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Abstract
In real-world applications, it is not uncommon to encounter situations in which a set of data
exhibits asymmetry and bimodality. Because of this, this paper proposes a new versatile
family of generalized log-logistic distributions using the method of T-R{Y } framework.
The resulting flexible classes of this family includes both unimodal and bimodal distri-
butions which can be expected to model a wide variety of data with different levels of
skewness. The distributional and structural properties of the classes are discussed. The
method of maximum likelihood is used for estimating the distributions parameters and a
simulation study is conducted to examine its performance. The usefulness and goodness-
of-fit of some members of these classes are illustrated by means of six real data sets. The
strength of these members is shown consistently by giving better fits than some of the
competitors with the same number of parameters. In addition, a new generalized log-
logistic lifetime regression model is introduced and applied to fit a right-censored data
with covariates. The flexibility provided by this model could be very helpful in describing
and explaining different types of lifetime data.
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1. Introduction
Over the last two decades, there has been a growing body of research that focused

primarily on generalizing or modifying some well-known univariate distributions, and the
research in this area continues to be quite active. The Beta-generated family [12] and
the T-R{Y } framework [2] are examples of such generalized families of distributions. In
fact, researchers continue to build and develop new statistical distributions in order to
get more flexibility and increase the accuracy in data modeling. Although adding one or
more extra parameters to the baseline distributions may allow the new distributions to
have different shapes, but in most cases these generalized distributions can only exhibit
unimodal shapes. In real-world applications, there are situations in which the underlying
distribution of a random variable follows bimodal probability distribution. For instance,
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the natural log-transformed of the asteroid and echinoid egg size [11], the waiting time
between eruptions and duration of eruptions of certain geysers [6, 15], the size of Weaver
ant workers [20, 22], and the color of galaxies [7] are examples of such variables with
bimodal distributions. All of these examples, as well as many others, demonstrate why
it is advantageous for researchers to build new novel distributions capable of modeling a
variety of forms, including skew-symmetric unimodal and bimodal shapes.

There are several research articles in the literature that presented and discussed different
families of skew-symmetric bimodal distributions. For example, Sarma at al. [17] proposed
a family of symmetric bimodal distributions, which is different from the mixture of two
normal distributions. Another alternative to the two component normal mixtures, Hassan
and Hijazi [16] considered the symmetric bimodal exponential power distribution.

The symmetry property of the aforementioned distributions can be considered a desir-
able feature in fitting symmetric data, but a limitation in modeling asymmetric data sets.
For this reason, several extensions and generalizations are proposed in the literature to
address this limitation, which can be used in data modeling in various real-world settings.
For example, Azzalini and Bowman [6] introduced a family of skew-normal distributions
and some extensions of this family to skew-symmetric unimodal and bimodal distributions
can be found in [5, 14, 19], and others. In addition, different construction methods have
been presented by many researchers that may allow generating skew-symmetric unimodal
and bimodal distributions. For instance, Famoye et al. [13] studied the bimodality prop-
erties of the beta-normal distribution, which was constructed using the beta-generated
family of distributions [12]. Al-Aqtash et al. [1], for example, used the T-X family of
distributions [3] to generate the Gumbel-Weibull distribution and study its regions of uni-
modality and bimodality. Moreover, Alzaatreh [4] proposed the bimodal Weibull-Gamma
{log-logistic} distribution using the T-R{Y } framework (see [2]).

The T-R{Y } framework [2] is defined as follows: Let T , R and Y be random variables
with cumulative distribution functions (CDFs) FT , FR, and FY , respectively, and the
corresponding quantile functions QT , QR and QY . The probability density functions
(PDFs) (if they exist) will be denoted by fT , fR, and fY , respectively. Then the CDF and
the PDF of the random variable X = QR (FY (T )) are given, respectively, by

FX(x) =
∫ QY (FR(x))

a
fT (t)dt = FT (QY (FR(x))) , (1.1)

where T, Y ∈ [a, b], for −∞ ≤ a < b ≤ ∞, and

fX(x) = fR(x) × fT (QY (FR(x)))
fY (QY (FR(x)))

. (1.2)

The T-R{Y } framework is a desirable method for developing new versatile and wide
classes and families of generalized distributions for any given random variable R. In this
paper, we assume the random variable R follows the log-logistic distribution. The log-
logistic distribution is one of the important continuous distributions defined by one shape
and one scale parameters. It is used in survival analysis, hydrology, economy, and different
fields of study. In addition to the closed form of its CDF, the log-logistic model can have
monotonic and non-monotonic (hump-shaped) hazard rate function, which is useful in
lifetime data analysis with censoring.

The motivation of this paper is to introduce a new family of unimodal and bimodal skew-
symmetric distributions that generalizes or extends the log-logistic distribution. Focusing
on modeling real-world data sets, this article aims to present flexible members of this family
that are able to model unimodal and bimodal shapes with different degrees of skewness
and provide a better fit than some distributions in the literature with the same or more
numbers of parameters. Moreover, unlike many other generalized distributions, the closed
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form expressions for their CDFs make it much easier to simulate random samples from
these distributions or to carry out quantile regressions.

The rest of this article is outlined as follows. Section 2 defines the T -Log-Logistic{Y }
family of generalized log-logistic distributions and derives classes of this family using the
quantile functions of exponential, logistic, and Cauchy distributions. Some structural
properties of the proposed families are investigated in Section 3. Some new members of
these families are studied in Section 4. In Section 5, we address parameter estimation and
simulation for the Normal-log-logistic-Cauchy distribution using the Maximum Likelihood
(ML) method. The usefulness of the new proposed family of distributions is illustrated
through six applications to real data sets in Section 6. In Section 7, a new generalized
log-logistic regression model is introduced and applied to a right censored lifetime data
set. Lastly, Section 8 summarizes the main findings and concludes the article.

2. The family and classes of generalized log-logistic distribution
In this section, firstly, we define the T -log-logistic{Y } (T-LL{Y}) family of general-

ized log-logistic distribution. Let R be a random variable that follows the log-logistic
distribution, then the CDF and PDF are, respectively, given by

FR(x) = 1
1 + (x/β)−α

(2.1)

and

fR(x) = α

β

(x/β)α−1

(1 + (x/β)α)2 . (2.2)

The definition in Equation (1.1) gives the CDF of the random variable X in T-LL{Y}
families of distributions as

FX(x) =
∫ QY

[
(1+(x/β)−α)−1

]
a

fT (t)dt = FT

(
QY

[(
1 + (x/β)−α)−1])

, (2.3)

and the corresponding PDF associated with Equation (2.3) is

fX(x) = (α/β)(x/β)α−1

(1 + (x/β)α)2

fT

(
QY

[
(1 + (x/β)−α)−1

])
fY

(
QY

[
(1 + (x/β)−α)−1

]) . (2.4)

Secondly, we define three generalized T-LL{Y } classes of distributions based on the
quantile functions of exponential, logistic, and Cauchy distributions defined in Table 1.

Table 1. Some quantile functions of Y and the domains of T.

Random variable Y The quantile function QY (p) Domain of T
(i) Exponential − log[1 − p] (0, ∞)
(ii) Logistic log[p/(1 − p)] (−∞, ∞)
(iii) Cauchy tan(π[p − 0.5]) (−∞, ∞)

The following are some classes of generalized log-logistic distributions:

2.1. The T-log-logistic{exponential} class of distributions
By using the quantile function of the exponential distribution in Table 1, the CDF of

the T -log-logistic{exponential} (T-LL{E}) class of distributions using Equation (2.3) is
given by

FX(x) = FT

{
− log

[
1 − (1 + (x/β)−α)−1

]}
, (2.5)
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and the corresponding PDF to Equation (2.5) using Equation (2.4) is

fX(x) = (α/β)(x/β)α−1

1 + (x/β)α
fT

{
− log

[
1 − (1 + (x/β)−α)−1

]}
. (2.6)

Note that the T-LL{E} class of distributions arises from the hazard function of the log-
logistic distribution. In fact, the CDF and PDF of the T-LL{E} class of distributions
can be written as FX(x) = FT {HR(x)} and fX(x) = hR(x)fT {HR(x)}, where hR(x) and
HR(x) are the hazard and cumulative hazard functions of the log-logistic distribution,
respectively.

