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FACTOR RELATIONS BETWEEN SOME SUMMABILITY
METHODS
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ABSTRACT. In the present paper, using the result of Bennett [1] on character-
ization of factorable matrices, we give necessary and sufficient conditions in
order that XA,y is summable |R, pn|, whenever Xpy,x, is summable |C, 0|, ,
and YA,z is summable |C, 0|, whenever X,y is summable |R, pn|,. ,. where
1 < k < s < 00. Therefore we also extend some known results.

1. INTRODUCTION

Consider an infinite series Yz, with partial sum s,,, and by (¢%), we denote the
n-th Cesaro means of order o with o > —1 of the sequence (s, ). The series Xz, is
said to be summable |C, a|, .k > 1, if (n!=¥/* (68 — 0%_,)) € Lk (see [7]), where £y,
is the set of all sequences consisting k- absolutely convergent series. Note that the
summability |C, 0], reduces to (n'~/*z,) € . Let (p,) be a sequence of positive
real numbers with P,, = pg+p1+---+p. — 00 as n — n. The sequence-to-sequence
transformation

1 n
" n=0

defines the sequence (u,) of the (R,py,) Riesz means of the sequence (s,), gen-
erated by the sequence of numbers (p,,). The series Xa,, is said to be summable
IR, pnl, k> 1, if (nP=Y* (u, — up_1)) € Le (see [19]).

A summability method Y is said to be include another summability method X,
if every series summable by X is also summable by Y. If the methods include each
other, then, these methods are called equivalent. Hereof, the inclusion relations of
the absolute summability methods of single series were studied by various authors
(see, for example, [2-24]).

The following result was established by Bor [2].

Theorem 1.1. Let 1 < k < co and

i P o (VP (1.2)
2 PiP, P, ) '
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If exists d > 1 such that

P
;H >dforalln>1, (1.3)

n
then, the summability methods |R, p,|, and |C,0], are equivalent.

Also, in [16], this result was extended as follows.
Theorem 1.2. Let 1 < k < s < co. Then, the necessary and sufficient condition
in order that the summability method |R,p,|, includes the summability method

|C, 0], is
« oy /KT “ sy 1/s
- P11)€71 - nl/s Pn
(s ()} -ow

v=1 n=m

where k* denotes the conjugate of the index k > 1, i.e., 1/k+1/k* = 1.
Theorem 1.3. Let 1 < k < s < 0co. Then, the necessary and sufficient condition
in order that the summability method |C,0[, includes the summability method

|R, pnl,, is
BV UR i1\ 1
Yo = 0(1).

2. THE MAIN RESULT

Pu— 1 PU
2

1
v

L5

1

This paper gives necessary and sufficient conditions in order that X\, z,, is sum-
mable |C, 0|, whenever Y, x,, is summable |R, p,|, , and also XA,z is summable
|R, pn|, whenever iz, is summable |C, 0], , wherel < r < s < 0o, which gener-
alizes the above results.

A factorable matrix T is defined by
- { bnay,,0 < v < n,
0, v > n.
where (b,,) and (a,) are sequences of real or complex numbers.
Now we prove the following theorems.

Theorem 2.1. Let 1 < k < s < oo and A = (\,,) be a sequence of numbers.
Further, let p = (u,) be a sequence of non-zero numbers. Then, necessary and
sufficient condition in order that ¥\, z, is summable |R, pn\s whenever Xu,x, is

summable |C, 0], is

. *y L/k" . sy 1/s
m Pk . A k o nl/s D

—— = =5 =0(1). 2.1

B} (S0} o -

Theorem 2.2. Let 1 < k < s < oo, A and u be as in Theorem 2.1. Then,

necessary and sufficient condition in order that X\, z,, is summable |C, 0|, whenever

Epin ey is summable |R, py|, is

m «y 1/k* m+1 N sy 1/s
1 Plev>k nt/s" A,
E _— E _ = 0(1). 2.2
{U_m_lv ( Pov } {n_m Pn/in ( ) ( )

It may be noticed that Theorem 2.1 and Theorem 2.2. are, in the special case
tn = Ap = 1 for all n > 0, reduced to Theorem 1.2. and Theorem 1.3, respectively.
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Also, if p, = 1 for all n > 0, then the summability| R, p, |, coincides with the
summability |C, 1|, . Further, P, =n + 1 and

- Pn _ = 1 . 1
7;”13”,113; _T;nn(n-i-l)s =0 <m>

Hence, the following results is immediately obtained.

