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Abstract

The object of this paper is to study non-invariant hypersurfaces of hyperbolic Sasakian
manifolds equipped with (f, g,u, v, 1) — structure. Some properties obeyed by this structure
are obtained. The necessary and sufficient conditions also have been obtained for totally
umbilical non -invariant hypersurfaces with (f, g,u,v,1) — structure of hyperbolic Sasakian
manifolds to be totally geodesic. The second fundamental form of a non-invariant hypersurface
of hyperbolic Sasakian manifolds with (f, g,u,v,A) - structure has been traced under the
condition when f is parallel.
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1. INTRODUCTION

Blair and Ludden [4] studied the hypersurfaces in an almost contact manifolds in 1969. They
also proved that there does not exist invariant hypersurface of a contact manifold. In 1970, S.
1. Goldberg et. al [2] introduced the notion of a non-invariant hypersurfaces of an almost contact
manifold in which the transform of a tangent vector of the hypersurface by the (1, 1) structure
tensor field f defining the almost contact structure is never tangent to the hypersurface and also
proved that there always exists a (f, g, u, v, 1) - structure on a non-invariant hypersurface of an
almost contact metric manifold. The notion of (f, g, u, v, A) - structure was given by Yano and
Okumura [3]. Sinha and Sharma [8] studied the hypersurfaces of an almost paracontact metric
manifold with para (f, g u, v, 1) — structure.

The notion of geodesic plays an important role in the theory of relativity [5]. Upadhyay and
Dubey [14] studied an almost hypersurfaces contact (f,¢&,n, g) —structure. R. Prasad [12]
studied the non-invariant hypersurfaces of trans-Sasakian manifolds. 7. Khan [11] studied the
non-invariant hypersurfaces of Nearly Kenmotsu manifold. 4hmed at. el. [13] studied the non-
invariant hypersurfaces of nearly hyperbolic Sasakian manifold. In the present paper, we study
the non-invariant hypersurfaces of hyperbolic Sasakian manifolds.

This paper is organized as follows. In section 2, we give a brief description of hyperbolic
Sasakian manifolds. In section 3, introduce the non-invariant hypersurfaces and induced (f, g,
u, v, 4) - structure on non-invariant hypersurface M getting some equation. Some results of non-
invariant hypersurfaces with (f g, u, v, 1) - structure of hyperbolic Sasakian manifolds. The
necessary and sufficient conditions also have been obtained for totally umbilical non-invariant
hypersurfaces with (f g, u, v, 1) - structure of hyperbolic Sasakian manifolds to be totally
geodesic.

2. PRELIMINARIES
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Let Mbe a complete real differentiable manifold of dimension (2n + 1). Let there exist a tensor
field ¢ of type (1,1), a vector field £ and a 1 — form 7 satisfying

¢*X =X +n(X)§ (2.1)
n(@Xx) =0 (2.2)

for arbitrary vector fields X,Y € TM. Then M is called a hyperbolic contact manifold
([8],[14]). From the above equation we can easily prove that

$$=0 (2.3)
n¢) =-1 (2.4)
Let the hyperbolic contact manifold M be an endowed with a Riemannian metric g such that
P(X,Y) = g(¢X,Y) (2.5)
9(@X,¢Y) = —g(X,Y) —n(X)n(Y) (2.6)
g9X, &) =nX) (2.7)

A hypersurfaces contact structure satisfying the equations (2.1) to (2.6)is said to be a
hyperbolic contact metric manifold [14].

A hyperbolic contact metric manifold is said to be a hyperbolic cosymplectic metric manifold
if the structure tensor ¢ and the 1-form 71 are parallel with respect to a symmetric affine
connection ¥ on M. Since ¢p? = I + 1 & &, the vector field ¢is also parallel with respect to &,
1.e.

(Vxp)Y =0 (2.5)
(Vym)Y =0 (2.6)
Vxé =0 2.7)

A hyperbolic contact metric manifold Min which

—2¢ =dn (2.11)
is satisfied, called an almost hyperbolic Sasakian manifold.

An almost hyperbolic Sasakian manifold M, for which ¢ is Killing vector, i.e.
WxmY + (FymX =0 (2.12)
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where ¥ is the Riemannian connection, is called a hyperbolic K-contact Riemannian manifold.