2.2. The T-log-logistic{logistic} class of distributions
By using the quantile function of the logistic distribution in Table 1, the CDF of the

T -log-logistic{logistic} (T-LL{L}) class of distributions using Equation (2.3) is given by

FX(x) = FT

{
log

(
(1 + (x/β)−α)−1

1 − (1 + (x/β)−α)−1

)}
= FT {log (x/β )α} , (2.7)

and the corresponding PDF to Equation (2.7) using Equation (2.4) is

fX(x) = α

x
fT

{
log

(
(1 + (x/β)−α)−1

1 − (1 + (x/β)−α)−1

)}
= α

x
fT {log (x/β )α} . (2.8)

Note that the T-LL{L} class of distributions is considered a class arising from the logit
function of the log-logistic distribution.

2.3. The T-log-logistic{Cauchy} class of distributions
By using the quantile function of the Cauchy distribution in Table 1, the CDF of the

T -log-logistic{Cauchy} (T-LL{C}) class of distributions using Equation (2.3) is given by
FX(x) = FT {tan (u)} , (2.9)

and the corresponding PDF to Equation (2.9) using Equation (2.4) is

fX(x) = (πα/β)(x/β)α−1

(1 + (x/β)α)2 sec2 (u) fT {tan (u)} , (2.10)

where u = π[(1 + (x/β)−α)−1 − 0.5].

3. Some distributional and structural properties
In this section, we highlight some of the general properties of the T-LL{Y } classes

of distributions, including transformations, quantile functions, implicit formula for the
mode(s), Shannons entropies, moments and mean deviations.

Theorem 3.1 (Transformation). Let QR(·) be the quantile function of the random variable
R, then the random variable X = QR (FY (T )) follows the T-R{Y} family of distributions.
In particular, if the random variable R follows the log-logistic distribution, then the random
variable X = β

(
1−FY (T )

FY (T )

)−1/α
follows the T-LL{Y} family of distributions.

Proof. The CDF FX(x) = FT (QY (FR(x))) in Equation (1.1), where T = QY (FR(X)),
implies X = QR (FY (T )). The second result follows directly from using the transformation
X = QR (FY (T )), where QR(p) = β

(
1−p

p

)−1/α
is the quantile function of log-logistic

distribution. �
Remark 3.2. Theorem 3.1 can be used to generate a random sample from the random
variable X when a random variable T and the quantile function of a random variable Y
are specified.
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Corollary 3.3. Using Theorem 3.1, the random variable

i. X = β
(
1 − e−T

)1/α
follows the T-LL{E} distribution.

ii. X = βeT/α follows the T-LL{L} distribution.
iii. X = β

(
1/2−π arctan(T )
1/2+π arctan(T )

)−1/α
follows the T-LL{C} distribution.

Theorem 3.4 (Quantiles). Let QX(p), 0 < p < 1, denote the quantile function of the
random variable X. Then, the quantile function for the T-R{Y} family of distributions is
given by

QX(p) = QR {FY (QT (p)} .

In particular, if the random variable R follows the log-logistic distribution, then the quantile
function for the T-LL{Y} family of distributions is given by

QX(p) = β

(1 − FY (QT (p))
FY (QT (p))

)−1/α

.

Proof. The results follow directly by using the relation FX(x) = FT (QY (FR(x))), and
then solving FX (QX (p)) = p for QX (p). �

Corollary 3.5. Using Theorem 3.4, the quantile functions for the (i) T-LL{E}, (ii) T-
LL{L}, (iii) T-LL{C}, classes of distributions, respectively, are

i. QX(p) = β
(
1 − e−QT (p)

)1/α
,

ii. QX(p) = βeQT (p)/α,
iii. QX(p) = β

(
1/2−π arctan(QT (p))
1/2+π arctan(QT (p))

)−1/α
.

Note that the median can be also obtained by setting p = 0.5 in the quantile functions
in Corollary 3.5.

Theorem 3.6. The mode(s) of the T-LL{Y} family of distributions are the solutions of
the equation

Ψ {fT (Qy (FR(x)))} = 1 − α

x
− 2αβ2α−1

x2α

(
1 + (x/β)−α)−1 + Ψ {fy (Qy (FR(x)))} , (3.1)

where Ψ(f) = f ′/f .

Proof. The derivative of fR(x) is given by f ′
R(x) = fR(x)

(
α−1

x + 2αβ2α−1

x2α (1 + (x/β)−α)−1
)
,

which implies that the derivative of fX(x) can be written as f ′
X(x) = fX(x)E(x) where

E(x) = α−1
x + 2αβ2α−1

x2α (1 + (x/β)−α)−1 + Ψ {fT (Qy (FR(x)))} − Ψ {fy (Qy (FR(x)))}. By
setting E(x) = 0 and solving for x we obtain the mode(s) of fX(x), which are the solutions
of the Equation (3.1). �

Corollary 3.7. Using Theorem 3.6, the mode(s) of the (i) T-LL{E}, (ii) T-LL{L}, (iii)
T-LL{C} distributions are solutions of the following equations, respectively,

(i) Ψ {fT (log(1 + (x/β)α))} = 1−α
x − 2αβ2α−1

x2α (1 + (x/β)−α)−1 − α
x (1 + (x/β)−α)−1

,

(ii) Ψ {fT (α log(x/β))} = 1−α
x − 2αβ2α−1

x2α (1 + (x/β)−α)−1 + α
x

(
1−(x/β)α

1+(x/β)α

)
(iii) Ψ

{
fT

(
tan

(
π
[

1
1+(x/β)−α − 0.5

]))}
= 1−α

x − 2αβ2α−1

x2α (1 + (x/β)−α)−1 −
2απ

x
(x/β)α

(1+(x/β)α)2 cot
[
π(1 + (x/β)α)−1] .

Remark 3.8. The distributions in Subsections 4.3, 4.4, and 4.5 are examples of bimodal
distributions. Thus, the equation in Corollary 3.7 (iii) could have more than one solution
to represent a bimodal distribution.
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The entropy of a random variable X is a measure of variation of uncertainty. Entropy
has several applications in engineering, information theory, chemistry, and physics. The
Shannons entropy for a continuous random variable X with PDF f(x) is defined as ηX =
E[− log f(x)] ([18]).

Theorem 3.9. The Shannon’s entropy for the T-LL{Y} family of distributions is given
by

ηX = ηT + E (log fY (T )) + log (βα/α) + (1 − α)E (log X) + 2E (log (1 + (X/β)α)) ,

where, ηT is the Shannon’s entropy for the random variable T.

Proof. By the definition of Shannon’s entropy,

ηX = E {− log fT (Qy {FR(X)})} + E {log fY (Qy {FR(X)})} + E {−log fR(X)} .

Since the random variable T can be written as T = Qy {FR(X)}, then ηX can be reduced
to

ηX = ηT + E (log fY (T )) + E {− log(fR(X))} .

It can be shown that,

E {− log(fR(X))} = log (βα/α) + (1 − α)E (log X) + 2E (log (1 + (X/β)α)) .

Hence, ηX = ηT +E (log fY (T ))+log (βα/α)+(1−α)E (log X)+2E (log (1 + (X/β)α)) . �

Corollary 3.10. Based on Theorem 3.9, the Shannon’s entropies of the (i) T-LL{E}, (ii)
T-LL{L}, (iii) T-LL{C} classes of distributions, respectively, are given by

(i) ηX = ηT − µT + log (βα/α) + (1 − α)E (log X) + 2E (log (1 + (X/β)α)) ,

(ii) ηX = ηT −µT −2E
(
log(1 + e−T )

)
+log (βα/α)+(1−α)E (log X)+2E (log (1 + (X/β)α)) ,

(iii) ηX = ηT +E
(
− log(1 + e−T )

)
−log π+log (βα/α)+(1−α)E (log X)+2E (log (1 + (X/β)α)) ,

where µT is the mean for the random variable T .

Theorem 3.11. Let X be a random variable that follows the T-LL{Y} family. Assume
that E(Xr) < ∞ for all r, then

E(Xr) ≤ βr B (1 − r/α, 1 + r/α) E
(
{F̄Y (T )}−1)

whenever α > r, where F̄Y (T ) = 1 − FY (T ).

