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Abstract: This study is based on determining muon beam energies using multiple Coulomb scattering data in 
artificial neural networks. Muon particles were scattered off a 50-layer lead object by using the G4beamline 
simulation program which is based on Geant4. Before working with deep neural networks, average scattering 
angle distributions regarding the number of crossed layers were analyzed with the fit method using the well-
known formula for multiple Coulomb scattering to estimate muon beam energies. Subsequently, average 
scattering angles over the number of crossed layers from 1 to 10 were used in deep neural network structures to 
estimate the muon beam energy. It has been observed that deep neural networks significantly improve the 
resolutions compared to the ones obtained with the fit method. 
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Çoklu Coulomb Saçılma Verileri ile Derin Sinir Ağlarını  

Kullanarak Müon Enerjisinin Tahmin Edilmesi  
 

Öz: Bu çalışma, yapay sinir ağlarında çoklu Coulomb saçılma verileri kullanılarak müon ışını enerjilerinin 
belirlenmesine dayanmaktadır. Müon parçacıkları, Geant4 tabanlı G4beamline benzetim programı kullanılarak 
50 katmanlı bir kurşun nesneden saçıldı. Derin sinir ağları ile çalışmadan önce, katman sayısı cinsinden ortalama 
saçılma açısı dağılımları, müon ışını enerjilerini tahmin etmek için çoklu Coulomb saçılımı için iyi bilinen 
formül kullanılarak fit yöntemiyle analiz edildi. Daha sonra, müon ışını enerjisini tahmin etmek için derin sinir 
ağı yapılarında 1'den 10'a kadar katman sayısı üzerinden ortalama saçılma açıları kullanıldı. Derin sinir 
ağlarının, fit yöntemine göre çözünürlükleri önemli ölçüde iyileştirdiği gözlemlenmiştir. 
 
Anahtar Kelimeler: momentum spektrumu çözülmesi, müon ışını, çoklu Coulomb saçılması, derin sinir ağı 

 
1. Introduction 

 
Charged particles are deflected as they pass an object. Most of these deviations are due to Coulomb 
scattering from the nuclei. These many small-angle deflections are called multiple Coulomb 
scatterings (MCS). The deviation in scattering angles due to MCS induces a Gaussian distribution in 
a plane and the width of the distribution can be approximated by Equation 1 [1]:  
 

                              𝜎𝜎0 ≈
13.6 𝑀𝑀𝑀𝑀𝑀𝑀
𝛽𝛽𝛽𝛽𝛽𝛽 �

𝑥𝑥
𝑋𝑋0
�1 + 0.038 ln � 𝑥𝑥

𝑋𝑋0
��                                                   (1) 

 

where, 𝛽𝛽𝛽𝛽 is the velocity of the muons, 𝑥𝑥 is the material thickness, 𝑋𝑋0 is the radiation length of the 
material, p is the momentum of the muons, and c is the speed of the light. The width could be related  
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to the space angle approximately as given with Equation 2. 
 

                                        𝜎𝜎0 = 𝜎𝜎𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀 = 1
√2
𝜎𝜎𝑠𝑠𝛽𝛽𝑝𝑝𝛽𝛽𝑀𝑀                                                             (2) 

 
The radiation length is then given as follows with Equation 3: 
 

𝑋𝑋0 = 716.4 𝑔𝑔/𝛽𝛽𝑐𝑐2

𝜌𝜌
𝐴𝐴

𝑍𝑍(𝑍𝑍+1) log�287/√𝑍𝑍�
                                                       (3) 

 
Where Z is the atomic number, A is the atomic mass of the material, and ρ is the density of the 
material. For the same material and thickness, the scattering angle distribution will depend on the 
muon beam energies; with higher energy, muons will have a scatter distribution with smaller widths. 
One of the rapidly developing research topics is using these scattering angle data with appropriate 
techniques to determine the momentum of charged particles in the absence of a magnetic field. 
Another application area of the MCS is muon tomography. Muon tomography is based on the MCS 
of highly penetrating cosmic ray muon particles as they pass through the object to be detected [2, 3]. 
It has many applications for inspecting objects in volcanology, special nuclear materials, the shipping 
industry, and civil engineering. The main advantage of muon tomography is that it does not need 
unnatural radiation sources. 
 
The MCS data can be used to determine charged particle momentum even in the absence of a 
magnetic field by using detectors that can measure particle trajectories with good precision. In other 
words, predicting the momentum of charged particles relies on precise measurements of particle 
scattering angles. Cloud chambers [4, 5], emulsion detectors [6], and spark chambers [7] are the early 
applications of this theory to measure charged particle momentum. MACRO collaboration [8, 9] used 
streamer tubes to measure the momentums of through-going atmospheric muons with MCS. On the 
other hand, the ICARUS collaboration [10] used T600 liquid argon (TPC) to measure the muon's 
momenta. If used as the target material, dense materials are also alternatives for measuring charged 
particle momenta [11, 12]. One of the techniques for measuring particle momentum is to scatter 
particles from an object in layers. In this case, dense absorbers and position-sensitive detectors are 
formed in layers and can be used to determine scattering angles in each layer. In this configuration, a 
cell is defined as a pair of absorbers and position-sensitive detectors [13]. The dependence of the 
average scattering angles in terms of the number of crossed cells can be used to determine the particle 
momentum with the help of the well-known MCS formula. This study aims to improve the energy 
resolutions of muon beams, which could be obtained with the fit method, by using the deep neural 
network structures which have received rising interest from scientists in recent years [14-22]. This 
work can also be evaluated as a study of how effective artificial neural networks can be in measuring 
the energies of charged particles through the geometries described in this paper. 
 
