GU J Sci, Part C, 9(4): 784-810 (2021)

Gazi University

Journal of Science

PART C: DESIGN AND TECHNOLOGY

http://dergipark.gov.tr/gujsc

Comparison of the shape, depth and N γ factors used in the bearing capacity equation

Mustafa ÖZER^{1,*}

¹Gazi University, Faculty of Technology, Department of Civil Engineering, 06500, Yenimahalle/ANKARA

Graphical/Tabular Abstract

Article Info:

Research article Received: 01.11.2021 Revision: 11.12.2021 Accepted: 13.12.2021

Highlights

- Terzaghi equation
- Bearing capacity factors
- Correction factors

Keywords

Shallow foundation Bearing capacity Shape factor Depth factor TBEC-2018 In this study, using different equations generally accepted in the literature for the shape, depth and N γ coefficients in the general bearing capacity equation used in the calculation of the bearing capacity of shallow foundations, safe bearing capacity values were calculated for varying soil conditions from c=20 to 200 kPa and from ϕ =0 to 40° and the results were compared with each other.

Figure A. Comparison of the allowable bearing capacity values calculated with different combination equations for $\phi=0^{\circ}$, B/L=0.625 and D/B=0.3

Purpose: There are different equations suggested by different researchers in the literature for the correction factor used in the general bearing capacity equation. In addition, although there is a general agreement in the literature for N_c and N_q , there are many different equations for N γ in the literature. In order to decide which of these factors to use while designing the foundation, it is important to know how these factors affect the foundation design and which factors will be used to obtain safer results.

Theory and Methods: In this study, safe bearing capacity values were calculated for different ground conditions ranging from c=20 to 200 kPa and from ϕ =0 to 40° using different equations generally accepted in the literature, and the results were compared with each other.

Results: In the $\phi=0^{\circ}$ analyses, the lowest (safest) bearing capacity values were obtained by Meyerhof [10]'s shape and depth factors, and the highest bearing capacity values were obtained by De Beer [12]'s shape and Hansen [13]'s depth factors. In the "c- ϕ " analyses, the lowest (safest) bearing capacity values for soils with approximately $\phi<20^{\circ}$ were obtained by Meyerhof [10]'s shape, depth and N_{γ} factors. As for the soils with approximately $\phi>20^{\circ}$, the lowest (safest) bearing capacity values were obtained using the shape factors with sin ϕ proposed by De Beer [12], d_c factors suggested by Vesić [15] and d_q and d_{γ} factors proposed by Hansen [13] and N_{γ} factor suggested in TBEC [18].

Conclusion: It has been observed that there is a significant difference between the bearing capacity values calculated with the different relations suggested in the literature for shape, depth and N γ coefficients, and this difference is not constant, but changes depending on the cohesion value in $\phi=0^{\circ}$ analyzes and the internal friction angle in "c- ϕ " analyses.

GU J Sci, Part C, 9(4): 784-810 (2021)

Gazi Üniversitesi

Fen Bilimleri Dergisi PART C: TASARIM VE TEKNOLOJI

http://dergipark.gov.tr/gujsc

Comparison of the shape, depth and $N\gamma$ factors used in the bearing capacity equation

Mustafa ÖZER ^{1,*} 🕩

¹Gazi Üniversitesi, Teknoloji Fakültesi, İnşaat Mühendisliği Bölümü, 06500, Yenimahalle/ANKARA

Abstract

Makale Bilgisi

Araştırma makalesi Başvuru: 01.11.2021 Düzeltme: 11.12.2021 Kabul: 13.12.2021

Keywords

Shallow foundation Bearing capacity Shape factor Depth factor TBEC-2018

Anahtar Kelimeler

Sığ temel Taşıma gücü Şekil katsayısı Derinlik katsayısı TBDY-2018 In this study, allowable bearing capacity values using different equations generally accepted in the literature for shape, depth and N_{γ} factors in the general bearing capacity equation used in bearing capacity calculation of shallow foundations were calculated for different soil conditions varying from c=20 kPa to 200 kPa and from $\phi=0^{\circ}$ to 40° and the results obtained were compared with each other. In the bearing capacity calculations, a residential type building resting on a mat foundation has been taken into account, and it has been assumed that the resultant of column loads from the building to the foundation are perpendicular to the foundation and at the center of the foundation, ground surface are level, and foundation base are horizontal. Earthquake and moment effects were not taken into account in the calculations, and static loading conditions were assumed to be valid. According to the results obtained; In the $\phi=0^{\circ}$ analyses, the lowest (safest) bearing capacity values were obtained by Meyerhof [10]'s shape and depth factors, and the highest bearing capacity values were obtained by De Beer [12]'s shape and Hansen [13]'s depth factors. In the "c- ϕ " analyses, the lowest (safest) bearing capacity values for soils with approximately $\phi < 20^{\circ}$ were obtained by Meyerhof [10]'s shape, depth and N_{γ} factors. As for the soils with approximately ϕ >20°, the lowest (safest) bearing capacity values were obtained using the shape factors with sin ϕ proposed by De Beer [12], d_c factors suggested by Vesić [15] and d_q and d_γ factors proposed by Hansen [13] and N_{γ} factor suggested in TBEC [18].

Taşıma gücü bağıntısında kullanılan şekil, derinlik ve Nγ katsayılarının karşılaştırılması

Öz

Bu çalışmada, sığ temellerin taşıma gücünün hesaplanmasında kullanılan genel taşıma gücü bağıntısındaki şekil, derinlik ve N_{γ} katsayıları için literatürde genel kabul görmüş farklı bağıntılar kullanılarak c=20 kPa'dan 200 kPa'va ve b=0°'den 40°'ye kadar değisen farklı zemin kosulları icin emniyetli tasıma gücü değerleri hesaplanmış ve sonucları birbiriyle karsılaştırılmıştır. Tasıma gücü hesaplamalarında, radye temel üzerine oturan konut tipi bir bina dikkate alınmış olup, yapıdan temele gelen kolon yüklerinin temelin merkezine ve temele dik, zemin yüzeyinin ve temel tabanının düz olduğu kabul edilmiştir. Hesaplamalarda statik yükleme koşullarının geçerli olduğu kabul edilmiş olup deprem etkisi ve moment etkileri dikkate alınmamıştır. Elde edilen sonuçlara göre; $\phi=0^\circ$ analizlerinde, en düşük (en emniyetli) taşıma gücü değerlerinin Meyerhof'un [10] şekil ve derinlik katsayıları, en yüksek taşıma gücü değerlerinin ise De Beer'in [12] şekil katsayıları ve Hansen'ın [13] derinlik katsayıları kullanılarak elde edilmiştir. "c-\op" analizlerinde ise; yaklaşık \$\phi < 20° olan zeminlerde en düşük (en emniyetli) taşıma gücü değerleri Meyerhof'un [10] şekil, derinlik ve N_{γ} katsayıları kullanılarak elde edilmiştir. Yaklaşık $\phi > 20^{\circ}$ olan zeminlerde ise en düşük (en emniyetli) taşıma gücü değerleri, şekil katsayıları için De Beer'in [12] sin ϕ 'li bağıntıları, derinlik katsayılarından d_c için Vesić'in [15], d_q ve d_γ için Hansen'ın [13] bağıntıları ve N₇ katsayısı için TBDY-2018'de [18] önerilen bağıntı kullanılarak elde edilmiştir.

1. GİRİŞ (INTRODUCTION)

Temellerin, yapıdan gelen tasarım yüklerini emniyetli bir şekilde zemine aktarabilmesi için hem taşıma gücü hem de oturma bakımından yeterli olması gerekmektedir. Sığ temellerin taşıma gücünün hesaplanması için günümüzde halen yaygın olarak kullanılan taşıma gücü bağıntısı ilk kez 1943'de Terzaghi [1] tarafından önerilmiştir. Ancak, Terzaghi [1] tarafından önerilen taşıma gücü bağıntısının kökleri 1920'lere Prandtl [2] ve Reissner'in [3] çalışmalara kadar uzanmaktadır [4].

Prandtl [2], inşaat mühendisliğinden ziyade makine mühendisliği amaçlarına yönelik olarak gerçekleştirdiği çalışmasında [4] plastik bir malzemenin yüzeyine oturan metal bir plakanın, plastik malzemede meydana getirdiği etkileri iki boyutlu bir düzlemde ele alarak aşağıdaki gibi çözümlemiştir (Şekil 1).

Şekil 1. Prandtl'ın yenilme mekanizması [2]

Prandtl [2] tarafından gerçekleştirilen çözümlemelerin sonucunda elde edilen bağıntılar günümüzdeki güncel geoteknik simgelerine ve kavramlarına dönüştürüldüğünde Eş.1'de verilen bağıntı elde edilmektedir.

$$q_u = c \left[tan^2 \left(45 + \frac{\phi}{2} \right) e^{\pi tan\phi} - 1 \right] cot\phi$$
(1)

Eş. 1'de, c'nin yanındaki terim N_c ile ifade edilecek olursa, Eş. 1.1 ve 1.2 elde edilmektedir [2, 5].

$$q_u = cN_c \tag{1.1}$$

$$N_c = \left[\tan^2 \left(45 + \frac{\phi}{2} \right) e^{\pi \tan \phi} - 1 \right] \cot \phi \tag{1.2}$$

Prandtl [2] tarafından elde edilmiş olan N_c terimi (Eş. 1.2) sonraki yıllarda "*taşıma gücü katsayısı*" olarak adlandırılmış olup [5], günümüzde sığ temellerin taşıma gücünün hesaplanmasında yaygın olarak kullanılmaktadır.

Prandtl [2] tarafından geliştirilen yenilme mekanizmasını inşaat mühendisliği amaçlarına yönelik olarak ele alan Reissner [3], Şekil 1'de görülen yenilme mekanizmasında yüklü alanın kenarlarına gömülü temelleri temsilen sürşarj yükü ekleyerek yeni çözümlemeler gerçekleştirmiş ve sürşarj yükünün etkisini hesaba katan bir bağıntı geliştirmiştir [3, 4]. Reissner'in [3] çözümlemeleri sonucunda elde ettiği bağıntılar günümüzdeki geoteknik simgelerine ve kavramlarına dönüştürüldüğünde Eş.2'de verilen bağıntı elde edilmektedir.

$$q_u = q \left[tan^2 \left(45 + \frac{\phi}{2} \right) e^{\pi tan\phi} \right]$$
⁽²⁾

Eş. 2'de köşeli parantez içindeki terim N_q ile ifade edilecek olursa, Eş. 2.1 ve 2.2 elde edilmektedir [5].

$$q_u = qN_q \tag{2.1}$$

$$N_q = \tan^2 \left(45 + \frac{\phi}{2} \right) e^{\pi \tan \phi} \tag{2.2}$$

Eş. 2.2'de görülen N_q terimi sürşarj yükünün etkisini hesaba katan taşıma gücü katsayısı olarak günümüzde sığ temellerin taşıma gücünün hesaplanmasında yaygın olarak kullanılmaktadır. N_c ve N_q bağıntılarının ortak terimler içermesi nedeniyle birçok kaynakta N_c terimi Eş. 2.3'te verildiği gibi de ifade edilmektedir [5].

$$N_c = (N_q - 1)cot\phi \tag{2.3}$$

Hesaplamalarda kolaylık olması bakımından Prandtl [2] ve Reissner [3] tarafından gerçekleştirilen çözümlemelerde malzemenin (zeminin) kendi ağırlığı ihmal edilmiştir [4].