Proof. If fR(x) is the PDF of a non-negative random variable R, then the rth non-central
moment of the random variable T-R{Y } satisfies E (Xr) ≤ E(Rr)E

(
{F̄Y (T )}−1)

. (see
Theorem 1, [2]). The results follows using the fact that the rth non-central moment of the
log-logistic distribution with parameters α and β is

E (Rr) = βrB (1 − r/α, 1 + r/α) ,

where B is the beta function given by B(x, y) =
∫ 1

0 tx−1(1 − t)y−1 dt. �

The following theorem provides the rth non-central moment for T-LL{Y } family of
distributions.

Theorem 3.12. The rth non-central moments for the T-LL{Y} family of distributions
are given by

E(Xr) = βr
∞∑

k=0
wkE[(FY (T ))k+r/α],

where wk = (−1)k
(−r/α

k

)
.



A versatile family of generalized log-logistic distributions 863

Proof. If QR(·) is the quantile function of a random variable R, then by using Theo-
rem (3.1), E (Xr) = E(QR(FY (T )))r. By applying the generalized binomial expansion,
(QR(p))r can be written as (QR(p))r = βr ∑∞

k=0 wkE
[
(Fy(T ))k+r/α

]
, where wk defined in

the statement of Theorem 3.12, which in turn implies the result. �
Corollary 3.13. Based on Theorem 3.12, the rth non-central moments for the (i) T-
LL{E}, (ii) T-LL{L}, (iii) T-LL{C} classes of distributions, respectively, are

(i) E(Xr) = βr ∑∞
k=0 wk

∑∞
n=0

(k+r/α
n

)
(−1)nMT (−n), exists if MT (−n) < ∞,

(ii) E(Xr) = βr ∑∞
k=0 wk

∑∞
n=0

(−(k+r/α)
n

)
MT (−n), exists if MT (−n) < ∞,

(iii) E(Xr) = βr ∑∞
k=0 wk

∑∞
n=0

(k+r/α
n

)
(2)n−(k+r/α) π−nE (arctan T )n, exists if

E (arctan T )n < ∞,

where MX(t) = E(etX).

Expressions of statistical measures such as the mean, variance, skewness, and kurtosis
can be derived from Corollary 3.13. The following theorem provides the mean deviation
from the mean, D(µ), and the mean deviation from the median, D(M), for the T-LL{Y }
family of distributions.

Theorem 3.14. The D(µ) and D(M) for the T-LL{Y} family of distributions, respec-
tively, are given by

Dµ = 2µ FT (QY (FR(µ))) − 2Iµ, and DM = µ − 2IM ,

where µ and M are the mean and median for X, and

Iq = β
∞∑

n=0
wn

∫ QY (FR(q))

QY (FR(0))
fT (u)F n+1/α

Y (u) du,

where wn =
(−α−1

n

)
(−1)n.

Proof. The mean deviation from the mean and the mean deviation from the median
for a nonnegative random variable X are given by, respectively, Dµ = E (|X − µ|) =
2µ FX(µ) − 2Iµ, and DM = E (|X − M |) = µ − 2IM , where Iq =

∫ q
0 x fX(x) dx. From

Equation (1.2) and Theorem 3.4, we have Iq =
∫QY (FR(q))

QY (FR(0)) fT (u) QR(FY (u)) du. By using
the series expansion of QR(·), we obtain the result in Theorem 3.14 �
Corollary 3.15. Based on Theorem 3.14, the I(q)s for (i) T-LL{E}, (ii) T-LL{L}, (iii)
T-LL{C} classes of distributions, respectively, when Sξ(q, z, r) =

∫QY (FR(q))
z ξrfT (u)du,

are given by
(i) Iq = β

∑∞
n=0

∑∞
m=0 wn

(n+1/α
m

)
(−1)mSe−n(q, 0, m), where QY for exponential dis-

tribution.
(ii) Iq = β

∑∞
n=0

∑∞
m=0 wn

(−(n+1/α)
m

)
(−1)mSe−n(q, −∞, m), where QY for logistic dis-

tribution.
(iii) Iq = β

∑∞
n=0

∑∞
m=0 wn

(n+1/α
m

)
(1/2)n+1/α−mSπ−1 arctan(u)(q, −∞, m), where QY for

Cauchy distribution.

Theorem 3.14 and Corollary 3.15 can be used to obtain the mean deviations for the
T-LL{E}, T-LL{L}, and T-LL{C} classes of distributions.

4. Some new generalized log-logistic distributions
In this section, different T and Y distributions are used to generate flexible members

of the T-LL{Y } family of distributions. We present five new T-LL{Y } distributions
namely, Weibull-LL{exponential}, exponentiated-exponential-LL{exponential}, logistic-
LL{Cauchy}, Gumbel-LL{Cauchy}, and normal-LL{Cauchy}.
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4.1. The Weibull-log-logistic{exponential} distribution
If the random variable T follows the Weibull distribution with parameters µ (shape) and

σ (scale), then the CDF of the random variable T is FT (x) = 1 − e−(x/σ)µ , where x ≥ 0
and σ, µ > 0. Using Equation (2.5), the CDF of the Weibull-log-logistic-{exponential}
(W-LL{E}) distribution is defined as

fX(x) = FX(x) = 1 − e−((1/σ) log[1+(x/β)α])µ

, (4.1)
and the corresponding PDF using Equation (2.6) is given by

fX(x) = (αµ/β)(x/β)α−1

σµ (1 + (x/β)α)
(log [1 + (x/β)α])µ−1 e−((1/σ) log[1+(x/β)α])µ

,

where x > 0 and α, β, σ, µ > 0.
When µ = 1, the W-LL{E} distribution reduces to the Burr Type XII distribution,

and when µ = α = 1, the W-LL{E} distribution becomes the Pareto Type II (Lomax)
distribution. Figure 1 provides graphs of the PDF of W-LL{E} for various values of α, β, σ,
and µ. These graphs show that the W-LL{E} distribution can be skewed to right, skewed
to the left, symmetric, or have a reversed J-shape.

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

f(
x)

α = 3      β = 1.5    μ = 1.5    σ = 1.5
α = 3      β = 7       μ = 2.5    σ = 0.3
α = 2.5   β = 1.7    μ = 4       σ = 2
α = 0.5   β = 0.5    μ = 0.5    σ = 0.5

x

Figure 1. The PDFs of W-LL{E} for various parameter values.

Some of the general properties of W-LL{E} distribution can be obtained by using the
general properties of the T-LL{Y } family of distributions derived in Section 3.

(i) Quantile function: By using Corollary 3.5 part (i), the quantile function of the
W-LL{E} distribution is given by

QX(p) = β
(
1 − e−σ(− log(1−p))1/µ

)1/α
.

(ii) Mode: By using Corollary 3.7 part (i), the unique mode of W-LL{E} distribution
is the solution of the following equation

α(x/β)α

x (1 + (x/β)α)

(
1 + µ

{
−1 +

(
σ−1 log [1 + (x/β)α]

)µ})
log [1 + (x/β)α]

= α − 1
x

+ 2αβ2α−1

x2α

(
1 + (x/β)−α)−1 + α

x

(
1 + (x/β)−α)−1

,

which can be evaluated numerically.
(iii) Shannons entropy: By using Corollary 3.10 part (i), the Shannons entropy of W-

LL{E} distribution is given by
ηX = σ(1 − 1/µ) + ln(σ/µ) + 1 − σΓ(1 + 1/µ) + log (βα/α)

+(1 − α)E (log X) + 2E (log (1 + (X/β)α)) .
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(iv) Moments: By using Corollary 3.13 part (i), the rth non-central moments of W-
LL{E} distribution are given by

E(Xr) = βr
∞∑

k=0
wk

∞∑
n,m=0

(
k + r/α

n

)
(−1)n (−n)mσm

m!
Γ(1 + m/µ),

where wk = (−1)k
(−r/α

n

)
.

(v) Mean deviations: By using Corollary 3.15 part (i), the Dµ and the DM of W-
LL{E} distribution are given by

Dµ = 2µFT (QY (FR(µ))) − 2Iµ, and DM = µ − 2IM ,

where Iq is given by

Iq = βµ
∞∑

n,m,k=0
wh

∫ (q/σ)µ

0
(u/σ)µ−1e−(u/σ)µ+ku,

and wh =
(−α−1

n

)(n+1/α
m

)(n+1/α
k

)
(−1)n+m+k.

