,16,4,1,13, …, then |13|17 = 4.  

In this situation, we obtained |5|17 = 4|13|17 = 𝜌(17).  

 

It is easily seen that 𝑠 ≡ +4(13) for both Example 3.7. and Example 3.8. And, we know that there are 

two special power Horadam sequence modulo 𝑠 = 𝑝𝑒   according to Theorem 3.4. For the periods of 

the two sequences, we obtained that while the period of one of these sequences is 
1

3
𝜌(𝑠) for modulo 

𝑠 = 43, that is 
1

4
 𝜌(𝑠) for modulo 𝑠 = 17. And, the period of the other special power Horadam 

sequence is equal to 𝜌(𝑠) for both 𝑠 = 43 and 𝑠 = 17.  

 

Example 3.9. For modulo = 61 , 𝑠 ≡ −4(13), Horadam sequence is 

0,1,1,4,7,19,11,10,14,15,28,15,12,28,6,3,21,1,6,9,27,25,19,7,6,27,16,10,0,1 … . So, 𝜌(61) = 20. 

And, there are two special power Horadam sequences: 

• 1,24,27,38,58,50,41,8,9,33,60,37,34,23,3,11,20,53,52,28,1,24 …  , then |24|61 = 20 
• 1,37,40,29,27,53,12,49,24,49,60,24,21,32,34,8,49,12,37,12,1,37 … , then |37|61 = 20 

So, we obtained that the period of both power sequences is 20. In this situation, we obtained |24|61 =
|37|61 = 𝜌(61).  

 

For 𝜌(61) ≡ 0(𝑚𝑜𝑑 4), the period of both of special power Horadam sequences is equal to 𝜌(61). 

But for 𝜌(17) ≡ 0(𝑚𝑜𝑑 4), the period of one of these sequences is 
1

4
𝜌(17), while the period of the 

others is 𝜌(17). And, similarly, for 𝜌(43) ≡ 2(𝑚𝑜𝑑 4), the period of one of these sequences is 
1

3
𝜌(43), while the period of the other is 𝜌(43). But for 𝜌(23) ≡ 2(𝑚𝑜𝑑 4), the period of one of these 

sequences is 
1

2
𝜌(23), while the period of the other is 𝜌(23). From these examples, we obtained the 

periodic relations between special power Horadam sequence and Horadam sequence for 𝑢 = 1, 𝑣 = 3 

are not alike the periodic relations between power Fibonacci sequence and the Fibonacci sequence. 

 

Also, when we compare the periods of these special power Horadam sequences for both for 𝑢 = 1, 

𝑣 = 3 and for 𝑢 = 3, 𝑣 = 1 with the periods of the Horadam sequences in the same modulo, we can 

easily see that the period of one of these special power Horadam sequences modulo 𝑠 is definitely 

equal to the period of Horadam sequence modulo 𝑠. Moreover, the periods of the other power 

Horadam sequences are a divisor of 𝜌(𝑠).  

 

 

IV. CONCLUSION 
 

In here, first of all, we analyzed power Fibonacci sequence modulo 𝑠 which is defined by Ide and 

Renault [13] and the numbers and periods of these sequences. Then, we described two special power 

Horadam sequences modulo 𝑠 for 𝑢 = 1, 𝑣 = 3 and 𝑢 = 3, 𝑣 = 1, respectively. And, for both cases of 
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these sequences, we determined those modulo 𝑠 for which these power Horadam sequences exist and 

the number of such sequences for a given 𝑠. Also, we obtained that these special power Horadam 

sequences exist for the same modulus in both cases. Then, we investigated that the periods of these 

special power sequences for both 𝑢 = 1, 𝑣 = 3 and 𝑢 = 3, 𝑣 = 1. And, we obtained for 𝑢 = 3, 𝑣 = 1 

as follows: 

i. For 𝜌(𝑠) ≡ 0(𝑚𝑜𝑑4), the period of each special power Horadam sequence modulo 𝑠 is 𝜌(𝑠). 

ii. For 𝜌(𝑠) ≡ 2(𝑚𝑜𝑑4), the period of one of special power Horadam sequences modulo 𝑠 is 
1

2
𝜌(𝑠), 

and the periods of others are 𝜌(𝑠). 
iii. For 𝜌(𝑠) ≡ 0(𝑚𝑜𝑑4), the period of each special power Horadam sequence modulo 13𝑠 is 𝜌(𝑠). 
iv. For 𝜌(𝑠) ≡ 2(𝑚𝑜𝑑4), the period of each special power Horadam sequence modulo 13𝑠 is 2𝜌(𝑠). 
 

In addition, we obtained for 𝑢 = 1, 𝑣 = 3, periods of the special power Horadam sequences can’t been 

characterized based on power Horadam sequences in a certain way. But we obtained that the period of 

one of these special power Horadam sequences is definitely equal to the period of Horadam sequence, 

while the periods of the other power Horadam sequences are a divisor of 𝜌(𝑠).  

 

Finally, we compared that the period formulas of power Horadam sequences which we obtained and 

the period formulas of power Fibonacci sequences. We found that, the periods formulas of the power 

Horadam sequences for 𝑢 = 3, 𝑣 = 1 are the same as the period formulas of the power Fibonacci 

sequences while those defined for 𝑢 = 1, 𝑣 = 3 are different from the periods of the power Fibonacci 

sequences. 
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