Corollary 2.3. Let 1 < k < s < oo, A and p be as in Theorem 2.1. Then,
necessary and sufficient condition in order that Xz, \,, is summable |C, 1|, whenever
Y p iy is summable |C,0[, is

m
E ’Uk -1

v=1

L
=0(m"").

Ao
Mo
Corollary 2.4. Let 1 < k < s < o0, A and p be as in Theorem 2.1. Then,

necessary and sufficient condition in order that Xz, \,, is summable |C, 0|, whenever
Y p iy is summable |C, 1|, is

m—+1

> 7

s
n=m ~ "

S

An — O(ml_%_s/k).

fin

Proof of Theorem 2.1. We first note a result of Bennett [1] that a factorable
matrix T defines a bounded linear operator Lt : £, — {5 such that Ly (z) = T(x)
for all x € ¢, if and only if

m Uk, o 1/s
(Zlaulkj (Z%) =0(1), (2.3)

v=0 n=m

where k*is the conjugate of indices k. Let 00 and wu, be Cesaro (C,0) and Riesz
means (R, p,) of the series Xy, x, and X\, x,, respectively. Then, by (1.1),

n
02 = Z,U/vxv
v=0
1 & v
Up = F Zp'u Z)\rxr

" y=0 r=0

and so Aug = Mgz,
p n
Au, = ——— E P,_1 Mz, for n > 1.
Unp, PP, 2 v—1 ATy rn =

Now, say t/, = n'/*" Au, and 0¥ = n'/*" i, x,, for n > 1. Then, it ecasily scen that
t/ _ nl/s*pn Xn: Pv—1>\v O_(]/
" PnPnfl 1 Ul/k*,uv !

V=

o0
_ 0r
= g tno0,
v=1
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where the matrix T = (t,,) is given by

n S pn Py 1A
Pnlfv—1Av < <
P, P, lvl/k*uu’ 1 SUsn,

0, v > n.

tpy =

This means that Xz, \, is summable |R, p, |, whenever ¥z, is summable |C, 0|,
if and only (t),) € £, for all (09') € £y, or, T : £, — {, is a bounded linear operator.
Thus, by applying (2.3) to the matrix T, we have (2.1).

Proof of Theorem 2.2. Let u,, and 0 be means of Riesz (R, p,) and Cesaro
(C,0) of the series Y, x, and X\, z,, respectively. Then, as above, Acd = \,z,,
and also Aug = pozg,

Au, = PP, P ZPU 1Ty, for m > 1 (2.4)
n—1
By inversion of (2.4), it can be stated that, forn > 1,
1 Pn—lpn Pn,—1Pn—2 )
Ty = Au, — Ay,
" :U/nPnf ( Pn " Pn—1 nt
Say t!, = n**" Au,, and o¥ = nY/s" \pa,, for n > 1. Then, it can be written that
oV = nl/S*An P,_1P,t;, _ P, 1Py ot
" fin P \ n'/*p, (n— 1)1/k Pn-1
(oo}
= D dut,
v=1
where the matrix D = (d,,) is defined by
VA, P 1Py _
ZnPn,—l <_ (nfl)ll/k*pj,l) ’ =n—1
= 1"\, ( Pno1Pn _
dnu 7;:"1:,”71 (7711/,@1 o ) v=n
0, v > n.

This gives that ¥z, A, is summable |C, 0|, whenever ¥z, 1, is summable |R, p,|, if
and only if (o) € £, for all (¢],) € €y, or, D : £ — £, is a bounded linear operator.
Thus, by applymg (2.3) to the matrix D, we get (2.2).

This completes the proof.
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