4.2. The exponentiated-exponential-log-logistic{exponential} distribution
If the random variable T follows the exponentiated-exponential distribution with param-

eters µ (shape) and σ (scale), then the CDF of the random variable T is
FT (x) = (1 − e−(x/σ))µ, where x ≥ 0 and σ, µ > 0. Using Equation (2.5), the CDF of the
exponentiated exponential-log-logistic-{exponential} (EE-LL{E}) distribution is defined
as

FX(x) =
(

1 −
(
1 −

(
1 + (x/β)−α)−1) 1

σ

)µ

,

and the corresponding PDF using Equation (2.6) is given by

fX(x) = (αµ/βσ)(x/β)α−1

(1+(x/β)α)2

(
1 − (1 + (x/β)−α)−1

) 1
σ

−1
(

1 −
(
1 − (1 + (x/β)−α)−1

) 1
σ

)µ−1
,

where x > 0 and α, β, σ, µ > 0.
Similar to the W-LL{E}, the EE-LL{E} distribution reduces to the Burr Type XII

distribution when µ = 1, and when µ = α = 1, the EE-LL{E} distribution becomes the
Pareto Type II (Lomax) distribution. In Figure 2, various plots of the EE-LL{E} are
provided for different values of the parameters α, β, σ, and µ. The graphs show that the
EE-LL{E} distribution can be skewed to right, skewed to the left, symmetric, or have a
reversed J-shape.
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Figure 2. The PDFs of EE-LL{E} for various parameter values.
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4.3. The logistic-log-logistic{Cauchy} distribution
If the random variable T follows the logistic distribution with parameters µ (shape)

and σ (scale), then the CDF of the random variable T is FT (x) =
(
1 − e−(x−µ)/σ

)−1
,

where −∞ < x, µ < ∞ and σ > 0. Using Equation (2.9), the CDF of the logistic-log-
logistic{Cauchy}(L-LL{C}) distribution is defined as

FX(x) =
(
1 − e−(tan(u)−µ)/σ

)−1
,

and the corresponding PDF using Equation (2.10) is given by

fX(x) = (πα/βσ)(x/β)α−1

(1 + (x/β)α)2 sec2 (u) e−({tan(u)}−µ)/σ(
1 − e−({tan(u)}−µ)/σ

)2 ,

where u = π[(1 + (x/β)−α)−1 − 0.5], x > 0, β, σ > 0, and −∞ < α, µ < ∞.
Figure 3 provides graphs of the PDF of L-LL{C} for various values of α, β, σ, and µ.

These graphs indicate that the L-LL{C} distribution can be monotonically decreasing
(reversed J-shape) with one mode at x = 0. It can be also symmetric, right skewed, or
left skewed with one mode at x > 0, or bimodal with two different modes at x1, x2 > 0.
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Figure 3. The PDFs of L-LL{C} for various parameter values.

4.4. The Gumbel-log-logistic{Cauchy} distribution
If the random variable T follows the Gumbel distribution with parameters µ (Shape)

and σ (Scale), then the CDF of the random variable T is FT (x) = e−e−(x−µ)/σ , where
−∞ < x, µ < ∞ and σ > 0. Then using Equation (2.9), the CDF of the Gumbel-log-
logistic{Cauchy} (G-LL{C}) distribution is defined as

FX(x) = e−e−(tan(u−µ))/σ
,

and the corresponding PDF using Equation (2.10) is given by

fX(x) = απ

βσ

(x/β)α−1

(1 + (x/β)α)2 e−(tan(u−µ))/σ sec2 (u) e−e−(tan(u−µ))/σ
,

where u = π[(1 + (x/β)−α)−1 − 0.5], x > 0, α, β, σ > 0, and −∞ < µ < ∞.
Figure 4 illustrates different shapes of the PDF of G-LL{C} for various values of α, β, σ,

and µ. The graphs in Figure 4 indicate that the G-LL{C} distribution can be unimodal
(left skewed, symmetric, right skewed, monotonically decreasing (reversed J-shape)), or
bimodal. Figure 4 also shows that the G-LL{C} distribution could have three different
modal points, namely, one mode at zero, one positive mode, or two different positive
modes.
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Figure 4. The PDFs of G-LL{C} for various parameter values.

4.5. The normal-log-logistic{Cauchy} distribution
If the random variable T follows the normal distribution with parameters µ (Shape) and

σ (Scale), then the CDF and PDF of the random variable T are FT (x) = Φ
(

x−µ
σ

)
and

fT (x) = σ−1ϕ
(

x−µ
σ

)
, where ϕ(x) is N(µ, σ), Φ(x) is the CDF of ϕ(x), −∞ < x, µ < ∞

and σ > 0. Using Equation (2.9), the CDF of the normal-log-logistic{Cauchy}(N-LL{C})
distribution is defined as

FX(x) = Φ(tan (u − µ) /σ)
and the corresponding PDF using Equation (2.10) is given by

fX(x) = απ

βσ

(x/β)α−1

(1 + (x/β)α)2 sec2 (u)ϕ(tan (u − µ) /σ),

where u = π[(1 + (x/β)−α)−1 − 0.5], x > 0 x > 0, α, β, σ > 0, and −∞ < µ < ∞.
Figure 5 provides graphs of the PDF of N-LL{C} for various values of α, β, σ, and µ.

Similar to the L-LL{C} and G-LL{C} distributions, the N-LL{C} distribution exhibits
unimodal (skewed to right, skewed to the left, symmetric, or reversed J-shape) or bimodal
shapes.
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Figure 5. The PDFs of N-LL{C} for various parameter values.

5. Estimation and simulation
In this section, we use the method of maximum likelihood to address the parameter

estimation for the N-LL{C} distribution and conduct a simulation to examine the perfor-
mance of this method.
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5.1. Estimation for the parameters of the N-LL{C} distribution
Let X1, X2, ..., Xn be a random sample of size n drawn from the N-LL{C} as defined in

Subsection 4.5. Let Ω = (α, β, µ, σ)T be a vector of parameters of dimension 4. By setting
zi = 1 + (xi/β)α, the corresponding log-likelihood function for Ω is given by

ℓ(Ω) = n log(π/2)1/2 + n log(α/βσ) + (α − 1)
n∑

i=1
log (xi/β)

−2
n∑

i=1
log zi +

n∑
i=1

log
(
csc πz−1

i

)
− 1

2σ2

n∑
i=1

(
µ − cot π

(
z−1

i

))2
.

The derivatives of ℓ(Ω) with respect to the parameters µ and σ are given by, respectively,
as

∂ℓ/∂µ = − 2
σ2

n∑
i=1

(
µ − cot π

(
z−1

i

))
(5.1)

and

∂ℓ/∂σ = −n

σ
+ 2

σ3

n∑
i=1

(
µ − cot π

(
z−1

i

))2
. (5.2)

By setting Equations (5.1) and (5.2) to zero, the maximum likelihood estimates (MLEs)
µ̂ and σ̂ of µ and σ are given by

µ̂ = 1
n

n∑
i=1

cot π
(
z−1

i

)
(5.3)

and

σ̂ =

√√√√ 2
n

n∑
i=1

(
µ̂ − cot π

(
z−1

i

))2
=

√√√√ 2
n

n∑
i=1

({
1
n

n∑
i=1

cot π
(
z−1

i

)}
− cot π

(
z−1

i

))2

, (5.4)

respectively. Hence, to find the MLEs α̂, β̂, µ̂, and σ̂ of the parameters α, β, µ and σ,
we first substitute Equations (5.3) and (5.4) into the log-likelihood function ℓ(Ω) and
maximize it with respect to the parameters α and β, which gives the MLEs α̂ and β̂.
Then, substitute α̂ and β̂ into Equation (5.3) to find the MLE µ̂ and then substitute α̂,
β̂ and µ̂ into Equation (5.4) to find the MLE σ̂. The initial values for the parameters α
and β is obtained by assuming the random sample xi, i = 1, 2 . . . , n, is from log-logistic
distribution with parameters α and β. The SAS software was used to run all the needed
analysis.

5.2. Simulation for the parameters of the N-LL{C} distribution
A simulation study is conducted to assess the performance of the MLEs for N-LL{C}

distribution in terms of the bias and standard deviation of the estimates for different
parameter combinations and sample sizes. Based on Corollary 3.3 (iii), a random sample
of size n from a N-LL{C} distribution can be simulated. Four sample sizes are considered
(n = 50, 100, 200, 500). We use the same parameter combinations in Figure 5 to conduct
this simulation. These combinations cover different shapes of the N-LL{C} distribution,
including, right skewed, symmetric, left skewed, and bimodal. For each sample size and
each parameter combination, the process is repeated 1000 times to evaluate the MLE of
Ω. The bias and standard deviation of the MLE of Ω is reported in Table 2.