Terzaghi [1], Prandtl [2] tarafından geliştirilen yenilme mekanizmasını dikkate alarak zeminin kendi ağırlığını da hesaba katan bir bağıntı (N_{γ} katsayısını içeren bir bağıntı) geliştirmiştir. Terzaghi [1], kendi geliştirdiği bağıntı ile birlikte Prandtl [2] ve Reissner [3] tarafından geliştirilen bağıntıları süperpozisyon ilkesine göre toplayarak derinliği genişliğinden az veya eşit olan ($D_f \leq B$) şerit temellerin taşıma gücünün hesaplanması için Eş.3'te verilen bağıntıyı önermiştir.

$$q_u = cN_c + \gamma'_1 D_f N_q + 0.5 \gamma'_2 B N_\gamma \tag{3}$$

Terzaghi [1], homojen zeminler üzerine oturan şerit temeller için önermiş olduğu bu bağıntıya kuramsal ve deneysel sonuçlara dayanan bazı katsayılar ekleyerek bağıntıyı kare ve dairesel temelleri de kapsayacak şekilde genişletmiş ve kare temeller için Eş. 3.1, dairesel temeler için Eş. 3.2'de verilen bağıntıları önermiştir.

$$q_u = 1.3 \ c \ N_c + \gamma'_1 \ D_f \ N_q + 0.4 \ \gamma'_2 \ B \ N_\gamma \tag{3.1}$$

$$q_u = 1.3 \ c \ N_c + \gamma'_1 \ D_f \ N_q + 0.3 \ \gamma'_2 \ B \ N_\gamma \tag{3.2}$$

Terzaghi'nin önerdiği taşıma gücü bağıntısında temel tabanı seviyesinin üstündeki zeminin kesme dayanımı ihmal edilmiş ve bu bölgedeki zeminin etkisi temel tabanı seviyesine etkiyen sürşarj yükü olarak hesaba katılmıştır (tasarımcıyı güvenli tarafta bırakan bir varsayım) [1]. Bununla birlikte, kolon yüklerinin temele dik olarak geldiği, temelin düz bir zemine oturduğu ve temel tabanının düz (yani zemin yüzeyine paralel) olduğu kabul edilmiştir [1]. Terzaghi [1] tarafından dikdörtgen temellerin taşıma gücünün hesaplanması için herhangi bir bağıntı veya katsayı önerilmemiştir. Terzaghi [1]'nin önerdiği taşıma gücü bağıntısındaki bu varsayımlardan dolayı, sonraki yıllarda birçok araştırmacının katkısıyla [Ör. 6-15] taşıma gücü bağıntısına dikdörtgen temelleri de kapsayacak şekilde temel şeklini, temel derinliğini, temele gelen yükün eğimini, zemin yüzeyinin eğimini ve temel tabanının eğimini hesaba katan bazı düzeltme katsayıları eklenmiş ve bağıntı daha da genişletilerek Eş. 4'te verilen nihai şeklini almıştır.

$$q_u = cN_c s_c d_c i_c g_c b_c + \gamma'_1 D_f N_q s_q d_q i_q g_q b_q + 0.5 \gamma'_2 B' N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

$$\tag{4}$$

Eş. 4'te verilen genişletilmiş taşıma gücü bağıntısında, Terzaghi [1] tarafından önerilen üç terimli temel biçimin muhafaza edildiği görülmektedir.

Eş. 4'te verilen bağıntının geliştirilmesinde başta Terzaghi [1] olmak üzere birçok araştırmacının katkısı olduğu için [Ör. 6-15], bu çalışmada bu bağıntı tek bir araştırmacının ismiyle anılmayıp "genel taşıma gücü bağıntısı" olarak adlandırılmıştır (Ör. [16-18]'de olduğu gibi).

Genel taşıma gücü bağıntısında bulunan düzeltme katsayıları için literatürde farklı araştırmacılar tarafından önerilen farklı bağıntılar bulunmaktadır. Ayrıca, N_c ve N_q taşıma gücü katsayıları için literatürde genel bir mutabakat sağlanmış olsa da, N_{γ} taşıma gücü katsayısı için literatürde çok sayıda farklı bağıntı bulunmaktadır. Temel tasarımı yapılırken bu bağıntılardan hangisinin kullanılacağına karar verebilmek için, bu bağıntıların temel tasarımını ne yönde etkilediğinin ve hangi bağıntılar kullanıldığında daha emniyetli sonuçlar elde edileceğinin bilinmesi önemlidir. Bununla birlikte, Türkiye Bina Deprem Yönetmeliği 2018 (TBDY-2018)'de [19], sığ temellerin taşıma gücü karakteristik dayanımının hesaplanması için Eş. 4'te verilen genel taşıma gücü bağıntısı önerilmiş olup, düzeltme katsayıları için literatüre dayanan ve genel kabul görmüş bağıntıların kullanılabileceği belirtilmiştir. Bu nedenle sığ temel taşarımı yapılırken bu düzeltme katsayılarının bilinçli ve doğru bir şekilde seçilmesinin önemi daha da artmıştır.

Bu çalışmada, literatürde genel kabul görmüş farklı araştırmacılar tarafından önerilen şekil, derinlik ve N_{γ} katsayılarının taşıma gücü üzerindeki etkileri incelenmiştir. Bu amaçla, genel taşıma gücü bağıntısında şekil ve derinlik düzeltme katsayıları ve N_{γ} taşıma gücü katsayısı için literatürde genel kabul görmüş farklı bağıntılar kullanılarak c=20 kPa'dan 200 kPa'ya, $\phi=0^{\circ}$ 'den 40°'ye kadar değişen farklı zemin koşulları için emniyetli taşıma gücü değerleri hesaplanmış ve sonuçları birbiriyle karşılaştırılmıştır. Taşıma gücü hesaplamalarında, radye temel üzerine oturan konut tipi bir bina dikkate alınmış olup, yapıdan gelen kolon yüklerinin bileşkesinin temelin merkezine ve temele dik etkidiği ve zemin yüzeyinin ve temel tabanının düz olduğu kabul edilmiştir. Bu durumda genel taşıma gücü bağıntısındaki i_c , i_q , i_γ , g_c , g_q , g_γ ve b_c , b_q , b_γ katsayıları 1'e eşit olmaktadır. Hesaplamalarda statik yükleme koşullarının geçerli olduğu kabul edilmiş olup, deprem etkileri dikkate alınmamıştır.

2. GENEL TAŞIMA GÜCÜ BAĞINTISINDA KULLANILAN TAŞIMA GÜCÜ KATSAYILARI (BEARING CAPACITY FACTORS USED IN GENERAL BEARING CAPACITY EQUATION)

Geoteknik camiasında N_c ve N_q taşıma gücü katsayıları için sırasıyla Prandtl [2] ve Reissner [3] tarafından önerilen bağıntılar (sırasıyla Eş. 1.2 ve 2.2) üzerinde genel bir mutabakat sağlandığı görülmektedir. Nitekim hem Terzaghi [1] hem de genel taşıma gücü bağıntısında N_c ve N_q taşıma gücü katsayıları için sırasıyla Prandtl [2] ve Reissner [3] tarafından önerilen bağıntılar kullanılmaktadır. Ancak Terzaghi [1] tarafından önerilen N_{γ} katsayı üzerinde genel bir mutabakat sağlanmış gibi görünmemektedir. Zira N_{γ} katsayısının belirlenmesi üzerine Terzaghi [1]'den sonra çok sayıda çalışma yapılmış olup, birçok araştırmacı tarafından farklı N_{γ} bağıntıları önerilmiştir. Bunlardan literatürde genel kabul görmüş olanları Çizelge 1'de verilmiştir.

, ,	1 0	
Kaynak	N_{γ} bağıntıları	Eş. No
Hansen [9]	$N_{\gamma} = 1.8 \ (N_q - 1) \ \mathrm{tan}\phi$	(5.1)
Meyerhof [10]	$N_{\gamma} = (N_q - 1) \tan(1.4\phi)$	(5.2)
Hansen [13]	$N_{\gamma} = 1.5 (N_q - 1) \tan \phi$	(5.3)
Vesić [14]	$N_{\gamma} = 2 (N_q + 1) \tan \phi$	(5.4)
TBDY-2018 [19]	$N_{\gamma} = 2 (N_q - 1) \tan \phi$	(5.5)

Çizelge 1. Literatürde önerilen bazı N_{γ} bağıntıları

TBDY-2018'de [19] önerilen N_{γ} bağıntısı Eurocode-7 (EC-7)'de [20] önerilen bağıntı ile aynı olup (Eş. 5.5), Çizelge 1'de bu bağıntıya da yer verilmiştir.

3. GENEL TAŞIMA GÜCÜ BAĞINTISINDA KULLANILAN DÜZELTME KATSAYILARI (CORRECTION FACTORS USED IN GENERAL BEARING CAPACITY EQUATION)

Genel taşıma gücü bağıntısında kullanılan ve literatürede genel kabul görmüş düzeltme katsayılarının önerildiği başlıca çalışmalar kronoljik sırayla aşağıda verilmiştir.

3.1. Skempton [6] Tarafından Önerilen Düzeltme Katsayıları (Correction Factors Proposed by Skempton [6])

Skempton [6], Terzaghi [1] tarafından önerilen taşıma gücü bağıntısını bazı düzeltme katsayılarıyla çarparak genişletme fikrini "muhtemelen" ilk ortaya atan ve uygulayan araştırmacı olmuştur. Skempton [6], killi zeminlerin taşıma gücünün belirlenmesi üzerine yapmış olduğu çalışmasında, Terzaghi [1] tarafından önerilen taşıma gücü bağıntısını temel şeklini ve temel derinliğini hesaba katacak şekilde genişletmek için N_c katsayısını s_c ve d_c katsayılarıyla çarpmıştır. Skempton [6] tarafından önerilen s_c ve d_c katsayılarıyla çarpmıştır.

$$s_c = 1 + 0.2 \, \frac{B}{L} \tag{6.1}$$

$$d_c = 1 + 0.2 \frac{D_f}{B}$$
 (0.2) (6.2)

$$d_c = 1.5$$
 (*D_f*/*B* > 2.5 için) (6.3)

Skempton [6]'ın çalışması killi zeminleri kapsadığı için Eş. 6.1 ila 6.3'te verilen bağıntılar $\phi = 0^{\circ}$ için geçerlidir.

3.2. Meyerhof [7, 8] Tarafından Önerilen Düzeltme Katsayıları (Correction Factors Proposed by Meyerhof [7, 8])

Meyerhof [7], sığ temellerin taşıma gücünün hesaplamasında eksantrik ve eğimli yüklerin etkisini belirlemek için killi ve kumlu zeminler üzerinde laboratuvar ortamında küçük ölçekli model deneyler gerçekleştirmiş ve elde ettiği sonuçları grafikler halinde yayımlamıştır. Meyerhof [8], Meyerhof [7] tarafından elde edilen deneysel sonuçlara ve kuramsal çözümlemelere dayanarak eğimli yüklerin etkisini hesaba katmak için aşağıda verilen yük eğim katsayılarını önermiştir.

$$i_c = i_q = (1 - \delta/90^\circ)^2 \tag{7.1}$$

$$i_{\gamma} = (1 - \delta/\phi)^2 \tag{7.2}$$

Eş. 7.1 ve 7.2'deki δ açısı derece cinsinden ifade edilmiştir.

3.3. Hansen [9] Tarafından Önerilen Düzeltme Katsayıları (Correction Factors Proposed by Hansen [9])

Hansen [9], Skempton [6] tarafından ortaya atılan taşıma gücü bağıntısını düzeltme katsayılarıyla çarparak genişletme fikrini benimsemiş ve taşıma gücü bağıntısına temel şeklini, temel derinliğini ve temele gelen yüklerin eğimini hesaba katan düzeltme katsayıları ekleyerek Eş. 8'de verilen bağıntıyı önermiştir.

$$q_u = cN_c s_c d_c i_c + \gamma_1 D_f N_q s_q d_q i_q + 0.5 \gamma_2 B N_\gamma s_\gamma d_\gamma i_\gamma$$
(8)

Hansen [9], N_c ve N_q için sırasıyla Prandtl [2] ve Reissner [3] tarafından önerilen bağıntıları (sırasıyla Eş. 1.2 ve 2.2) dikkate almış olup, N_{γ} için ise deneysel gözlemlerine dayanarak Eş. 5.1'de verilen bağıntıyı önermiştir (Çizelge 1).