In a hyperbolic K-contact Riemannian manifold, the following relation hold

DX, Y) = =(Vym)Y = (BymX (2.13)

A hyperbolic K-contact Riemannian manifold M is called a hyperbolic Sasakian manifold [7],
if

(Txd)Y = g(X,Y)§ —n(NX (2.14)

V& = —¢X (2.15)

A hypersurfaces of an almost contact metric manifold Mis called a non-invariant hypersurfaces,
if the transform of a tangent vector of the hypersurfaces under the action of (1,1) tensor field ¢
defining the contact structure is never tangent to the hypersurfaces. Let X be tangent vector on

non-invariant hypersurfaces of an almost contact metric manifold M, then ¢pX is never to tangent
of the hypersurfaces.

Let M be a non-invariant hypersurface of an almost contact metric manifold, Now, we define
the following:

oX = fX +u(X)N (2.16)
¢N = —U (2.17)
§=V+AN, 1=n(N) (2.18)
n(X) = v(X) (2.19)

where f is (1,1) tensor field, u and v are 1—form, N is a unit normal to the hypersurface, X €

TM and u(X) # 0, then we get an induced (f,g,u,v,A) — structure on M satisfying the
conditions

(fP=1+uQ@U+vQV,

uof =Av,vo f =—-Au,

v(V)=—-1=-22,u(V)=0=vU),u(U) = —1— 12,

FV =AU, fU = AV, (2.20)
u(X) = gX,U),v(X) = gX, V),

\g(fX, fY) ==g(XY) —uX)u(Y) —vX)v(Y)
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Using equation (2.5) and (2.6), we have

DX, fY) = P(fX,Y) = 29(fX, fY) + v(X)v(Y) (2.21)

forallX,Y € TM & 2 = n(N).

The Gauss and Weingarten formulae are given by

VY = VyY + (X, Y)N (2.22)
VyN = —AgX (2.23)

for all X,Y € TM, where V and V are the Riemannian and induced connection on M and M
respectively and N is the unit normal vector in the normal bundle T+ M. In this formula o is the second
fundamental form on M related to Ag by

o(X,Y) = g(4gX,)Y) (2.24)
forall X,Y € TM.

3. NON-INVARIANT HYPERSURFACES

Lemma 3.1. If M be a non-invariant hypersurface with (f, g, u, v, 1) — structure of hyperbolic
Sasakian manifold M, then

WxmY + (BymX = (Fxv)Y + (Byv)X — 220(X,Y) (3.1)
V& =VyV —AAgX + (6(X,V) + XA)N. (3.2)

forall X,Y € TM.
Proof. After computations similar to Lemma 3.1[4], lemma follows.

Theorem 3.2. If M be a non-invariant hypersurface with (f,g,u,v,4) — structure of
hyperbolic Sasakian manifold M, then

(Vi)Y = g(X, V)V + u(¥)AgX — v(V)X — a(X,Y)U (3.3)

(Vxw)Y =Ag(X,Y) —a(X, fY) (3.4)

forall X,Y € TM.

Proof: By covariant differentiation, we know that

(?X(P)Y = ‘7X¢Y - ¢(‘7XY)
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Using equation (2.16) in (2.22), we have
(Vx®) Y = Vx(fY + u(Y)N) — ¢(Vx Y + a(X,Y)N)
(Vxd) Y = Vi fY + Vy(u(Y)N) — ¢V Y — o(X, )N
Using (2.16) and (2.17), we have

(Vxd) Y = Vg fY + a(X, fYIN + u(Y)(VxN) + (qu(y)) N — fVx Y —u(Vx V)N
+o(X, U

Using (2.23), we have

(V) Y = Vg fY — fVx Y + (X, fY)N —u(Y)Ag X + o (X,Y)U
+ (Vxu(¥) + o(X, u(Y))N)N — u(Vx V)N

(Vxd) Y = (V)Y —u(NAg X + o(X,Y)U + o (X, fY)N + (Vxu(¥) —u(Vx Y))N
(V) Y = (Vi)Y —u(MAg X + o(X, U + o(X, fY)N + (Vxu)Y)N

xHY =gX V)V +u(Y)AgX —v(¥)X —o(X,Y)U (3.5)
Now, using (2.18) and (2.19) in (2.14), we have

(V)Y = g(X, Y)(V + AN) —v(V)X

3.6
(Vxp)Y = g(X, V)V + 2g(X, V)N —v(Y)X G0

Comparing (3.5) and (3.6), we have

(Vx )Y —u(MAg X + o(X, U + ((Vxw)Y + o(X, fY))N
=gX,Y)V +1g(X,Y)N —v(Y)X

Equating tangential and normal part, we have the required results.

Theorem 3.3. If M be a non-invariant hypersurface with (f, g, u, v, 1) — structure of hyperbolic
Sasakian manifold M, then

o(X, U = f2X + f(Vx§) —u(X)U (3.7)

u(Vx$) = —u(fX) (3.8)

forall X,Y € TM.