The results in Table 2 show that the ML method is appropriate for estimating the N-
LL{C} parameters. As expected, the biases and standard deviations of the MLEs seem
to be reasonable and decrease as the sample size increases. It is clear that the MLEs are
quite stable and close to the actual values of the parameters for large sample sizes.
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Table 2. Bias and standard deviations for the N-LL{C} parameters.

Actual Values Bias Standard deviation
α β µ σ n α̂ β̂ µ̂ σ̂ α̂ β̂ µ̂ σ̂

1.5R 1.5 0.5 0.5 50 0.5995 0.1638 0.0263 0.2790 0.7265 0.3522 0.3694 0.3414
100 0.3350 0.1134 0.0107 0.1473 0.5148 0.3041 0.2494 0.2191
200 0.1456 0.0348 0.0065 0.0665 0.3938 0.2673 0.1873 0.1583
500 0.0489 0.0033 0.0055 0.0232 0.2641 0.1845 0.1124 0.1006

2L 1.5 2 1 50 0.6830 0.5065 0.2132 0.2222 0.7208 0.5334 0.8736 0.4999
100 0.3575 0.3024 0.1556 0.1049 0.4813 0.4043 0.6640 0.3301
200 0.1798 0.1509 0.0531 0.0608 0.3459 0.3256 0.5204 0.2364
500 0.0652 0.0576 0.0253 0.0207 0.2107 0.2027 0.3224 0.1456

1S 1 1.5 0.5 50 1.1402 0.7826 0.4610 0.2242 0.7229 0.4191 0.6704 0.2838
100 0.9081 0.7051 0.5015 0.1388 0.6441 0.4017 0.5302 0.2042
200 0.6246 0.5539 0.4268 0.0752 0.4857 0.3404 0.4239 0.1496
500 0.3951 0.4064 0.3482 0.0299 0.2988 0.2606 0.3147 0.0911

4B 1.5 0.5 3.5 50 0.1745 0.0025 0.0590 0.5943 0.5800 0.0576 0.7525 1.7047
100 0.1140 0.0048 0.0255 0.3649 0.4076 0.0379 0.5018 1.1011
200 0.0540 0.0007 0.0199 0.1799 0.2908 0.0270 0.3583 0.7484
500 0.0222 0.0001 0.0062 0.0685 0.1741 0.0160 0.2035 0.4263

5.5B 1.5 5 5.5 50 0.0700 0.0149 0.0970 0.1431 0.6613 0.0645 1.3281 1.9502
100 0.0386 0.0073 0.0359 0.1673 0.4990 0.0423 1.1628 1.5757
200 0.0326 0.0032 0.0711 0.1362 0.3519 0.0289 0.9303 1.1230
500 0.0288 0.0020 0.0604 0.1080 0.2372 0.0173 0.6336 0.7655

R: Skewed to the right, S: symmetric, L: skewed to the left, B: bimodal distribution.

6. Applications
In this section, we provide six applications to illustrate the flexibility of the members of

T-LL{Y } family of distributions in fitting real-world data. In these applications, examples
of unimodal and bimodal data sets arising from diverse disciplines are used to compare
the fits of members of T-LL{Y } distributions with other flexible distributions, namely,
the beta normal (BN) [13], the Weibull-Gamma {log-logistic} (W -G{LL} ) [4], and the
Gumbel Weibull (GW ) [1] distributions, based on the log-likelihood (log l) value, the
Kolmogorov-Smirnov (K-S) test statistic and its p-value, the Akaike information criterion
(AIC), and the Bayesian Information Criterion (BIC). The competitor distributions were
selected based on their ability to fit many unimodal and bimodal shapes (see [1, 4, 13]).
More importantly, these distributions showed the best fit among other flexible distributions
in some of the data sets used in this application section.

In addition, other test statistics such as Cramér-von Mises (W ∗) and Anderson-Darling
(A∗) are also provided (see [9] for more details). The method of maximum likelihood is
applied to estimate the parameters of the fitted distribution using NLMIXED procedure
in SAS.

6.1. Unimodal data sets
In this subsection, we present applications of the members of T-LL{Y } family of dis-

tributions to three unimodal data sets with different levels of skewness. The distribu-
tions of these data sets are approximately symmetric, skewed to the right, and skewed
to the left. In the first two applications, the four parameters T-LL{Y } members: W-
LL{E}, L-LL{C}, G-LL{C}, and N-LL{C}, are used to fit approximately symmetric and
right-skewed data sets. In the third application, we apply the distributions: EE-LL{E},
L-LL{C}, G-LL{C}, and N-LL{C} to model left skewed data set. To show the the useful-
ness of the members of T-LL{Y } distributions in fitting real-life data, the goodness-of-fit
results are compared with the BN [13], the W -G{LL} [4], and the GW [1] distributions.
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6.1.1. Data 1: Oxford and Worthing annual maximum temperatures. For our
first example we consider a data set (n = 80) representing the annual maximum temper-
atures, from Oxford and Worthing in the U.K., for the years 1901 to 1980. The data is
used by [8] and modeled using generalized extreme value marginal distributions. Recently,
Alzaatreh et al. [4] used the data in an application of the W-G{LL} distribution. The
data is approximately symmetric (skewness = 0.0162 and kurtosis = 2.7309).

The MLEs and goodness-of-fit statistics are given in Tables 3 and 4, and the estimated
PDFs, along with the histogram of the annual maximum temperatures are shown in Figure
6. The results in Table 4 indicate that all models fit the data almost equally well with some
minor differences in the values of different statistics. However, based on the lowest AIC,
BIC, and −2 log l values, the W-LL{E} and G-LL{C} distributions provide the best fit to
the data. It can also be seen in Table 4 that the L-LL{C}, BN, and W-G{LL} distributions
are competitive models and give the best fit to the data based on the smallest K-S, W ∗

and A∗ statistics, respectively. This application suggests the applicability of modelling
approximately symmetric unimodal data using some representative of the T-LL{Y } family
of distributions (see Figure 6).

Table 3. MLEs results for the annual maximum temperatures data (data 1).

Estimates (Standard error)
Distribution α̂ β̂ µ̂ σ̂
W-LL{E} 87.7615 70.8808 4.1748 17.7944

(19.4421) (10.7813) (3.4812) (10.4005)
L-LL{C} 12.6726 84.0727 0.1530 0.3186

(4.5607) (1.8163) (0.2312) (0.1428)
G-LL{C} 11.9117 76.7701 0.9512 0.7040

(4.3988) (5.8019) (0.6753) (0.2134)
N-LL{C} 6.5403 81.9669 0.2091 0.2712

(7.2280) (8.1051) (0.3816) (0.3123)
BN 58.3309 100.54 99.5393 41.6645

(449.28) (304.80) (491.90) (703.66)
W-G{LL} 423.0032 0.2232 0.4753 0.0481

(169.64) (0.0904) (0.1934) (0.1168)
GW 7.7912 14.4027 47.9726 29.1933

(2.0662) (10.4547) (76.588) (1125.5)

Table 4. Goodness-of-fit tests for the annual maximum temperatures data (data 1).

Statistics
Distribution −2 log l AIC BIC K-S (p-value) A∗ W ∗

W-LL{E} 457.7 465.7 475.3 0.0669 (0.8595) 0.3195 0.0524
L-LL{C} 457.8 465.8 475.3 0.0637 (0.9019) 0.3087 0.0505
G-LL{C} 457.7 465.7 475.2 0.0666 (0.8697) 0.3185 0.0520
N-LL{C} 457.9 465.9 475.4 0.0675 (0.8593) 0.3243 0.0531

BN 458.1 466.1 475.7 0.0638 (0.9007) 0.3070 0.0504
W-G{LL} 458.0 466.0 475.5 0.0640 (0.8987) 0.3086 0.0502

GW 458.5 466.5 476.0 0.0647 (0.8909) 0.3132 0.0518
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Figure 6. Fitted PDFs for the annual maximum temperatures data (data 1).