Hansen [9], küçük ve tam ölçekli deney sonuçlarına dayanarak şekil katsayıları için aşağıda verilen bağıntıları önermiştir.

$$s_c = 1 + (0.2 + \tan^6 \phi) \frac{B}{L}$$
(8.1)

$$s_q = s_c - \frac{s_c - 1}{N_q} \tag{8.2}$$

$$s_{\gamma} = 1 - \frac{1}{2} (0.2 + \tan^6 \phi) \frac{B}{L}$$
(8.3)

Hansen [9], D_f≤B için geçerli olmak üzere derinlik katsayıları için aşağıda verilen bağıntıları önermiştir.

$$d_c = 1 + 0.35 \frac{D_f}{B} \qquad (\phi = 0^\circ \text{ için}) \tag{8.4}$$

$$d_q = d_c - \frac{d_c - 1}{N_q} \tag{8.5}$$

$$d_{\gamma} = 1 \tag{8.6}$$

Hansen [9], kuramsal çözümlemelere dayanarak yük eğim katsayıları için aşağıda verilen bağıntıları önermiştir.

$$i_c = i_q - \frac{1 - i_q}{N_q - 1} \tag{8.7}$$

$$i_q = \left[1 - \frac{H}{V + c A \cot\phi}\right]^2 \tag{8.8}$$

$$i_{\gamma} = (i_q)^2 = \left[1 - \frac{H}{V + c A \cot\phi}\right]^4$$
(8.9)

3.4. Meyerhof [10] Tarafından Önerilen Düzeltme Katsayıları (Correction Factors Proposed by Meyerhof [10])

Meyerhof [11] Terzaghi [1]'den sonra taşıma gücü problemini kısmen teorik kısmen yarı-görgül çözümlemelerle ele alan ve Terzaghi [1]'ye alternatif olarak yeni bağıntılar/abaklar öneren bilinen ilk araştırmacıdır. Ancak Meyerhof [11] tarafından önerilen yöntemler oldukça karmaşık ve pratikte uygulaması zor olduğundan yaygınlaşmamıştır. Nitekim Meyerhof [10] sonraki yıllarda Skempton [6] ve Hansen [9] gibi Terzaghi [1] tarafından önerilen taşıma gücü bağıntısına çeşitli katsayılar ekleyerek genişletme fikrine katılmış ve Terzaghi [1] tarafından önerilen taşıma gücü bağıntısına şekil, derinlik ve yük eğim katsayıları ekleyerek Eş. 9'da verilen bağıntıyı önermiştir.

$$q_u = cN_c s_c d_c i_c + \gamma_1 D_f N_q s_q d_q i_q + 0.5 \gamma_2 B N_\gamma s_\gamma d_\gamma i_\gamma$$
(9)

Meyerhof [10], Hansen [9] gibi, N_c ve N_q için sırasıyla Prandtl [2] ve Reissner [3] tarafından önerilen bağıntıları (sırasıyla Eş. 1.2 ve 2.2) dikkate almış olup, N_{γ} için ise deneysel gözlemlerine dayanarak Eş. 5.2'de verilen bağıntıyı önermiştir (Çizelge 1). Meyerhof [10], şekil katsayıları için aşağıda verilen bağıntıları önermiştir.

$$s_c = 1 + 0.2 \ (B/L) \tan^2 (45 + \phi/2)$$
(9.1)

$$s_q = s_{\gamma} = 1 \qquad \qquad (\phi = 0^\circ \text{ için}) \tag{9.2}$$

$$s_q = s_\gamma = 1 + 0.1 \ (B/L) \tan^2 (45 + \phi/2)$$
 ($\phi > 10^\circ \text{ için}$) (9.3)

Meyerhof [10], çeşitli deney sonuçlarına dayanarak $D_f \leq B$ için geçerli olmak üzere derinlik katsayıları için aşağıda verilen bağıntıları önermiştir.

$$d_c = 1 + 0.2 \ (D_f / B) \tan \left(45 + \phi / 2 \right) \tag{9.4}$$

$$d_q = d_\gamma = 1 \qquad (\phi = 0^\circ \text{ için}) \tag{9.5}$$

$$d_q = d_\gamma = 1 + 0.1 \ (D_f / B) \tan (45 + \phi / 2) \qquad (\phi > 10^\circ \text{ için})$$
(9.6)

Meyerhof [10], yük eğim katsayıları için Eş.7.1 ve 7.2'de verilen bağıntıları kullanmıştır.

Eş. 9.3 ve 9.6'da verilen bağıntıların $\phi > 10^\circ$ olan zeminler için geçerli olduğu görülmektedir. Ancak Meyerhof'da [10] bunun nedeni ve $\phi < 10^\circ$ olan zeminler için nasıl bir yol izlenmesi gerektiği hakkında herhangi bir açıklama yapılmamıştır.

3.5. De Beer [12] Tarafından Önerilen Düzeltme Katsayıları (Correction Factors Proposed by De Beer [12])

De Beer [12], üniform derecelenmiş ince kumlu zeminler üzerinde küçük boyutlu model temeller (*B*=36 ve 156 mm) kullanarak laboratuvar ortamında gerçekleştirdiği deney sonuçlarına dayanarak içsel sürtünme açısının elde edilme yöntemine göre değişen iki farklı yaklaşımla çeşitli şekil katsayıları önermiştir. De Beer [12], içsel sürtünme açısının geleneksel üç eksenli basınç deneyi ile bulunması durumunda Eş.10.1 ila 10.3'te verilen şekil katsayılarının kullanılmasını önermiştir.

$$s_c = 1 + \frac{B}{L} \frac{N_q}{N_q - 1} sin\phi \qquad (\phi > 0^\circ \text{ için})$$
(10.1)

$$s_c = 1,2 \qquad (\phi = 0^\circ \text{ için}) \tag{10.2}$$

$$s_q = 1 + \frac{B}{L}sin\phi \tag{10.3}$$

De Beer [12], içsel sürtünme açısının eğrisel yenilme zarfı üzerinden normal gerilme düzeyine bağlı olarak sekant açısıyla bulunması durumunda ise Eş.10.4 ila 10.6'da verilen bağıntıları önermiştir.

$$s_c = 1 + \frac{B}{L} \frac{N_q}{N_q - 1} tan\phi \qquad (\phi > 0^\circ \text{ için})$$
(10.4)

$$s_c = 1.2 \qquad (\phi = 0^\circ \text{ için}) \tag{10.5}$$

$$s_q = 1 + \frac{B}{L}tan\phi \tag{10.6}$$

De Beer [12]'de, $\phi > 0^{\circ}$ için *s_c* bağıntısı farklı bir biçimde Eş. 10.7'de verildiği gibi de sunulmuştur.

$$s_c = \frac{s_q N_q - 1}{N_q - 1} \qquad (\phi > 0^\circ \text{ için}) \tag{10.7}$$

Eş. 10.7'de s_q yerine Eş. 10.3 konulup gerekli sadeleştirmeler yapıldığında Eş. 10.1 elde edilmektedir. Benzer şekilde Eş. 10.7'de s_q yerine Eş. 10.6 konulup yine gerekli sadeleştirmeler yapıldığında ise Eş. 10.4 elde edilmektedir. Ayrıca, Eş. 3.1'de verilen N_c bağıntısı Eş. 10.4'te yerine yazılıp gerekli sadeleştirmeler yapıldığında Eş 10.8 elde edilmektedir.

$$s_c = 1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_c}\right) \tag{10.8}$$

Eş. 10.4 ve 10.8'de verilen s_c bağıntıları $\phi > 0^\circ$ için aynı sonucu verse de $\phi=0^\circ$ için farklı sonuçlar vermektedir. Zira $\phi=0^\circ$ ve B/L=1 için Eş. 10.4 ile $s_c=1$ olarak hesaplanırken Eş. 10.8 ile $s_c=1.2$ olarak hesaplanımaktadır.

De Beer [12] s_c bağıntılarında kullandığı N_c ve N_q katsayıları için sırasıyla Prandtl [2] ve Reissner [3] tarafından önerilen bağıntıları (sırasıyla Eş. 1.2 ve 2.2) dikkate almıştır. De Beer [12], s_{γ} için içsel sürtünme açısından bağımsız olarak Eş.10.9'da verilen bağıntıyı önermiştir.

$$s_{\gamma} = 1 - 0.4 \frac{B}{L} \tag{10.9}$$

3.6. Hansen [13] Tarafından Önerilen Düzeltme Katsayıları (Correction Factors Proposed by Hansen [13])

Hansen [13]'ın "A Revised and Extended Formula for Bearing Capacity" başlıklı çalışması, vefatından bir yıl sonra Hansen'ın adıyla Danimarka Geoteknik Enstitüsü tarafından, Hansen'ın 1968'de Japonya'da verdiği ders notlarından derlenerek oluşturulmuş ve yayımlanmıştır [13].

Hansen [13], 1961 [9]'de önerdiği taşıma gücü bağıntısına temel tabanı eğimini ve temelin oturduğu zemin yüzeyinin eğimini de (şev açısını) hesaba katan yeni katsayılar ekleyerek Eş. 11'de verilen bağıntıyı önermiştir.

$$q_u = cN_c s_c d_c i_c b_c g_c + \gamma'_1 D_f N_q s_q d_q i_q b_q g_q + 0.5 \gamma'_2 B N_\gamma s_\gamma d_\gamma i_\gamma b_\gamma g_\gamma$$
(11)

Hansen [13], N_c ve N_q için ise sırasıyla Prandtl [2] ve Reissner [3] tarafından önerilen bağıntıları dikkate almış olup (sırasıyla Eş. 1.2 ve 2.2), N_γ için ise Eş. 5.3'te verilen bağıntıyı önermiştir (Çizelge 1). Hansen [13], yük eğim katsayıları için aşağıda verilen bağıntıları önermiştir.

$$i_c = 0.5 - 0.5 \sqrt{1 - \frac{H}{cA}}$$
 (\$\phi = 0^\circ icin\$) (11.1)

$$i_q = \left[1 - \frac{0.5H}{V + c A \cot\phi}\right]^5 \tag{11.2}$$

$$i_{\gamma} = \left[1 - \frac{0.7H}{V + c A \cot\phi}\right]^5 \tag{11.3}$$

Hansen [13] temel tabanı eğim katsayıları için aşağıda verilen bağıntıları önermiştir.

$$b_c = \frac{\alpha}{147} \qquad (\phi = 0^\circ \text{ için}) \tag{11.4}$$

 $b_q = e^{-2\alpha tan\phi} \qquad (\phi > 0^\circ \text{ için}) \tag{11.5}$

$$b_{\gamma} = e^{-2.7\alpha tan\phi} \qquad (\phi > 0^{\circ} \text{ için}) \tag{11.6}$$

 α açısı Eş. 11.4'te derece, Eş. 11.5 ve 11.6'da ise radyan cinsinden alınmalıdır. Hansen [13] zemin yüzeyi eğim katsayıları için aşağıda verilen bağıntılar önermiştir.

$$g_c = \frac{\beta}{147} \qquad (\phi = 0^\circ \text{ için}) \tag{11.7}$$

$$g_q = g_\gamma = (1 - 0.5 \tan\beta)^5$$
 (\$\phi > 0° için\$) (11.8)

Eş. 11.7 ve 11.8'de β açısı derece cinsinden alınmalıdır. Hansen [13]'da $\phi > 0^\circ$ için i_c , b_c ve g_c katsayısı verilmediği görülmektedir.

Eş. 11.4 ve 11.7'de verilen b_c ve g_c bağıntıları irdelenecek olursa, temel tabanındaki veya zemin yüzeyindeki küçük bir eğimin (şev açısının) temelin taşıma gücünü önemli ölçüde azaltacağı görülmektedir. Örneğin temel tabanı $\alpha =5^{\circ}$ 'lik bir eğimle tasarlanacak olursa, Eş. 11.4 ile b_c katsayısı 0.034 olarak hesaplanmaktadır. Bu da, taşıma gücü bağıntısının birinci teriminin 0.034 ile çarpılması demektir ki bunun da taşıma gücünü beklenmedik bir biçimde ve önemli ölçüde azaltacağı aşikârdır. Aynı durum g_c bağıntısı için de geçerlidir. Belki de bu yüzden olsa gerek, bazı kaynaklarda (Ör. [21]) Eş. 11.4 ve 11.7'de verilen b_c ve g_c bağıntıları Hansen'a [13] atıf yapılmak suretiyle aşağıdaki gibi düzeltilerek verilmiştir.

$$b_c = 1 - \frac{\alpha}{147} \qquad (\phi = 0^\circ \text{ için}) \tag{11.9}$$

$$g_c = 1 - \frac{\beta}{147}$$
 (\phi = 0° için) (11.10)

Hansen [13], De Beer [12] tarafından önerilen s_q ve s_γ katsayılarının ve Skempton [6] tarafından önerilen s_c katsayısının düşey yükler için geçerli olduğunu belirtmiş ve bu katsayılara yük eğim katsayıları eklemek suretiyle şekil katsayıları için aşağıda verilen bağıntıları önermiştir.

$$s_c = 0.2 \frac{B}{L} i_c \qquad (\phi = 0^\circ \text{ için}) \tag{11.11}$$

$$s_q = 1 + \frac{B}{L} \sin\phi \, i_q \tag{11.12}$$

$$s_{\gamma} = 1 - 0.4 \frac{B}{L} i_{\gamma}$$
 (11.13)

Eş. 11.11 – 11.13'te verilen bağıntılar eğimli yükün yatay bileşeni (H) temelin kısa kenarına (B) paralel olduğu durumlar için geçerli olup, eğimli yükün yatay bileşeni (H) temelin uzun kenarına (L) paralel olduğunda bu bağıntılarda B/L yerine L/B yazılması gerekmektedir [13].