Proof: By covariant differentiation, we know that

(?X(P)f = ‘7X¢f - ¢(‘7xf)
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Using (2.3), we have

(Vx$) § = —p(Vx §) (3.9)
Using equation (2.15) in above, we have
(Vx$) & = —p(—¢X)
(Vx)¢ = p(dX)

Using (2.16) in above, we have
(Vxd)E = (X +u(X)N)
(Vx¢)§ = ¢(fX) + u(X)pN

Using (2.16) and (2.17), we get

(V)¢ = F(FX) + u(fX)N — u(X)U

(V)¢ = f2X + u(fXIN — u(X) .
Using (2.22) in (3.9), we have
(Vx¢)E = =p(Vx ) + (X, ON
(Vx$) § = —p(Vx §) — (X, $)pN
Using (2.16) and (2.17), we get
(Vxp)§ = —f(Vx &) —u(Vx ON + o(X,§HU (3.11)

Comparing (3.10) and (3.11), we have
fPX +u(fXON —u(X)U = —f(Vx §) —u(Vx ON + a(X,$HU
Equating tangential and normal part, we have required results.

Theorem 3.4. If M be a non-invariant hypersurface with (f,g,u,v,1) — structure of
hyperbolic Sasakian manifold M, then

v,V = AAgX — fX, (3.12)
o(X,V) = —u(X) — XA. (3.13)

If M be a totally umbilical non-invariant hypersurface with (f, g,u,v,1) — structure of
hyperbolic Sasakian manifold M, then it is totally geodesic if and only if,
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u(X) +X1=0 (3.14)

forall X,Y € TM.

Proof: Using (2.16) in (2.15), we get

Vyé = —fX —u(X)N (3.15)
Comparing (3.2) and (3.15), we get
VeV — 245X + (6(X,V) + XA)N = —fX —u(X)N
Equating tangential and normal part, we get desired results.

Now, if M is totally umbilical, then Az = {I, where { is Kahlerian metric, then (2.24) reduces
as

o(X,Y) = g4z X,Y) = g({X,Y) = {g(X,Y)

therefore,

o(X,V) ={g(X,V) = v(X)

Using (2.18) and above equation in (3.14), we have

w(X) = —=X1—u(X)

If M is totally geodesic, i.e. { = 0, then from above equation, we have
u(X)+ X1 =0.

Theorem 3.5. If M be a non-invariant hypersurface with (f,g,u,v,1) — structure of
hyperbolic Sasakian manifold M and Uis parallel, then

AX+f(AgX) =0 (3.16)
forall X,Y € TM.
Proof: Consider covariant differentiation, we have

(Vxp) N = Vxdp N — p(VxN) (3.17)
Using equation (2.16), (2.17), (2.22) and (2.23) in above, we have
(Vxp) N =Vx¢ N +h(X, ¢ N)N — f(VxN) —u(Vx )N

(Vxp)N = =VxU + f(AxX) (3.18)

Putting Y = N in (2.14), we have
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(Vx)N = g(X,N)§ —n(N)x
Using (2.18), we have
(Vxp)N = —2X (3.19)
From (3.18) and (3.19), we have
—VxU + f(AgX) = —AX
VU = 2AX + f(AgX)
If U is parallel then, VxU = 0, so from above equation, we have
AX + f(AgX) = 0.

Theorem 3.6. If M be a non-invariant hypersurface with (f,g,u,v,1) — structure of
hyperbolic Sasakian manifold M and f is parallel, then

o(X,U) = u(Ag X) (3.19)
X1=0 (3.20)

forall X, Y eTM.

Proof. As f is parallel, then from (3.3), we have

ocX, U =gX, V)V +u(Y)Ag X —v(V)X

Applying u both sides, we get

oX,Y)u(U) = gX,Y)ulV) + uY)u(Ag X) —v(V)u(X)

Using (2.20), we have

(—1=-29)0X,Y) = 0+ u(M)u(Ag X) — v(¥)u(X)

(3.21)
-1+ 20X, Y) =uM)u(Ag X) — v(¥)u(X)
Replacing Y = U, we have
1+ 21H)oX,U) = u(Du(Az X) — v(U)u(X)
—(1+ 2o (X, U) = —(1 + A)u(Ag X) (3.22)

o(X,U) = u(Ag X)

Now, putting Y =V in (3.21), we get
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-1+ 21X, V) =uW)u(Ay X) —v(V)u(X)

Using (2.20), we have

—(1 + 22)oX,V) = (1 + 1D)uX)

(3.23)

o(X,V) = —u(X)

Comparing (3.13) and (3.23), we get desired result.
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