6.1.2. Data 2: Australian Institute of Sport - sum of skin folds. For this example,
the data set (n = 202), which is obtained from [21], represents the sum of skin folds
collected on a sample of 202 athletes at the Australian Institute of Sport. Alzaatreh et al.
[4] applied the W-G{LL} distribution to fit this data. The sum of skin folds for the 202
athletes is right skewed (skewness = 1.1660, kurtosis = 4.3220).

Table 5. MLEs results for for the sum of skin folds data (data 2).

Estimates (Standard error)
Distribution α̂ β̂ µ̂ σ̂
W-LL{E} 15.5005 25.8902 2.1145 15.4230

(0.2979) (0.5331) (0.1343) (0.7501)
L-LL{C} 2.6186 70.8010 −0.3696 0.7507

(0.2742) (2.9594) (0.1513) (0.1375)
G-LL{C} 2.2142 56.6903 −0.2091 0.8453

(0.2885) (3.0665) (0.1544) (0.1725)
N-LL{C} 2.0588 75.6637 −0.4028 0.9286

(0.2734) (4.3471) (0.1445) (0.1904)
BN 163.77 0.2174 −41.8560 29.4657

(36.3634) (0.01651) (1.8202) (1.5935)
W-G{LL} 13.4018 10.4219 0.3184 0.0219

(2.7954) (2.8058) (2.8058) (0.0131)
GW 3.2943 0.1738 111.05 1.4204

(0.9826) (0.0863) (14.4858) (0.3634)

Table 6. Goodness-of-fit tests for the sum of skin folds data (data 2).

Statistics
Distribution −2 log l AIC BIC K-S (p-value) A∗ W ∗

W-LL{E} 1898.2 1906.2 1919.5 0.0677 (0.9090) 0.9164 0.1346
L-LL{C} 1892.7 1900.7 1914.0 0.0356 (0.9600) 0.3563 0.0372
G-LL{C} 1889.6 1897.6 1910.8 0.0408 (0.8906) 0.3582 0.0464
N-LL{C} 1892.3 1900.3 1913.5 0.0396 (0.9091) 0.3896 0.0442

BN 1910.9 1918.9 1932.1 0.0872 (0.0928) 1.9209 0.3553
W-G{LL} 1924.4 1932.4 1945.6 0.0793 (0.1579) 1.9923 0.3068

GW 1897.9 1905.9 1919.2 0.0583 (0.4972) 0.6875 0.1019
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The MLEs and the goodness-of-fit statistics are provided in Tables 5 and 6. The his-
togram and the densities of the fitted distributions are depicted in Figure 7. By comparing
the goodness-of-fit statistics among the seven distributions in Table 6, we observe that the
L-LL{C} distribution provides a better fit than the other fitted distributions based on the
lowest K-S, W ∗ and A∗ statistics, whereas the G-LL{C} distribution provides the best fit
based on the smallest −2 log l, AIC, and BIC values. This application shows the ability of
some members of the T-LL{Y } family of distributions in providing a good fit for a right
skewed data set.
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Figure 7. Fitted PDFs for the sum of skin folds data (data 2).

6.1.3. Data 3: Turbocharger failure. The data set is taken from [23] and it is about
the time-to-failure for 40 suits of turbochargers in diesel engines. Alzaatreh et al. [4]
also analyzed this data using the W-G{LL} distribution. The distribution of this data is
skewed to the left (skewness = −0.6542, kurtosis = 2.5750). Tables 7 and 8 provide the
estimates of the model parameters and their standard errors, and goodness-of-fit statistics
for all seven models. Here, we see that the EE-LL{E} distribution outperforms the other
distributions (based on the lowest values of all measures in Table 8) and provide the best
fit to the time to failure of turbocharger’s data. This application suggests that the EE-
LL{E} distribution is capable to fit left skewed data. The plots in Figure 8 support the
results of Table 8 in showing that the EE-LL{E} distribution provides the best fit to this
left skewed histogram.
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Figure 8. Fitted PDFs for failure of turbocharger data (data 3).



A versatile family of generalized log-logistic distributions 873

Table 7. MLEs results for failure of turbocharger data (data 3).

Estimates (Standard error)
Distribution α̂ β̂ µ̂ σ̂
EE-LL{E} 17.4700 10.5459 0.1459 0.02864

(0.7172) (0.7545) (0.02444) (0.03090)
L-LL{C} 3.2623 3.4349 2.9742 1.4997

(0.6794) (0.3621) (1.3205) (0.7940)
G-LL{C} 3.8369 3.0267 4.5733 5.3864

(0.6500) (0.2699) (2.1193) (2.6199)
N-LL{C} 3.1643 3.2113 3.4372 2.7513

(0.6435) (0.3644) (1.4730) (1.3572)
BN 0.03019 171.28 10.4407 0.5442

(0.0433) (1.2995) (1.0860) (0.4682)
W-G{LL} 7.5745 0.5396 0.6094 28.3338

(5.5233) (0.3396) (0.2749) (43.2957)
GW 6.3478 1.2516 5.5313 5.8421

(2.6649) (0.5420) (0.9687) (1.7686)

Table 8. Goodness-of-fit tests for failure of turbocharger data (data 3).

Statistics
Distribution −2 log l AIC BIC K-S (p-value) A∗ W ∗

EE-LL{E} 156.4 164.4 171.1 0.0703 (0.9665) 0.1494 0.0204
L-LL{C} 159.0 167.0 173.7 0.0821 (0.9502) 0.2623 0.0403
G-LL{C} 158.9 166.9 173.7 0.0927 (0.8819) 0.2966 0.0447
N-LL{C} 157.1 165.1 171.9 0.0784 (0.9665) 0.2303 0.0370

BN 156.6 164.6 171.4 0.0743 (0.9800) 0.1606 0.0226
W-G{LL} 157.9 165.9 172.7 0.0820 (0.9507) 0.2342 0.0332

GW 158.4 166.4 173.1 0.0821 (0.9501) 0.2009 0.0305

6.2. Bimodal data sets
Recall that the L-LL{C}, G-LL{C}, and N-LL{C} distributions exhibit different shapes

including bimodal. In the following applications, three examples of bimodal data sets are
provided comparing the fits of these distributions with the models used in previous sub-
sections, namely, the BN , the W -G{LL}, and the GW distributions.

6.2.1. Data 4: Egg sizes in asteroids and echinoids. In this application, the data
set with n = 88 is on the asteroid and echinoid egg size taken from [11]. This data contains
88 asteroids species divided into three types; 35 planktotrophic larvae, 36 lecithotrophic
larvae, and 17 brooding larvae. The histogram of the logarithm of the egg diameters of
the asteroids data shows a bimodal shape (see Figure 9). Fomaye et al. [13] and Alzaatreh
et al. [4] used the BN and W-G{LL} distributions, respectively, to analyze this data.

The MLEs and goodness-of-fit statistics are given in Tables 9 and 10, and the estimated
PDFs are shown in Figure 9. Recall that all of these distributions have the ability to fit a
bimodal data. The goodness of fit statistics show that the G-LL{C} distribution provides
the best fit to the data, followed successively by the L-LL{C} and N-LL{C} distributions.
This application is a good illustration of the power of the members of T-LL{Y } family
of distributions in modeling bimodal data sets. The plots in Figure 9 reveal that the
G-LL{C}, L-LL{C}, and N-LL{C} distributions provide adequate fits to the data, and
this is in agreement with the results in Table 10.
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Table 9. MLEs results for asteroid and echinoid egg size data (data 4).

Estimates (Standard error)
Distribution α̂ β̂ µ̂ σ̂

L-LL{C} 11.1691 5.9795 −0.0413 1.6657
(1.1923) (0.0671) (0.3743) (0.4367)

G-LL{C} 11.0246 5.7972 −0.5612 2.4274
(1.1724) (0.0647) (0.4073) (0.6396)

N-LL{C} 9.4711 6.0377 −0.1338 2.0786
(1.1336) (0.0761) (0.3139) (0.5547)

BN 0.0129 0.007 5.7466 0.0675
W-G{LL} 410.7779 0.0151 0.1390 3.6233

(16.1145) (0.0196) (0.0865) (0.4476)
GW 11.4586 0.3900 6.7407 2.1196

(3.0482) (0.1776) (0.3007) (0.4817)

Table 10. Goodness-of-fit tests for asteroid and echinoid egg size data (data 4).