Eş. 11.11'de verilen s_c bağıntısında da tıpkı b_c ve g_c bağıntılarında olduğu gibi bir eksiklik olduğu görülmektedir. Zira Eş. 11.11'e göre s_c katsayısı düşey yüklü kare temeller için 0.2, şerit temeller için ise çok daha düşük değerler almaktadır ki, bunun da taşıma gücünün beklenmedik bir biçimde düşüreceği aşikârdır. Hansen [13] tarafından s_c katsayısı için atıf yapılan orijinal kaynağa [6] bakıldığında şekil katsayısının 1+0.2(*B/L*) şeklinde verildiği görülmektedir (Eş. 6.1). Ayrıca Hansen'ın 1961'deki [9] çalışmasında da s_c katsayısı Skempton [6]'a atıf yapılarak verilirken bağıntının $s_c=1+0.2(B/L)$ şeklinde verildiği görülmektedir. Bu durumda, Hansen'da [13] s_c bağıntısı verilirken +1 teriminin "sehven" unutulduğu anlaşılmaktadır. Bu nedenle Hansen [13] tarafından önerilen s_c bağıntısının aşağıdaki gibi düzeltilerek verilmesinin daha doğru olacağı değerlendirilmiştir.

$$s_c = 1 + 0.2 \frac{B}{L} i_c$$
 (\$\phi = 0° için\$) (11.14)

Hansen [13] tarafından önerilen bağıntılarda, yük eğim katsayılarının (i_c, i_q, i_γ) hem taşıma gücü bağıntısında (Eş. 11) hem de şekil katsayıları ile birlikte (Eş. 11.11 – 11.14) olmak üzere iki kere kullanıldığı görülmektedir. Ancak, Hansen'da [13] bu konuyla ilgili herhangi bir açıklama bulunmamaktadır.

Hansen'da [13], $D_f \leq B$ için geçerli olmak üzere derinlik katsayıları için aşağıda verilen bağıntılar önerilmiştir.

$$d_c = 0.4 \ (D_f / B)$$
 ($\phi = 0^\circ \ icin$) (11.15)

$$d_q = 1 + 2 \tan \phi (1 - \sin \phi)^2 (D_f / B)$$
(11.16)

$$d_{\gamma} = 1 \tag{11.17}$$

Hansen'da [13], $D_f > B$ için aşağıda verilen derinlik katsayısı bağıntıları önerilmiştir.

$$d_c = 0.4 \arctan \left(D_f / B \right) \qquad (\phi = 0^\circ \text{ için}) \tag{11.18}$$

$$d_q = 1 + 2 \tan \phi (1 - \sin \phi)^2 \arctan (D_f / B)$$
(11.19)

$$d_{\gamma} = 1 \tag{11.20}$$

Eş.11.18 ve 11.19'daki arctanlı terimler radyan olarak hesaplanmalıdır. Hansen'da [13], ϕ >0 için d_c katsayısı verilmediği görülmektedir. Hansen [13], derinliğin fazla olması durumunda derinlik katsayısı hesaplamanın zor olduğunu ve D_f >B için geçerli olan bağıntıları "tereddütlü" bir şekilde önerdiğini ifade etmiştir [13].

Eş. 11.15 ve 11.18'de verilen d_c bağıntıları irdelenecek olursa bu bağıntıların da tıpkı s_c , b_c ve g_c bağıntıları gibi "sehven" eksik verildiği ve bu nedenle taşıma gücünü beklenmedik bir şekilde azaltacağı görülmektedir. Örneğin 10 m genişliğindeki bir temelin 3 m derinliğe inşa edileceği düşünülecek olursa, Eş. 11.15 ile d_c katsayısı 0,12 olarak hesaplanmaktadır. Bunun da, taşıma gücünü önemli ölçüde azaltacağı aşikârdır. Hâlbuki derinlik katsayıları temel tabanı seviyesinin üstündeki zeminin kesme dayanımını hesaba katmak için taşıma gücü bağıntısına ilave edilmiştir. Dolayısıyla taşıma gücünü bir miktar arttırması beklenir. Bu nedenle tıpkı s_c , bağıntısında olduğu gibi d_c bağıntılarında da +1 teriminin Danimarka Geoteknik Enstitüsü tarafından "sehven" unutulduğu düşünülmektedir. Bu değerlendirmeler doğrultusunda, Hansen [13] tarafından önerilen d_c bağıntılarının aşağıdaki gibi düzeltilerek kullanılmasının daha doğru olacağı değerlendirilmiştir.

$$d_c = 1 + 0.4 \ (D_f / B)$$
 ($\phi = 0^\circ \text{ ve } D_f \leq B \text{ için}$) (11.21)

$$d_c = 1+0.4 \arctan (D_f/B)$$
 ($\phi = 0^\circ \text{ ve } D_f > B \text{ icin}$) (11.22)

Nitekim bazı kaynaklarda da (Ör. [14, 16-18, 21]) d_c bağıntıları Hansen'a [13] atıf yapılarak verilirken Eş. 11.21 ve 11.22'deki gibi bağıntılara +1 eklenerek verildiği görülmektedir.

3.7. Vesić [14] Tarafından Önerilen Düzeltme Katsayıları (Correction Factors Proposed by Vesić [14])

Vesić [14], N_c ve N_q taşıma gücü katsayıları için sırasıyla Prandtl [2] ve Reissner [3] tarafından önerilen bağıntıları dikkate almış olup (sırasıyla Eş. 1.2 ve 2.2), N_γ için ise Eş. 5.4'de verilen bağıntıyı önermiştir (Çizelge 1). Vesić [14], şekil katsayıları için De Beer [12] tarafından önerilen tan ϕ 'li bağıntıları (Eş. 10.6, 10.8 ve 10.9), derinlik katsayıları için ise Hansen [13] tarafından önerilen bağıntıları dikkate almıştır. Vesić [14], $\phi > 0^\circ$ ve $D_f \leq B$ için Hansen'da [13] verilmeyen d_c katsayısı için Eş. 12.1'de verilen bağıntıyı önermiştir.

$$d_c = d_q - \frac{1 - d_q}{N_q \tan \phi} \qquad (\phi > 0^\circ \text{ ve } D_f \le B \text{ için}) \qquad (12.1)$$

Vesić [14], her ne kadar çalışmasında derinlik katsayılarına yer vermiş olsa da sığ temel tasarımı yapılırken taşıma gücü hesaplamalarında derinlik düzeltme katsayılarının kullanılmasını önermemiştir.

3.8. Vesić [15] Tarafından Önerilen Düzeltme Katsayıları (Correction Factors Proposed by Vesić [15])

Vesić [15], 1973'deki çalışmasında [14] olduğu gibi N_c ve N_q için sırasıyla Prandtl [2] ve Reissner [3] tarafından önerilen bağıntıları, N_{γ} için ise Vesić [14] tarafından önerilen bağıntıyı dikkate almıştır (Eş. 5.4; Çizelge 1).

Vesić [15], şekil katsayıları için De Beer [12] tarafından önerilen tan ϕ 'li bağıntıları (Eş. 10.6, 10.8 ve 10.9), derinlik katsayıları için ise Hansen [13] tarafından önerilen bağıntıları dikkate almış, ancak d_c için $\phi > 0^\circ$ ve $D_f \leq B$ için geçerli olmak üzere Eş. 13.1'de verilen bağıntıyı önermiştir.

$$d_c = d_q - \frac{1 - d_q}{N_c \tan \phi} \qquad (\phi > 0^\circ \text{ ve } D_f \le B \text{ için})$$
(13.1)

Vesić [15] çalışmasında her ne kadar 1973'deki çalışmasında [14] olduğu gibi derinlik katsayılarına yer vermiş olsa da sığ temel tasarımı yapılırken taşıma gücü hesaplamalarında derinlik düzeltme katsayılarının kullanılmasını önermemiştir.

Vesić [15], yük eğim katsayıları için aşağıda verilen bağıntıları önermiştir.

$$i_c = 1 - \frac{mH}{cAN_c} \qquad (\phi = 0^\circ \text{ için}) \tag{13.2}$$

$$i_c = i_q - \frac{1 - i_q}{N_c \tan \phi} \qquad (\phi > 0^\circ \text{ için})$$
(13.3)

$$i_q = \left[1 - \frac{H}{V + cA \cot\phi}\right]^m \tag{13.4}$$

$$i_{\gamma} = \left[1 - \frac{H}{V + cA \cot\phi}\right]^{m+1} \tag{13.5}$$

Vesić [15], Eş. 13.2 ve 13.3'de kullandığı N_c katsayısı için Prandtl [2] tarafından geliştirilen bağıntıyı (Eş. 1.2) dikkate almıştır. Eş. 13.2-13.5'te görülen *m* katsayısı eğik yükün yönüne göre aşağıda verilen bağıntılarla hesaplanabilmektedir.

$$m = m_B = \frac{2 + B/L}{1 + B/L}$$
 (Yükün eğim yönü temelin kısa kenarına doğru ise) (13.6)

$$m = m_L = \frac{2 + L/B}{1 + L/B}$$
 (Yükün eğim yönü temelin uzun kenarına doğru ise) (13.7)

Vesić [15], temel tabanı eğim katsayıları için aşağıda verilen bağıntıları önermiştir.

$$b_c = 1 - \frac{2\alpha}{\pi + 2} \qquad (\phi = 0^\circ \text{ için}) \tag{13.8}$$

$$b_c = b_q - \frac{1 - b_q}{N_c \tan \phi} \qquad (\phi > 0^\circ \text{ için})$$
(13.9)

$$b_q = b_\gamma = (1 - \alpha \tan \phi)^2 \tag{13.10}$$

Hesaplamalarda, Eş. 13.8 ve 13.10'da görülen α açısı radyan cinsinden alınmalıdır. α açısı derece cinsinden ifade edildiğinde bu bağıntılar aşağıdaki gibi olmaktadır.

$$b_c = 1 - \frac{\alpha}{147.3}$$
 (\$\overline\$ = 0° için\$) (13.11)

$$b_q = b_\gamma = \left(1 - \frac{\alpha}{57.3} tan\phi\right)^2 \tag{13.12}$$

Vesić [15], zemin yüzeyi (şev) eğim katsayıları için aşağıda verilen bağıntıları önermiştir.

$$g_c = 1 - \frac{2\beta}{\pi + 2} \qquad (\phi = 0^\circ \text{ için}) \tag{13.13}$$

$$g_c = g_q - \frac{1 - g_q}{N_c \tan \phi} \qquad (\phi > 0^\circ \text{ için})$$
(13.14)

$$g_q = g_\gamma = (1 - \tan\beta)^2 \tag{13.15}$$

Hesaplamalarda, β açısı Eş. 13.13'te radyan, Eş. 13.15'de ise derece cinsinden alınmalıdır. Eş. 13.13'te β açısı derece cinsinden ifade edildiğinde g_c bağıntısı aşağıdaki gibi olmaktadır.

$$g_c = 1 - \frac{\beta}{147.3}$$
 (\$\phi = 0° icin\$) (13.16)

Vesić [15], önerdiği temel tabanı eğim katsayılarının $\alpha < 45^{\circ}$ için, zemin yüzeyi eğim katsayılarının ise $\beta < 45^{\circ}$ için geçerli olduğunu, ayrıca bu bağıntıların geçerli olabilmesi için $\beta < \phi$ olması gerektiğini belirtmiştir.