Statistics
Distribution −2 log l AIC BIC K-S (p-value) A∗ W ∗

L-LL{C} 216.7 224.7 234.6 0.0884 (0.4980) 0.8401 0.1286
G-LL{C} 210.7 218.7 228.6 0.0868 (0.5211) 0.6888 0.1050
N-LL{C} 218.4 226.4 236.3 0.0942 (0.4151) 0.9724 0.1623

BN 218.5 226.96 236.4 0.1233 (0.1377) 2.6282 0.4532
W-G{LL} 222.4 230.4 240.3 0.1088 (0.2486) 2.1584 0.2231

GW 233.7 241.7 251.6 0.1427 (0.0555) 1.8502 0.3245
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Figure 9. Fitted PDFs for asteroid and echinoid egg size data (data 4).

6.2.2. Data 5: Old faithful geyser - waiting time between eruptions. The old
faithful geyser data consists of 272 observations on 2 variables. The variables are: the wait-
ing time between eruptions and the duration of the eruption for the old faithful geyser in
Yellowstone National Park, Wyoming, USA (see [6,15] for more details). This application
considers the waiting time between eruptions for the old faithful geyser. We will also be
using the duration of the eruption variable in the next application.

The MLEs and goodness of fit statistics are given in Tables 11 and 12. Based on all
measures in Table 12, the results show that the L-LL{C} distribution is superior to the
other five distributions. Note also that the N-LL{C} has the second-lowest values of
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−2 log l, AIC, and BIC, and the G-LL{C} distribution has the second-lowest values of K-
S, W ∗ and A∗ statistics. As seen in the previous application, the three bimodal members
of the T-LL{Y } family of distributions can be used effectively to fit bimodal data sets
with major mode and minor mode. Figure 10 displays the histogram of the waiting times
between eruptions as well as the PDFs for the fitted distributions.

Table 11. MLEs results for the waiting time between eruptions data (data 5).

Estimates (Standard error)
Distribution α̂ β̂ µ̂ σ̂

L-LL{C} 9.5346 63.2263 1.6928 2.1531
(0.5576) (0.5019) (0.3344) (0.3461)

G-LL{C} 9.2598 59.9996 1.1714 3.7915
(0.5200) (0.4715) (0.5971) (0.3360)

N-LL{C} 8.1915 62.5395 1.3868 2.7165
(0.5050) (0.5730) (0.2702) (0.4156)

BN 0.1168 0.09122 67.7061 3.4928
(0.0173) (0.0068) (1.1115) (0.1474)

W-G{LL} 134.61 0.4924 0.2239 46.5283
(0.1538) (0.0081) (0.0128) (31.5341)

GW 12.2779 0.8522 72.3542 4.1707
(1.1927) (0.1150) (1.3698) (0.4246)

Table 12. Goodness-of-fit tests for the waiting time between eruptions data (data 5).

Statistics
Distribution −2 log l AIC BIC K-S (p-value) A∗ W ∗

L-LL{C} 2074.5 2082.5 2096.9 0.0475 (0.5717) 0.5631 0.0918
G-LL{C} 2083.3 2091.3 2105.8 0.0514 (0.4691) 0.7750 0.1362
N-LL{C} 2081.9 2089.9 2104.3 0.0587 (0.3062) 0.9003 0.1592

BN 2137.4 2145.4 2159.9 0.1403 (0.0001) 5.4169 1.0923
W-G{LL} 2103.2 2111.2 2125.7 0.0696 (0.1433) 1.6118 0.2740

GW 2109.7 2117.7 2132.1 0.0739 (0.1024) 2.0127 0.3424
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Figure 10. Fitted PDFs for the waiting time between eruptions data (data 5).
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6.2.3. Data 6: Old faithful geyser - duration of the eruption. The duration of
the eruption (in minutes) for the old faithful geyser is considered in this application.
Among the fitted distributions, it seems that the L-LL{C} distribution provides the best
fit to the data with smallest −2 log l, AIC, BIC, AIC, W ∗, and A∗ values. However, N-
LL{C} provides the best fit based on the K-S statistic and its corresponding p-value.
From applications 4 and 5, we observe that the G-LL{C} distribution gives adequate fit
and seems to be very competitive to other bimodal distributions. Plots of the estimated
PDFs are displayed in Figure 11. It is clear from these plots that the three bimodal
representatives of the T-LL{Y } family of distributions provide the best fit to the histogram
of the duration of the eruption data.

Table 13. MLEs results for the duration of the eruption data (data 6).

Estimates (Standard error)
Distribution α̂ β̂ µ̂ σ̂

L-LL{C} 9.6482 2.8711 2.8711 13.2494
(0.4873) (0.0184) (2.1918) (2.1918)

G-LL{C} 9.1180 2.7478 2.6697 18.5860
(0.4309) (0.0165) (1.5210) (4.0169)

N-LL{C} 8.7864 2.8526 6.1087 15.9315
(0.4324) (0.0187) (1.6359) (3.3943)

BN 0.06226 171.24 6.2182 0.4791
(0.0211) (0.3620) (0.2390) (0.1012)

W-G{LL} 84.4827 0.03567 0.1411 675.41
(0.0318) (0.0005) (0.0076) (394.64)

GW 12.927 0.7505 3.7903 8.0089
(1.1625) (0.0831) (0.0719) (0.8103)

Table 14. Goodness-of-fit tests for the duration of the eruption data (data 6).

Statistics
Distribution −2 log l AIC BIC K-S (p-value) A∗ W ∗

L-LL{C} 518.3 526.3 540.7 0.0308 (0.9581) 0.2047 0.0258
G-LL{C} 532.9 540.9 555.3 0.0405 (0.7642) 0.3605 0.0378
N-LL{C} 520.4 528.4 542.8 0.0267 (0.9902) 0.2339 0.0314

BN 760.9 768.9 783.3 0.1682 (0.0000) 11.640 1.9421
W-G{LL} 652.8 660.8 675.3 0.1203 (0.0008) 6.9931 1.1829

GW 652.7 660.7 675.1 0.1226 (0.0006) 4.6004 0.6746

7. The W-LL{E} parametric regression model with censored data
In this section, we develop a generalized parametric regression model for lifetime data

with covariates, namely, the W-LL{E} regression model. We also provide an example to
illustrate the flexibility of the W-LL{E} distribution in fitting right censored lifetime data
set.

7.1. The W-LL{E} parametric regression model
In the analysis of most lifetime data, the relationship between the covariates and the

lifetime variable is of interest. One representation of this relationship is the linear rela-
tionship between the log lifetime variable and the covariate values, which can be described
as follows:
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Figure 11. Fitted PDFs for the duration of the eruption data (data 6).

Let X denote the lifetime variable and Z a vector of p covariates such that Z =
(1, z1,...,zp)T . The log-linear regression model which links the dependent variable Y =
log (X) and the p set of covariates is given by

Y = log (X) = γT Z + τW, (7.1)
where γT = (γ0, γ1, ..., γp) is a vector of regression coefficients, τ is an unknown scale
parameter, and W is the error variable. Different distributions of W imply different
models of X. For example, logistic, extreme value, normal or generalized extreme value
distributions lead to log-logistic, Weibull, log-normal, or generalized gamma models for
X. In this section, we derive a new generalized log-logistic model, called the W-LL{E}
regression model, for which W has a standard log-W-LL{E} distribution.

Suppose that a lifetime variable X follows the W-LL{E} distribution in Equation (4.1),
then the survival function for the W-LL{E} distribution is given by

SX(x) = e
−
[

1
σ

log
(

1+
(

x
β

)α)]µ

,

where x > 0 and α, β, σ, µ > 0.
Taking the log transform of X, and redefine the parameters as α = 1/τ and β = eλ,

then, Y = log (X), can be written as a log linear model, Y = λ + τW , where the random
variable W = (Y − λ)/τ has a standard log-W-LL{E} distribution with PDF

πW (w) = µ

σ

ew

1 + ew

[ 1
σ

log (1 + ew)
]µ−1

e−[ 1
σ

log(1+ew)]µ

.