4. ŞEKİL, DERİNLİK VE Nγ KATSAYILARININ KARŞILAŞTIRILMASI (COMPARISON OF THE SHAPE, DEPTH AND Nγ FACTORS)

Literatürde önerilen farklı bağıntılar kullanılarak hesaplanan şekil, derinlik ve N_{γ} katsayılarının temel tasarımını ne düzeyde etkilediğini ortaya koyabilmek için öncelikle bu düzeltme katsayıları kendi aralarında karşılaştırılmıştır.

4.1. Şekil Katsayılarının Karşılaştırılması (Comparison of the Shape Factors)

Şekil katsayıları için Skempton [6], Meyerhof [10], Hansen [9], Hansen [13] ve De Beer [12] tarafından çeşitli bağıntılar önerildiği görülmektedir. Skempton [6] sadece s_c katsayısı için bir bağıntı önermiş olup bu bağıntı da sadece $\phi=0^{\circ}$ için geçerlidir. Hansen [13] ise Skempton [6] ve De Beer [12] tarafından önerilen bağıntılara yük eğim katsayısı ekleyerek kısmen modifiye etmiş olup, yükün temele dik gelmesi durumunda bu bağıntılar Skempton [6] ve De Beer'in [12] bağıntılarıyla aynı olmaktadır. Bu nedenle şekil katsayıları karşılaştırılırken Skempton [6] ve Hansen [13] tarafından önerilen bağıntılar dikkate alınmamıştır.

Hansen [13], Meyerhof [10] ve De Beer [12] tarafından önerilen bağıntılarla $\phi = 0^{\circ}$ 'den 50°'ye kadar hesaplanan s_c , s_q ve s_{γ} katsayılarının içsel sürtünme açısı ile değişimini gösteren grafikler Şekil 2'de sunulmuştur. Meyerhof [10] tarafından önerilen s_q ve s_{γ} bağıntısı $\phi > 10^{\circ}$ için geçerli olduğundan Şekil 2b ve 2c'de Meyerhof [10]'un bağıntısıyla sadece $\phi > 10^{\circ}$ için hesaplanan s_q ve s_{γ} değerleri verilmiştir.

 s_c değerleri karşılaştırıldığında (Şekil 2a); Meyerhof'un [10] ve De Beer'in [12] bağıntılarıyla hesaplanan s_c değerlerinin yaklaşık ϕ =20°'ye kadar hemen hemen aynı olduğu görülmektedir. Meyerhof'un [10] ve De Beer'in [12] tan ϕ 'li bağıntısıyla hesaplanan s_c değerlerinin ise yaklaşık ϕ =35°'ye kadar hemen hemen aynı olduğu, ϕ =35°'den sonra ise Meyerhof'un [10] s_c değerlerinin daha yüksek olduğu görülmektedir. De Beer'in [12] sin ϕ 'li ve tan ϕ 'li bağıntılarıyla hesaplanan s_c değerlerinin ise yaklaşık ϕ =20°'ye kadar hemen hemen aynı olduğu, ϕ =20°'den sonra ise tan ϕ 'li bağıntılarıyla hesaplanan s_c değerlerinin ise yaklaşık ϕ =20°'ye kadar hemen hemen aynı olduğu, ϕ =20°'den sonra ise tan ϕ 'li bağıntılarıla hesaplanan s_c değerlerinin daha yüksek olduğu görülmektedir. De Beer'in [12] sin ϕ 'li ve tan ϕ 'li bağıntılarıyla hesaplanan s_c değerlerinin ise yaklaşık ϕ =20°'ye kadar hemen hemen aynı olduğu, ϕ =20°'den sonra ise tan ϕ 'li bağıntılarılarıla hesaplanan s_c değerlerinin daha yüksek olduğu görülmektedir. Ital hesaplanan s_c değerlerinin ise Meyerhof [10] ve De Beer'in [12]

bağıntılarıyla hesaplanan s_c değerlerine kıyasla farklı bir eğilim sergilediği görülmektedir. Hansen'ın [9] bağıntısı ile hesaplanan s_c değerleri $\phi=30^{\circ}$ 'ye kadar önemli bir değişim göstermezken, $\phi=30^{\circ}$ 'den sonra ise hızlı artmaktadır (Şekil 2a).

Şekil 2. Kare temeller için farklı bağıntılarla hesaplanan; **a**) s_c , **b**) s_q ve **c**) s_γ değerlerinin içsel sürtünme açısı ile değişimi

 s_q değerleri karşılaştırıldığında (Şekil 2b); Meyerhof [10]'un s_q değerlerinin De Beer [12]'in sinq'li ve tanq'li s_q değerlerinden daha düşük olduğu görülmektedir. De Beer [12]'in sinq'li ve tanq'li bağıntılarıyla hesaplanan s_q değerlerinin ise yaklaşık $\phi=20^\circ$ 'ye kadar hemen hemen aynı olduğu, $\phi=20^\circ$ 'den sonra ise tanq'li bağıntılarla hesaplanan s_q değerlerinin daha yüksek olduğu görülmektedir. Hansen [9]'ın s_q değerlerinin ise yaklaşık $\phi=20^\circ$ 'ye kadar Meyerhof [10]'un s_q değerlerine yakın olduğu, De Beer [12]'in sinq'li ve tanq'li ve tanq'li sinq'li ve tanq'li sinq'li ve tanq'li sinq'li ve tanq'li görülmektedir. Hansen [9]'ın s_q değerlerinin yaklaşık $\phi=30^\circ$ 'den sonra hızlı arttığı görülmektedir (Şekil 2b).

 s_{γ} değerleri karşılaştırıldığında (Şekil 2c); Meyerhof [10]'un bağıntısıyla hesaplanan s_{γ} değerleri içsel sürtünme açısı ile birlikte artarken, De Beer [12]'in bağıntısıyla hesaplanan s_{γ} değerlerinin sabit kaldığı, Hansen [9]'ın bağıntısıyla hesaplanan s_{γ} değerlerinin ise yaklaşık $\phi=30^{\circ}$ 'ye kadar önemli bir değişim göstermediği, $\phi=30^{\circ}$ 'den sonra ise hızla azaldığı görülmektedir (Şekil 2c).

4.2. Derinlik Katsayılarının Karşılaştırılması (Comparison of the Depth Factors)

Sığ temeller genellikle derinliği genişliğinden küçük veya ona eşit ($D_f \le B$) temel olarak tanımlanmaktadır [1]. Bu nedenle literatürde derinlik düzeltmesi için önerilen bağıntılar genellikle $D_f \le B$ için geçerlidir. $D_f \le B$ için geçerlidir. $D_f \le B$ için geçerlidir. $D_f \le B$ için geçerlidir. $D_f \le B$ için geçerlidir. $D_f \le B$ için geçerlidir. $D_f \le B$ için Hansen [9, 13] ve Meyerhof [10] tarafından $\phi=0^\circ$ ve $\phi>0^\circ$ için önerilen bağıntılarla hesaplanan derinlik katsayıları ayrı ayrı karşılaştırılmıştır.

4.2.1. $\phi=0^{\circ}$ için önerilen derinlik katsayılarının karşılaştırılması (Comparison of the depth factors proposed for $\phi=0^{\circ}$)

 $\phi=0^{\circ}$ için Hansen [9, 13] ve Meyerhof [10] tarafından önerilen bağıntılarla hesaplanan d_c değerlerinin D_f/B oranıyla değişimini gösteren grafikler Şekil 3'te sunulmuştur. Şekil 3'te, Hansen'ın [13] $D_f > B$ için önerdiği bağıntıyla hesaplanan d_c değerleri de verilmiştir. $\phi=0^{\circ}$ için Hansen [9, 13] ve Meyerhof [10] tarafından $d_q=d_{\gamma}=1$ alınabileceği belirtildiğinden bu katsayılar için herhangi bir karşılaştırma yapılmamıştır.

Şekil 3. $\phi=0^{\circ}$ için farklı bağıntılarla hesaplanan d_c değerlerinin karşılaştırılması

Şekil 3 incelendiğinde D_f/B oranı arttıkça beklenildiği gibi d_c değerlerinin de arttığı görülmektedir. $D_f \leq B$ için hesaplanan d_c değerleri karşılaştırıldığında Meyerhof [10] ile hesaplanan d_c değerlerinin Hansen'ın [9, 13] bağıntılarıyla hesaplanan d_c değerlerinden daha düşük olduğu görülmektedir. Bununla birlikte, Hansen'ın [13] $D_f \leq B$ ve için $D_f > B$ için önerdiği bağıntılarla hesaplanan d_c değerlerinin $D_f/B=1$ noktasında süreksizlik gösterdiği de Şekil 3'ten görülmektedir.

4.2.2. $\phi > 0^\circ$ için önerilen derinlik katsayılarının karşılaştırılması (Comparison of the depth factors proposed for $\phi > 0^\circ$)

 d_c katsayısı için Meyerhof [10] ve Vesić [14, 15] tarafından, d_q katsayısı için ise Meyerhof [10] ve Hansen [9, 13] tarafından önerilen bağıntılarla $\phi > 0^\circ$ ve $D_f/B=1$ için hesaplanan d_c ve d_q değerleri Şekil 4'te karşılaştırılmıştır.

Şekil 4a incelendiğinde, Meyerhof [10] ile hesaplanan d_c değerlerinin ϕ ile birlikte arttığı, Vesić [14, 15] ile hesaplanan d_c değerlerinin ise azaldığı görülmektedir. Özellikle Vesić [14] ile hesaplanan d_c değerlerinin ϕ ile birlikte hızla azaldığı görülmektedir. Meyerhof [10] ve Vesić [15] ile hesaplanan d_c değerleri karşılaştırıldığında, yaklaşık $\phi=28^{\circ}$ 'ye kadar Vesić [15] ile hesaplanan d_c değerlerinin, $\phi=28^{\circ}$ 'den sona ise Meyerhof [10] ile hesaplanan d_c değerlerinin daha yüksek olduğu görülmektedir (Şekil 4).

Şekil 4b incelendiğinde, Meyerhof [10] ve Hansen [9] tarafından önerilen bağıntılarla hesaplanan d_q değerlerinin ϕ ile birlikte arttığı, Hansen [13] ile hesaplanan d_q değerlerinin ise yaklaşık $\phi=20^{\circ}$ 'ye kadar arttığı, $\phi=20^{\circ}$ 'den sonra ise azalmaya başladığı görülmektedir.

Meyerhof'da [10] $d_q = d_\gamma$ olduğu, Hansen'da [9, 13] ise her durumda $d_\gamma = 1$ alınabileceğini belirtildiğinden d_γ için herhangi bir karşılaştırma yapılmamıştır.

Şekil 4'te sunulan karşılaştırmalar $D_f/B = 1$ için geçerli olup, D_f/B oranı değiştiğinde bağıntılar arasındaki sıralamanın değişip değişmeyeceğini görmek için $D_f/B=0.5$ ve $D_f/B=0.25$ için de d_c ve d_q katsayıları hesaplanıp sonuçları karşılaştırılmış ve tipik olarak Şekil 4'tekine benzer sonuçlar elde edilmiştir. Bu nedenle fazladan yer kaplamaması için $D_f/B=0.5$ ve $D_f/B=0.25$ için elde edilen grafikler bu çalışmada sunulmamıştır.

Şekil 4. $\phi > 0^{\circ}$ ve $D_f/B=1$ için farklı bağıntılarla hesaplanan; **a**) d_c değerlerinin, **b**) d_q değerlerinin karşılaştırılması

4.2.3. Meyerhof [10]'un bağıntılarına $\phi \le 10^\circ$ için şekil ve derinlik katsayılarının eklenmesi (Adding shape and depth factors for $\phi \le 10^\circ$ to the Meyerhof [10]'s equations)

Meyerhof [10]'un s_q , s_γ ve d_q , d_γ bağıntıları (Eş. 9.3 ve 9.6) $\phi=0^\circ$ ile 10° arasındaki zeminler için geçerlidir. Bu nedenle bu katsayıların $\phi\leq10^\circ$ olan zeminlerin taşıma gücü hesaplamalarında kullanılması mümkün olmamaktadır. Bu sorunun üstesinden gelmek için Meyerhof [10] tarafından önerilen bağıntılarla çizilen grafiklere dış kestirim yapılarak $\phi\leq10^\circ$ olan zeminler için s_q , s_γ ve d_q , d_γ bağıntıları elde edilmiştir. Bu amaçla, $\phi>10^\circ$ için çizilen s_q , s_γ ve d_q , d_γ grafiklerinin genel gidişatına uygun olacak şekilde $\phi=10^\circ$ 'den $\phi=0^\circ$ 'ye kadar uzanan birkaç adet dış kestirim noktası yerleştirilmiş ve eğri uydurma yöntemiyle bu noktalardan geçen eğrinin denklemi bulunmuştur. Bu şekilde bulunan denklemler Eş. 14 ve 15'te, bu denklemlerle hesaplanan s_q , s_γ ve d_q , d_γ değerleri ise Şekil 5'te sunulmuştur.

$$s_q = s_\gamma = 1 + (1.3 \tan \phi - 2.9 \tan^2 \phi) (B/L)$$
 ($\phi \le 10^\circ \text{ için}$) (14)

$$d_q = d_\gamma = 1 + (1.3 \tan \phi - 3.6 \tan^2 \phi) (D_f/B) \qquad (\phi \le 10^\circ \text{ için})$$
(15)

Şekil 5. $\phi \leq 10^{\circ}$ için Meyerhof'un [10] bağıntılarına dış kestirim yoluyla eklenen; **a**) s_q , s_γ ve **b**) d_q , d_γ değerleri

4.4. Ny Taşıma Gücü Katsayılarının Karşılaştırılması (Comparison of the Ny Factors)

Literatürde genel kabul görmüş N_{γ} değerlerini karşılaştırmak için Çizelge 1'de sunulan bağıntılarla $\phi=0^{\circ}$ 'den $\phi=50^{\circ}$ 'ye kadar N_{γ} değerleri hesaplanmış ve sonuçları Şekil 6'da sunulmuştur. N_{γ} değerleri

arasındaki farkı daha yakından görebilmek için sonuçlar ϕ 'ye göre ikiye bölünmüş ve Şekil 6a'da $\phi=0^{\circ}$ -30° arasındaki değerler için, Şekil 6b'de ise $\phi=30^{\circ}$ - 50° arasındaki değerler için hesaplanan N_{γ} değerleri verilmiştir.

Şekil 6. Farklı bağıntılarla; **a**) $\phi=0^{\circ}$ - 30° için, **b**) $\phi=30^{\circ}$ - 50° için hesaplanan N_y değerleri

Şekil 6'dan görüldüğü gibi, en yüksek N_{γ} değerleri yaklaşık $\phi=45^{\circ}$ 'ye kadar Vesić'in [14], $\phi=45^{\circ}$ 'den sonra ise Meyerhof [10]'un bağıntısıyla hesaplanmıştır. En düşük N_{γ} değerleri ise yaklaşık $\phi=25^{\circ}$ 'ye kadar Meyerhof [10]'un, $\phi=25^{\circ}$ 'den sonra ise Hansen'ın [13] bağıntısıyla elde edilmiştir (Şekil 6). Yaklaşık $\phi=25^{\circ}$ 'ye kadar en yüksek ve en düşük sonuçları veren Vesić [14] ile Meyerhof'un [10] N_{γ} değerleri arasında yaklaşık 2 kat fark olduğu görülmüştür. Örneğin $\phi=18^{\circ}$ için N_{γ} değeri Meyerhof [10]'un bağıntısıyla 2 olarak hesaplanırken, Vesić'in [14] bağıntısıyla 4 olarak hesaplanmaktadır. TBDY 2018'de [19] önerilen bağıntıyla hesaplanan N_{γ} değerlerinin ise yaklaşık $\phi=45^{\circ}$ 'ye kadar Meyerhof [10] ile hesaplanan değerlerden daha yüksek, Vesić [14] ile hesaplanan değerlerden ise daha düşük olduğu görülmüştür.

5. FARKLI DÜZELTME KATSAYILARIYLA HESAPLANAN EMNİYETLİ TAŞIMA GÜCÜ DEĞERLERİNİN KARŞILAŞTIRILMASI (COMPARISON OF ALLOWABLE BEARING CAPACITY VALUES CALCULATED WITH DIFFERENT CORRECTION FACTORS)

Farklı araştırmacılar tarafından önerilen bağıntılarla hesaplanan şekil, derinlik ve N_{γ} katsayıları ayrı ayrı karşılaştırıldığında aralarında önemli farklar olduğu görülmüştür. Ancak taşıma gücü bağıntısında bu katsayılar bir arada kullanıldığı için, katsayılar arasındaki bu farkın taşıma gücünü ne ölçüde yansıdığını görebilmek için bu katsayıların çeşitli kombinasyonlarıyla taşıma gücü bağıntıları oluşturulmuş ve bu bağıntılarla örnek senaryolar üzerinde emniyetli taşıma gücü değerleri hesaplanmış ve sonuçları birbiriyle karşılaştırılmıştır. Emniyetli taşıma gücünün hesaplanmasında güvenlik katsayısı 3 olarak alınmıştır.

Taşıma gücü hesaplamalarında kullanılmak üzere örnek senaryoların oluşturulmasında tek daireli konut tipi bir bina seçilmiştir. Yapı yüklerinin radye temel sistemiyle zemine aktarılacağı kabul edilmiş ve radye temel ölçüleri ambatman genişliği dâhil 16×10 m olarak (*B/L*=0.625) tasarlanmıştır. Binada 1 kat bodrum olacağı düşünülmüş ve temel taban kotu -3.0 m (D_f = 3 m) olarak tasarlanmıştır (D_f/B =0.3). Binanın düz bir zemine inşa edileceği düşünülmüş ve zeminde D_f+B derinliği içinde yeraltı suyuna rastlanmadığı kabul edilmiştir. Zeminin doğal birim hacim ağırlığı γ_n =18 kN/m³ olarak alınmış ve derinlikle birlikte değişmediği kabul edilmiştir. Zemin dayanımı bakımından farklı durumları senaryo edebilmek için suya doygun killi zeminleri temsilen $\phi=0^{\circ}$ analizlerinin yanı sıra, kumlu-siltli-killi zeminleri temsilen c, ϕ analizleri de yapılmıştır. c, ϕ analizlerinde zeminin kohezyonu c=20 kPa ile 200 kPa, içsel sürtünme açısı ise $\phi=0^{\circ}$ ile 40° arasında değiştirilerek farklı c, ϕ kombinasyonları için taşıma gücü değerleri hesaplanmıştır. Hesaplamalarda zeminin c, ϕ değerlerinin derinlik boyunca değişmediği kabul edilmiştir.

5.1. $\phi=0^\circ$ İçin Yapılan Analizler (The Analysis Performed For $\phi=0^\circ$)

Tasarlanan kurgusal senaryoya uygun olarak $\phi=0^\circ$, *B/L*=0.625 ve *D_f/B* =0.3 için bu çalışmada ele alınan farklı bağıntılarla hesaplanan şekil ve derinlik katsayıları Çizelge 2'de sunulmuştur.

Çizelge 2. $\phi=0^\circ$, B/L=0.625 ve $D_f/B=0.3$ için farklı bağıntılarla hesaplanan şekil ve derinlik katsayıları

Kaynak	Şekil	Katsa	yıları	Derinlik Katsayıları		
Таупак	S _c	S_q	Sγ	d_c	d_q	dγ
Skempton [6]	1.125	-	-	1.06	-	-
Meyerhof [10]	1.125	1	1	1.06	1	1
Hansen [9]	1.125	1	0.94	1.105	1	1
Hansen [13]	1.125	1	0.75	1.12	1	1
De Beer [12]	1.2	1	0.75	-	-	-
Vesić [13, 14]	-	-	-	-	-	-

Açıklama: Bağıntı önerilmediği için hesaplanamayan katsayıların yerine - işareti konulmuştur.

Çizelge 2 incelendiğinde, Skempton [6], Hansen [9] ve Meyerhof [10]'un bağıntılarıyla hesaplanan s_c değerlerinin aynı, De Beer [12] ile hesaplanan s_c değerinin ise bunlardan farklı olduğu görülmektedir. d_c değerlerine bakıldığında ise Skempton [6] ve Meyerhof [10]'un bağıntılarıyla hesaplanan d_c değerlerinin aynı, Hansen [9] ve Hansen [13] ile hesaplanan d_c değerlerinin ise bunlardan farklı olduğu görülmektedir. s_q , d_q ve d_γ değerlerine bakıldığında hepsinin 1 olduğu görülmektedir. s_γ değerlerinin ise her birinin farklı olduğu görülmektedir. Ancak $\phi=0^\circ$ için $N_{\gamma}=0$ olduğundan s_{γ} değerlerindeki farkın taşıma gücü hesaplamalarında bir etkisi bulunmamaktadır. Bu durumda $\phi=0^\circ$ analizleri için genel taşıma gücü bağıntısında kullanılmak üzere düzeltme katsayısı seçilirken s_c ve d_c değerlerinin belirleyici olduğu anlaşılmaktadır. Buna göre taşıma gücü hesaplamalarında kullanılmak üzere s_c ve d_c bağıntıları dikkate alınarak oluşturulan çeşitli denklem kombinasyonları Çizelge 3'te sunulmuştur.

Komb. No	Şekil katsayıları	Derinlik katsayıları
Komb. 1	De Beer [12] (Eş. 10.2, 10.3, 10.9)	Hansen [13] (Eş. 11.21, 11.16, 11.17)
Komb. 2	De Beer [12] (Eş. 10.2, 10.3, 10.9)	Meyerhof [10] (Eş. 9.4, 9.5)
Komb. 3	Meyerhof [10] (Eş. 9.1, 9.2)	Hansen [13] (Eş. 11.21, 11.16, 11.17)
Komb. 4	Hansen [13] (Eş. 11.12 – 11.14)	Hansen [13] (Eş. 11.21, 11.16, 11.17)
Komb. 5	Hansen [9] (Eş. 8.1 – 8.3)	Hansen [9] (Eş. 8.4 – 8.6)
Komb. 6	Meyerhof [10] (Eş. 9.1; 9.2)	Meyerhof [10] (Eş. 9.4, 9.5)

Çizelge 3. $\phi=0^{\circ}$ için genel taşıma gücü bağıntısında kullanılan denklem kombinasyonları

Çizelge 3'te verilen denklem kombinasyonları ile c=20-200 kPa arasında değişen değerler için emniyetli taşıma gücü değerleri hesaplanmış ve sonuçları grafik olarak Şekil 7'de, c=50, 100, 150 ve 200 kPa için hesaplanan emniyetli taşıma gücü değerleri ise sayısal olarak Çizelge 4'te sunulmuştur. Taşıma gücü hesaplamalarında N_c ve N_q için ise sırasıyla Prandtl [2] ve Reissner [3] tarafından önerilen bağıntılar (sırasıyla Eş. 3.1 ve 4.1) kullanılmıştır. $\phi=0^\circ$ için $N_{\gamma}=0$ olduğundan hesaplamalarda N_{γ} 'lı terim kullanılmamıştır.

Şekil 7. $\phi=0^{\circ}$, B/L=0.625 ve D/B=0.3 için Çizelge 3'te sunulan denklem kombinasyonlarıyla hesaplanan emniyetli taşıma gücü değerlerinin karşılaştırılması

Şekil 7 ve Çizelge 4 incelendiğinde, taşıma gücü hesaplamalarında kullanılan düzeltme katsayılarının emniyetli taşıma gücünü önemli ölçüde etkilediği ve kohezyon değeri arttıkça farklı kombinasyonlarla hesaplanan taşıma gücü değerleri arasındaki farkın da arttığı görülmektedir. En yüksek taşıma gücü değerleri Komb.1, en düşük taşıma gücü değerleri ise Komb.6 ile elde edilmiştir. Komb.1 ve Komb.6 ile hesaplanan taşıma gücü değerleri arasındaki fark incelenecek olursa; c=50 kPa'da aralarındaki fark 13 kPa iken, c=100 kPa'da bu fark 26 kPa'ya, c=150 kPa'da 39 kPa'ya, c=200 kPa'da ise 52 kPa'ya çıkmaktadır (Çizelge 4). Konut tipi bir binada 1 kattan zemine aktarılan taban basıncının yaklaşık 15 kPa olduğu kabul edilecek olursa bunun önemli bir fark olduğu değerlendirilebilir.

	q _a (kPa)					
Komb. No	c = 50 kPa	c = 100 kPa	c = 150 kPa	c = 200 kPa		
Komb. 1	133	248	363	479		
Komb. 2	127	236	345	454		
Komb. 3	126	234	342	450		
Komb. 4	126	234	342	450		
Komb. 5	124	231	337	444		
Komb. 6	120	222	324	427		

Çizelge 4. $\phi=0^\circ$, B/L=0.625, $D_f/B=0.3$ ve c=50, 100, 150 ve 200 kPa için Çizelge 3'te sunulan kombinasyonlarla hesaplanan emniyetli taşıma gücü değerleri

Bu sonuçlara göre, $\phi=0^{\circ}$ analizlerinde Meyerhof'un [10] şekil ve derinlik katsayıları kullanılarak (Komb. 6) hesaplanan taşıma gücü değerlerinin diğer kombinasyonlara kıyasla daha emniyetli tarafta kaldığı öne sürülebilir.