Thus, the underlying PDF and survival function, respectively, for Y are

gY (y) = µ

στ

e( y−λ
τ )

1 + e
( y−λ

τ )

[
1
σ

log
(

1 + e
( y−λ

τ )
)]µ−1

e
−
[

1
σ

log
(

1+e
( y−λ

τ ))]µ

(7.2)

and

SY (y) = e
−
[

(1/σ) log
(

1+e
( y−λ

τ ))]µ

,

where y ∈ R, λ ∈ R and τ, σ, µ > 0.

Plots of the log-W-LL{E} density function in Equation (7.2) for some parameter values
are given in Figure 12.
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Figure 12. The PDFs of log-W-LL{E} for various parameter values when
(λ, τ) = (0, 1).

In order to incorporate covariates into the W-LL{E} regression model, we use the log-
linear model in Equation (7.1) for the lifetime X, where W has a standard log-W-LL{E}
distribution such that λ = γT Z is the location parameter of Y and τ, σ, µ > 0 are unknown
parameters. With the regression model in Equation (7.1), the survival function for Y can
be expressed as

SY (y|Z) = e

−

(1/σ) log

1+e

(
y−γT Z

τ

)µ

.

Now assume that we have n independent individuals and let the random variables Xi and
Ci denote the lifetime and censoring time of ith individual (i = 1, ..., n). Let the response
Yi represents a log-lifetime or a log-censoring time for ith individual such that Yi= min
(log(Xi), log(Ci)). Assume first that all the observations are uncensored, then the log
likelihood for the model parameters θ = (µ, σ, τ, γT )T is given by

l(θ) =
n∑

i=1
log (g(yi)) = n log

( µ
στ

)
+

n∑
i=1

wi −
n∑

i=1
l(wi) + (µ − 1)

n∑
i=1

log
(

1
σ l(wi)

)
−

n∑
i=1

(
1
σ l(wi)

)µ
,

where wi = (yi − γT zi)/τ and l(wi) = log (1 + ewi). If some of the observations are
right censored, then let Uc and Uu be the sets of censored and uncensored observations,
respectively. Additionally, if we assume non-informative and independent censoring, then
the log-likelihood function for the model parameters θ = (µ, σ, τ, γT )T is given by

l(θ) =
∑

i∈Uu

log(g(yi)) +
∑
i∈Uc

log(S(yi))

= m log
(

µ

στ

)
+
∑

i∈Uu

wi −
∑

i∈Uu

l(wi) + (µ − 1)
∑

i∈Uu

l(wi) −
∑

i∈Uu

( 1
σ

l(wi)
)µ

−
∑
i∈Uc

( 1
σ

l(wi)
)µ

= m log
(

µ

στ

)
+
∑

i∈Uu

wi −
∑

i∈Uu

l(wi) + (µ − 1)
∑

i∈Uu

l(wi) −
n∑

i=1

( 1
σ

l(wi)
)µ

, (7.3)

where m is the number of uncensored observations. Once maximum likelihood estimate of
the vector of parameters θ = (µ, σ, τ, γT )T is computed, estimate of the survival function
is available for the distribution of Y . Estimate of θ can be found numerically, and routines
to do so are available in most statistical packages. In the following application, NLMIXED
procedure in SAS is used to obtain estimate of θ.

7.2. Application: Head-and-neck cancer study
In this real data application, we apply the W-LL{E} regression model to fit right

censored data from two arms of the Northern California Oncology Group (NCOG) study of
head and neck cancer, which previously analyzed by [10]. This study compares treatment
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for head and neck cancer using radiotherapy alone (Arm A) with treatment for head and
neck cancer using radiotherapy plus chemotherapy (Arm B). Of the 51 patients assigned
to Arm A; 9 of them lost to follow-up (censored) and a total of 45 patients were enrolled
in Arm B; 14 of them lost to follow-up. The survival time for each patient (measured in
days) is the response variable.

Let Yi be the log survival time (in days) for the ith patient and zi1 be the binary co-
variate: two-arm (Arm A = 0, Arm B = 1). We fit the W-LL{E}, log-logistic, generalized
gamma, Weibull, and log-normal regression models to this data. The log linear model is
given by

Yi = γ0 + γ1zi1 + τWi; i = 1, 2, . . . , 96,

where the random variable Wi has the appropriate distribution for each of the five models.
It is clear that log-logistic distribution is a special case of W-LL{E} distribution when

µ = σ = 1. Note also that the generalized gamma model includes the Weibull and the log-
normal models as limiting cases. For the generalized gamma model, Y = log (X) follows
the log linear model in Equation (7.1) with W having the following PDF:

π(w) = |θ|
Γ(θ−2)

(
θ−2eθw

)θ−2 (
e−eθw/θ2)

,

where Γ(a) is the complete gamma function, and −∞ < w < ∞.
This regression model reduces to the Weibull model when θ = 1, and, when θ = 0, the

model reduces to the log-normal model.
The estimates of the model parameters and their corresponding standard errors, the

maximized likelihoods, and AIC and BIC criteria for all five models are provided in Table
15. The results indicate that the W-LL{E} model has the lowest AIC and BIC values
among the other fitted models, in that sense, is the best fitting model to this data. We
see from the fitted W-LL{E} regression model that there is no evidence of any difference
in survival between Arm A and Arm B clinical trial.

Table 15. MLEs and fit statistics for the two-arm data (standard error) [p-value].

Model µ σ τ γ0 γ1 −2 log l AIC BIC
W-LL{E} 0.5428 3.9953 0.2316 4.9939 0.1438 272.7 282.7 295.5

(0.1673) (1.4172) (0.0708) (0.2354) (0.1948)
[< .0001] [0.4622]

log-logistic 1 1 0.7585 5.4943 0.5549 288.1 294.1 301.8
(0.0736) (0.1810) (0.2779)

[< .0001] [0.0459]
Model θ τ γ0 γ1 −2 log l AIC BIC

Generalized −0.5723 1.2978 5.2294 0.5690 283.6 291.6 301.9
gamma (0.2974) (0.1108) (0.2533) (0.2681)

[< .0001] [0.0338]
Weibull 1 1.1757 6.0387 0.7860 303.4 309.4 317.1

(0.1083) (0.1821) (0.2789)
[< .0001] [0.0048]

log-normal 0 1.2933 5.5372 0.6177 286.9 292.9 300.6
(0.1122) (0.1867) (0.2744)

[< .0001] [0.0244]

A comparison of the W-LL{E} regression model with its sub-model using likelihood
ratio statistics in Table 16 indicates that the extra parameters (µ, σ) of the W-LL{E}
are jointly significant. Thus, the W-LL{E} model is more flexible, due to two extra
parameters, and outperforms the log-logistic model in fitting this data.
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Table 16. Likelihood ratio test for the two-arm data.

Model Hypotheses LR statistic p-value
W-LL{E} vs log-logistic H0 : (µ, σ) = (1, 1) vs H1 : H0 is false 15.4 0.00045

The plots of the empirical survival function and the estimated survival functions of the
W-LL{E}, log-logistic, and log-normal are depicted in Figure 13. These plots suggest
that the W-LL{E} model is appropriate to fit this data, so it can be considered a very
competitive model to other lifetime models.
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Figure 13. The empirical and estimated survival functions of the W-LL{E},
log-logistic, and log-normal for the Head-and-Neck Cancer data.

8. Summary and conclusions
In this paper, we discussed three members of the T-LL{Y } family of distributions,

namely the T-LL{E}, T-LL{L}, and T-LL{C} classes of distributions. Several useful
properties of these classes are introduced and studied in details. Five generalizations of
the log-logistic distribution namely, the W-LL{E}, EE-LL{E}, L-LL{C}, G-LL{C}, and
N-LL{C} distributions were derived and studied. The maximum likelihood method is
proposed to estimate the distributions parameters and a simulation study is carried out to
measure the performance of the N-LL{C} parameters. Based on the simulation results,
it can be seen that the maximum likelihood method performs reasonably well and the
MLEs get better with the increase in sample size. To illustrate the usefulness and flex-
ibility of these distributions in applications, six real-world data sets arising from diverse
branches of science with different sample sizes and different shapes are used. From the
results of goodness-of-fit tables in Subsections 7.1 and 7.2, it is noticed that these general-
ized log-logistic distributions performed very well in fitting approximately symmetric, left
skewed, right skewed, or bimodal data sets. A new generalized log-logistic lifetime model,
the W-LL{E} regression model, is derived and applied to fit a right censored data with
covariates. The flexibility provided by this model could be very helpful in describing and
explaining different types of lifetime data.
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