5.2. $\phi > 0^\circ$ İçin Yapılan Analizler (The Analysis Performed For $\phi > 0^\circ$)

 $\phi > 0^{\circ}$ ve $D_f \leq B$ için şekil ve derinlik katsayısı öneren araştırmacılar Çizelge 5'te verilmiştir. $D_f > B$ için sadece Hansen [13] tarafından bir bağıntı önerilmiş olup, bu çalışma için tasarlanan kurgusal yapıda $D_f \leq B$

olduğu için, Hansen [13] tarafından $D_f > B$ için önerilen derinlik katsayıları karşılaştırmalara dâhil edilmemiştir.

Kaynak	S _c	Sq	Sγ	d_c	d_q	dγ
Meyerhof [10]	+	+	+	+	+	+
Hansen [9]	+	+	+	-	-	+
Hansen [13]	-	+	+	-	+	+
De Beer [12]	+	+	+	-	-	-
Vesić [14]	-	-	-	+	-	-
Vesić [15]	-	-	-	+	-	-

Çizelge 5. $\phi > 0^{\circ}$ ve $D_f \leq B$ için şekil ve derinlik katsayısı öneren araştırmacılar

Açıklama: + işareti bağıntı önerildiğini, - işareti bağıntı önerilmediğini göstermektedir.

Çizelge 5 incelendiğinde, şekil ve derinlik katsayılarının tamamı için sadece Meyerhof [10] tarafından bağıntı önerildiği görülmektedir. Hansen [9] tarafından d_c ve d_q hariç diğer katsayılar, Hansen [13] tarafından s_c ve d_c hariç diğer katsayılar, De Beer [12] tarafından sadece şekil katsayıları, Vesić [14, 15] tarafından ise sadece d_c için bağıntı önerilmiştir (Çizelge 5). Bu durumda Vesić [14, 15] ile Hansen [13] tarafından önerilen derinlik katsayılarının birbirini tamamladığı ve genel taşıma gücü bağıntısında birlikte kullanılabilecekleri değerlendirilmiştir. Bu değerlendirmeler doğrultusunda oluşturulan genel taşıma gücü bağıntısı denklem kombinasyonları Çizelge 6'da sunulmuştur.

Komb. No	Şekil katsayıları	Derinlik katsayıları	N_{γ} katsayısı
Komb. 1	Meyerhof [10]	Meyerhof [10]	TBDY-2018 [19]
Komb. 2	De Beer [12]*	d_c için Vesić [15]; d_q ve d_γ için Hansen [13]	TBDY-2018 [19]
Komb. 3	De Beer [12] ^{<i>ψ</i>}	d_c için Vesić [15]; d_q ve d_γ için Hansen [13]	TBDY-2018 [19]
Komb. 4	s_c için De Beer [12] $^{\psi}$; s_q ve s_{γ} için Hansen [13]	d_c için Vesić [15]; d_q ve d_γ için Hansen [13]	TBDY-2018 [19]
Komb. 5	Meyerhof [10]	Meyerhof [10]	Meyerhof [10]
Komb. 6	De Beer [12] ^{<i>ψ</i>}	d_c için Vesić [15]; d_q ve d_γ için Hansen [13]	Vesić [13]

Çizelge 6. $\phi > 0^{\circ}$ ve $D_f \leq B$ için farklı şekil ve derinlik katsayıları ve N_{γ} bağıntıları kullanılarak oluşturulan genel taşıma gücü bağıntısı denklem kombinasyonları

Açıklama: *De Beer [12]'in tan¢'li bağıntıları kullanılmıştır. ^vDe Beer [12]'in sin¢'li bağıntıları kullanılmıştır.

Hansen [9] tarafından önerilen düzeltme katsayıları Hansen [13] tarafından güncellendiği için, oluşturulan kombinasyonlarda Hansen [9] tarafından önerilen düzeltme katsayılarına yer verilmemiştir. Oluşturulan kombinasyonlarda TBDY-2018'de [19] önerilen N_{γ} bağıntısının yanı sıra Vesić [14] ve Meyerhof [10] tarafından önerilen N_{γ} bağıntıları da kullanılmıştır. Hansen [9, 13] tarafından önerilen N_{γ} bağıntıları diğer

bağıntılara yakınlık gösterdiğinden (Şekil 6a) sonuçların sunumunda sadelik sağlamak için kombinasyonlarda bu bağıntılara yer verilmemiştir. TBDY-2018'de [19] önerilen N_{γ} bağıntısının kullanıldığı denklemlerden en yüksek ve en düşük sonuçları veren Kombinasyon 1 ve 3'te TBDY-2018'de [19] önerilen N_{γ} bağıntısı yerine Vesić [14] ve Meyerhof [10] tarafından önerilen N_{γ} bağıntıları kullanılarak Kombinasyon 5 ve 6 oluşturulmuştur.

Çizelge 6'da verilen taşıma gücü bağıntısı denklem kombinasyonları ile c=50, 100 ve 200 kPa için ϕ =2°'den 40°'ye kadar taşıma gücü değerleri hesaplanmış ve sonuçları Çizelge 7-9 ve Şekil 8-9'da sunulmuştur.

۸°			q a (k	kPa)		
Ψ	Komb. 1	Komb. 2	Komb. 3	Komb. 4	Komb. 5	Komb. 6
2	136	142	142	142	136	145
5	166	173	173	173	165	181
10	243	249	249	249	238	265
15	375	376	374	374	360	398
20	611	592	586	586	574	619
25	1053	977	960	960	971	1002
30	1929	1699	1654	1654	1763	1706
35	3799	3148	3030	3030	3484	3093
40	8174	6310	5993	5993	7666	6068
40	0171	0510	5775	5775	/000	0000

Çizelge 7. c=50 kPa, $D_f/B=0.3$ ve B/L=0.625 için farklı denklem kombinasyonlarıyla hesaplanan emniyetli taşıma gücü değerleri

Açıklama: En düşük değerler koyu olarak gösterilmiştir.

Çizelge 8. c=100 kPa, $D_f/B=0.3$ ve B/L=0.625 için farklı denklem kombinasyonlarıyla hesaplanan emniyetli taşıma gücü değerleri

۳	q _a (kPa)						
Ψ	Komb. 1	Komb. 2	Komb. 3	Komb. 4	Komb. 5	Komb. 6	
2	249	261	261	261	249	264	
5	299	312	312	312	298	320	
10	419	434	433	433	414	449	
15	614	627	623	623	599	647	
20	948	941	931	931	910	963	
25	1547	1480	1452	1452	1466	1494	
30	2692	2457	2384	2384	2526	2435	
35	5052	4352	4166	4166	4736	4229	
40	10405	8360	7876	7876	9897	7951	

Açıklama: En düşük değerler koyu olarak gösterilmiştir.

<u>م</u>	q _a (kPa)						
Ψ	Komb. 1	Komb. 2	Komb. 3	Komb. 4	Komb. 5	Komb. 6	
2	475	499	499	499	475	502	
5	563	591	591	591	562	599	
10	770	804	802	802	765	818	
15	1092	1128	1121	1121	1077	1145	
20	1622	1640	1620	1620	1584	1653	
25	2536	2487	2436	2436	2454	2478	
30	4217	3972	3843	3843	4051	3895	
35	7557	6759	6437	6437	7242	6500	
40	14868	12459	11641	11641	14359	11717	

Çizelge 9. c=200 kPa, $D_f/B=0.3$ ve B/L=0.625 için farklı denklem kombinasyonlarıyla hesaplanan emniyetli taşıma gücü değerleri

Açıklama: En düşük değerler koyu olarak gösterilmiştir.

Taşıma gücü bağıntısında TBDY-2018'de [19] önerilen N_{γ} bağıntısının kullanılması halinde en güvenli sonuçları veren kombinasyonun belirlenebilmesi için ilk dört kombinasyonla hesaplanan taşıma gücü değerleri ayrı olarak Şekil 8'de sunulmuştur. N_{γ} bağıntısının taşıma gücü değerleri üzerindeki etkisini görebilmek için ise Kombinasyon 1, 3, 5 ve 6 ile hesaplanan taşıma gücü değerleri ayrı bir grafik halinde Şekil 9'da sunulmuştur. c=50, 100 ve 200 kPa için elde edilen sonuçlar hiyerarşik (tipik) olarak birbirine benzediği için Şekil 9'da sadece c=50 kPa için elde edilen sonuçlar sunulmuştur. Ayrıca, ϕ 'ye bağlı olarak kombinasyonlar arasındaki farkı daha yakından görebilmek için sonuçlar ϕ 'ye göre ikiye bölünmüş ve $\phi < 15^{\circ}$ için hesaplanan sonuçlar ayrı, $\phi > 25^{\circ}$ için hesaplanan sonuçlar ise ayrı bir grafik halinde sunulmuştur (Şekil 9a ve 9b).

Çizelge 7-9 ve Şekil 8-9 incelendiğinde, farklı düzeltme katsayılarıyla hesaplanan taşıma gücü değerleri arasındaki farkın sabit olmadığı, içsel sürtünme açısına bağlı olarak değiştiği görülmektedir. Ancak Komb. 3 ve 4'ün tüm c- ϕ değerleri için aynı sonucu verdiği görülmektedir. Bunun nedeni, temele gelen yüklerin dik olması durumunda Hansen [13] tarafından önerilen s_q ve s_γ bağıntılarının De Beer [12] tarafından önerilen sin ϕ 'li bağıntılarla aynı olmasıdır.

De Beer'in [12] tanq'li ve sinq'li bağıntıları (sırasıyla Komb. 2 ve Komb.3) karşılaştırıldığında; yaklaşık $\phi=15^{\circ}$ 'ye kadar her ikisinin birbirine yakın sonuçlar verdiği, $\phi=15^{\circ}$ 'den sonra ise sinq'li bağıntılarla yaklaşık %1'den %7'ye kadar daha düşük taşıma gücü değerleri elde edildiği görülmektedir (aralarındaki fark düşük "c, ϕ " değerlerinde yaklaşık %1 iken, yüksek "c, ϕ " değerlerinde en fazla %7'ye kadar çıkmaktadır). Bu sonuçlara göre, De Beer'in [12] sinq'li ve tanq'li bağıntıları arasında bir tercih yapılması gerektiğinde, tasarımcıyı daha güvenli tarafta bırakacağı için sinq'li bağıntıların tercih edilebileceği değerlendirilmiştir.

TBDY-2018'de [19] önerilen N_{γ} bağıntısının kullanıldığı denklemler (Komb.1-4) karşılaştırıldığında (Şekil 8), yaklaşık ϕ <20° için tüm kombinasyonlar hemen hemen aynı sonucu veriyormuş gibi görünse de Çizelge 7-9 incelendiğinde, yaklaşık ϕ =15°'ye kadar Komb. 1'in daha düşük (daha emniyetli) sonuçlar verdiği, ϕ =15°'den sonra ise giderek artan oranda diğer yöntemlere kıyasla daha yüksek sonuçlar verdiği görülmektedir. Ayrıca, yaklaşık ϕ =15-20°'de yöntemler arasındaki sıralamanın değiştiği ve yaklaşık ϕ =15°'den sonra Komb. 3'ün daha düşük (daha emniyetli) sonuçlar vermeye başladığı görülmektedir. Taşıma gücü değerleri açısından kombinasyonlar arasındaki farkı irdelemek gerekirse, ϕ <10° ve c=50 kPa olan zeminlerde Komb. 1 ile Komb. 3 arasındaki farkın 6-7 kPa kadar olduğu, ancak kohezyon değeri arttıkça bu farkın daha da arttığı ve c=100 kPa'da 14 kPa'ya, c=200 kPa'da ise 32 kPa'ya kadar çıktığı

görülmektedir (Çizelge 7-9). ϕ >15° olan zeminler için kombinasyonlar arasındaki fark irdelendiğinde, örneğin ϕ =25° için Komb. 1 ile hesaplanan taşıma gücü değerlerinin Komb. 3'e kıyasla 93 ile 100 kPa arasında değişen miktarlarda daha yüksek taşıma gücü değerleri verdiği görülmektedir. Zeminin ϕ değeri arttıkça aradaki bu farkın daha da arttığı Şekil 8'den görülmektedir.

Şekil 8. TBDY-2018'de [19] önerilen N_{γ} bağıntısının kullanıldığı denklem kombinasyonlarıyla; **a**) c=50 kPa için, **b**) c=100 kPa için, **c**) c=200 kPa için hesaplanan taşıma gücü değerlerinin karşılaştırılması

807

Şekil 9. Farklı N_{γ} bağıntılarının kullanıldığı denklem kombinasyonlarıyla; **a**) 0°< ϕ ≤40° için, **b**) 0°< ϕ ≤15° için, **c**) 25°≤ ϕ ≤40° için hesaplanan taşıma gücü değerlerinin karşılaştırılması

Farklı N_{γ} bağıntılarının kullanıldığı denklemler (Komb. 1, 3, 5 ve 6) karşılaştırılacak olursa (Şekil 9), en düşük (en güvenli) taşıma gücü değerlerinin yaklaşık $\phi=20^{\circ}$ 'ye kadar Komb. 5 ile, $\phi=20^{\circ}$ 'den sonra ise Komb. 3 ile elde edildiği görülmektedir (Çizelge 7-9 ve Şekil 9b). Yaklaşık $\phi=20^{\circ}$ 'den sonra Kombi. 3 ve 6'nın birbirine oldukça yakın sonuçlar verdiği görülmektedir. Benzer şekilde yaklaşık $\phi=20^{\circ}$ 'den sonra Komb. 1 ve 5'in de birbirine yakın sonuçlar verdiği görülmektedir. Bu hesaplamaların $D_f/B = 0.3$ için yapıldığı hatırlanacak olursa, D_f/B oranı değiştiğinde burada elde edilen sonuçların değişip değişmeyeceğinin ortaya konulması gerektiği değerlendirilebilir. Bu değişimi görebilmek amacıyla bu çalışmada ele alınan kurgusal binaya bir bodrum katı daha ilave edileceği düşünülerek temel taban kotu -6 m'ye indirilmiş (bu durumda $D_f/B=0.6$) ve Çizelge 6'da verilen kombinasyonlar kullanılarak $D_f/B = 0.6$ ve c=50, 100 ve 200 kPa için $\phi=2^\circ$ 'den 40°'ye kadar emniyetli taşıma gücü değerleri tekrar hesaplanmıştır. Bu hesaplamaların sonucunda elde edilen taşıma gücü değerleri karşılaştırıldığında kombinasyonlar arasındaki hiyerarşinin (sıralamanın) değişmediği görülmüştür. Buna göre, bu çalışmada belirlenen kombinasyonlar arasındaki hiyerarşinin (sıralamanın) farklı D_f/B oranları için de geçerli olduğu anlaşılmıştır.

6. SONUÇ VE ÖNERİLER (CONCLUSION AND RECOMMENDATIONS)

Şekil, derinlik ve N_{γ} katsayıları için literatürde önerilen farklı bağıntılarla hesaplanan taşıma gücü değerleri arasında önemli oranda fark olduğu ve bu farkın sabit olmadığı, $\phi=0^{\circ}$ analizlerinde kohezyon değerine, "c- ϕ " analizlerinde ise içsel sürtünme açısına bağlı olarak değiştiği görülmüştür.

 $\phi=0^{\circ}$ analizlerinde, en düşük (en emniyetli) taşıma gücü değerinin Meyerhof'un [10] şekil ve derinlik katsayıları kullanılarak elde edildiği görülmüştür. En yüksek taşıma gücü değerleri ise şekil katsayıları için De Beer [12], derinlik katsayıları için ise Hansen'ın [13] bağıntıları kullanıldığında elde edilmiştir. En yüksek ve en düşük taşıma gücü değerleri arasında, kohezyon değerine bağlı olarak 13 kPa ile 52 kPa arasında değişen seviyelerde fark bulunduğu görülmüştür. Konut tipi binalarda bir kattan zemine aktarılan taban basıncının yaklaşık 15 kPa olduğu kabul edilecek olursa bunun önemli bir fark olduğu değerlendirilebilir.

"c- ϕ " analizlerinde farlı N_{γ} katsayılarının kullanıldığı denklemler karşılaştırıldığında; yaklaşık $\phi < 20^{\circ}$ olan zeminlerde en düşük (en emniyetli) taşıma gücü değerlerinin yine Meyerhof [10]'un şekil, derinlik ve N_{γ} katsayıları kullanılarak elde edildiği görülmüştür. Yaklaşık $\phi > 20^{\circ}$ olan zeminlerde ise en emniyetli taşıma gücü değerleri, şekil katsayıları için De Beer'in [12] sin ϕ 'li bağıntıları, derinlik katsayılarından d_c için Vesić'in [15], d_q ve d_{γ} için Hansen'ın [13] bağıntıları ve N_{γ} katsayısı için TBDY-2018'de [19] önerilen bağıntı kullanılarak elde edilmiştir.

"c- ϕ " analizlerinde TBDY-2018'de [19] önerilen N_{γ} bağıntısı kullanılarak oluşturulan denklem kombinasyonları karşılaştırıldığında ise; yaklaşık $\phi < 15^{\circ}$ olan zeminlerde en emniyetli taşıma gücü değerlerinin Meyerhof [10]'un şekil ve derinlik katsayılarıyla hesaplandığı görülmüştür. Yaklaşık $\phi > 15^{\circ}$ olan zeminlerde ise en emniyetli taşıma gücü değerleri şekil katsayıları için De Beer'in [12] sin ϕ 'li bağıntıları, derinlik katsayılarından d_c için Vesić'in [15], d_q ve d_{γ} için Hansen'ın [13] bağıntıları kullanılarak elde edilmiştir.

"c- ϕ " analizlerinde yaklaşık $\phi < 15^{\circ}$ olan zeminlerde en yüksek ve en düşük taşıma gücü değerleri arasındaki farkın %3-5 arasında değiştiği görülmüştür. Bu farkın taşıma gücü açısından karşılığı ise yaklaşık 6-32 kPa'ya tekabül etmektedir. Yaklaşık $\phi > 15^{\circ}$ olan zeminlerde ise en düşük ve en yüksek taşıma gücü değerleri arasındaki farkın daha da büyük olduğu ve zeminin "c- ϕ " değerlerine bağlı olarak arttığı görülmüştür. Örneğin $\phi = 25^{\circ}$ 'de en yüksek ve en düşük taşıma gücü değerleri arasındaki fark 93-100 kPa (% 4-10) arasında değişirken $\phi = 40^{\circ}$ 'de bu fark yaklaşık 2200-3200 kPa'ya (% 28-36) kadar çıkmaktadır.

7. SİMGELER (SYMBOLS)

- A Etkin temelin alanı
- *B'* Etkin temel genişliği
- *B* Temel genişliği (dairesel temellerde temelin çapı)
- b_c , b_q , b_γ Temel tabanı eğim katsayıları
- c Temel tabanından itibaren B derinliği içindeki zeminin kohezyonu
- *D_f* Temel derinliği

Derinlik katsayıları
Eurocode 7
Zemin yüzeyi eğim katsayıları
Temele gelen eğik kuvvetin yatay (temele yüzeyine paralel) bileşeni
Yük eğim katsayıları
Taşıma gücü katsayıları
Yüklü alanın kenarlarındaki sürşarj yükü
Zeminin sınır (nihai) taşıma gücü
Şekil katsayıları
Türkiye Bina Deprem Yönetmeliği
Temele gelen eğik kuvvetin düşey (temele yüzeyine dik) bileşeni
Zeminin içsel sürtünme açısı
Temel tabanı seviyesinin üstündeki zeminin efektif birim hacim ağırlığı
Temel tabanından itibaren B derinliği içindeki zeminin efektif birim hacim ağırlığı
Temel tabanının yatayla yaptığı açı
Zemin yüzeyinin yatayla yaptığı açı (şev açısı)
Temele gelen yükün düşeyden sapma açısı

ÇIKAR ÇATIŞMASI (CONFLICT OF INTEREST)

Yazar tarafından herhangi bir çıkar çatışması beyan edilmemiştir.

KAYNAKLAR (REFERENCES)

- [1] Terzaghi, K. (1943). Theoretical Soil Mechanics, John Wiley & Sons, Inc., New York, USA.
- [2] Prandtl, L. (1920). Über die Harte Plastischer Körper, Nachrichten von der Könighlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalischen Klasse, pp. 74–85.
- [3] Reissner, H. (1924). Zum Erddruckproblem, In: Biezeno, C.B., Burgers, J.M. (Eds.) Proceedings of the 1st International Congress for Applied Mechanics, Delft, The Netherlands, pp. 295–311.
- [4] Baars, S.V. (2018). 100 Years of Prandtl's Wedge. 135 p., IOS Press BV, Amsterdam, Netherlands.
- [5] Terzaghi, K., Peck, R.B. (1967). Soil Mechanics in Engineering Practice. 2nd edition. John Wiley and Sons, Inc. New York, USA.
- [6] Skempton, A.W. (1951). The Bearing Capacity of Clays, Building Research Congress., vol. 1, pp 180-189.
- [7] Meyerhof, G. G. (1953). The Bearing Capacity of Foundations Under Eccentric and Inclined Loads. Proceedings of Third Int. Conf. Soil Mech., vol. 1: 440-445.
- [8] Meyerhof, G. G. (1956). Discussion on "Rupture surfaces in sand under oblique loads." Proc. Am. Soc. Civil Engrs., Journal of the Soil Mechanics and Foundations Division, 82 (3): 15-19.
- [9] Hansen, J. B. (1961). A General Formula for Bearing Capacity, Bulletin No. 11, Danish Geotechnical Institute, Copenhagen.
- [10] Meyerhof, G. G. (1963). Some Recent Research On the Bearing Capacity of Foundations, Canadian Geotechnical Journal, 1(1): 16–26.
- [11] Meyerhof, G. G. (1951). The Ultimate Bearing Capacity of Foundations, Geotechnique, 2 (4): 301-332.

- [12] De Beer, E. E. (1970). Experimental Determination of the Shape Factors and Bearing Capacity Factors of Sand, Geotechnique, 20(4): 387–411.
- [13] Hansen, J. B. (1970). A Revised and Extended Formula for Bearing Capacity, Bulletin No. 28, Danish Geotechnical Institute, Copenhagen,.
- [14] Vesić, A. S. (1973). Analysis of Ultimate Loads of Shallow Foundations, Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers, 99(SM1): 45–73.
- [15] Vesić, A. S. (1975). Bearing Capacity of Shallow Foundations. Foundation Engineering Handbook, 1st ed. pp.121-147. Winterkorn, Hans F. and Fang, Hsai-Yang, Eds., Van Nostrand Reinhold, New York. 751 pp
- [16] Das, B.M. (2011). Principles of Foundation Engineering, Seventh Edition, Cengage Learning, Stamford, USA.
- [17] Das, B. M. (2017). Shallow Foundations Bearing Capacity and Settlement, Third Edition, CRC Press, Taylor & Francis Group, FL, USA.
- [18] Das, B. M., Sivakugan, N. (2019). Principles of Foundation Engineering, Ninth Edition, Cengage Learning, Inc., Boston, USA.
- [19] TBDY-2018. Türkiye Bina Deprem Yönetmeliği (2018). İçişleri Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı. Ankara, Türkiye.
- [20] EC-7 (2004), Eurocode 7 Geotechnical Design Part 1: General Rules, European Standard, EN 1997-1: 2004, European Committee for Standardization, Brussels.
- [21] Bowles, J.E. (1996). Foundation Analysis and Design, Fifty Edition, McGraw-Hill, USA.