Cosmic rays, primarily protons, constantly bombard the earth. These cosmic rays interact with the 
higher parts of the atmosphere, producing many short-lived secondary particles. Muons are produced 
as a result of the decay of these secondary particles. Muons can reach the earth's surface mainly 
because they interact with the Coulomb force, which accumulates energy in matter more slowly than 
the nuclear force. In horizontal detectors, the muon flux at sea level is approximately one muon / cm2 
/ min [23]. Knowing the energies of cosmic ray muons is essential in several ways. For example, 
cosmic-ray muons could be used as a particle source to check and calibrate the detectors in nuclear 
and particle physics experiments. In some cases, it is essential to know the flux of the cosmic rays 
since they could be a background in a significant amount in an experiment. On the other hand, if the 
cosmic-ray data in some parts of the earth are evaluated with the primary cosmic-ray data, this could 
lead to understanding the cosmic-ray information at the upper cascade of the earth. The effect of the 
cosmic rays on human health is also under discussion by scientists. This study explores using neural 
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network structures to determine muon energy based on MCS with a setup of position-sensitive 
detectors and dense absorbers. Previous studies have shown that the muon tomography system can 
reach a spatial resolution of 50 µm with micro-pattern gas detectors or drift chambers and a few mm 
in a system formed with fibers embedded in plastic scintillators [24-28]. Another technique uses 
emulsion films for high-resolution particle tracking [13]. Therefore, these studies have shown the 
possibility of reconstructing particle trajectories with high precision resolutions. This work 
investigates ANN structures to precisely determine muon beam energy using scattering angles in a 
detector system with multiple absorber layers. This work is specific to muon particles, but it is 
essential to show how the algorithms presented can effectively determine the momentum of charged 
particles.  
 
2. Material and Methods 
 
In this section, the simulation program used in the study will be explained in the material subsection, 
and the methods used in the determination of muon energies will be explained under the title of the 
method. 
 
2.1. Material 

 
The simulation study was conducted with G4beamline [29] to obtain the scattering angle distributions 
of muons with different energies that strike the lead absorber vertically. This study used a geometry 
of successive layers of absorbers and position-sensitive plates. Fifty layers of scattering plates were 
constructed horizontally with the absorption material of lead having 200 cm x 200 cm transverse size 
and 1 mm thickness. In the simulated setup, position sensitive-detectors were placed before and after 
the absorbers to obtain particle information. Figure 1 shows the geometry of the detector design with 
5 event display. G4beamline is based on the Geant4 toolkit [30-32], and it simulates particle 
transportation in the matter. It does not require complex programming to design detector geometries. 
Its other significant advantages are that it presents beam specifications, and beam track information 
can be output in several formats. It has a rich repository for beamline elements, and many beamline 
parameters can be tuned automatically. In G4beamline, the particle id, momentum, and position 
components of the particles hitting the detectors are saved with their event numbers in the related 
detector branch. This information was enough in our analysis to determine scattering angles at each 
layer without any uncertainty. 
 

 
 

Figure 1. The detector geometry from the side view with 5 event display 
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2.2. Methods 
 
This section explains two different methods to determine muon beam energies. 
 
2.2.1. The Fit Method 
 
One method that can be used to determine beam energy is to measure the average scattering angles 
as a function of the number of crossed cells. In this study, the space scattering angles have been 
determined at each layer by using the scalar product of the momentum vectors of the incoming and 
scattered muons. This momentum information was taken from the virtual detectors placed before and 
after the absorbers in the simulation program. In this way, the particle trajectories or directions are 
assumed to be determined without uncertainty. In an actual experiment, possible uncertainties could 
be considered by defining resolution parameters related to the angular resolution [13]. In an actual 
experiment, the effect of the scattering of the particles through the position-sensitive detectors could 
be considered negligible. Once the space angle was determined, the plane angle was obtained 
according to Equation 2. The average scattering angles for a certain number of crossed cells could be 
determined by taking account of various angle measurements over the corresponding number of 
absorbers. For example, considering two crossed cells, 49 measurements are possible with 50 
absorber layers, and so on. The number of possible measurements in a given depth cell could be 
formulated with Equation 4 [13]. 
 

𝑁𝑁𝑐𝑐𝑀𝑀𝑝𝑝𝑠𝑠 = ∑ 𝑖𝑖𝑖𝑖𝑖𝑖 �𝑁𝑁𝑝𝑝𝑝𝑝−𝑖𝑖+1
𝑁𝑁𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝

�𝑁𝑁𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝
𝑖𝑖=1                                                     (4) 

 
Here 𝑁𝑁𝛽𝛽𝑀𝑀𝑝𝑝𝑝𝑝 refers to the number of crossed cells by a particle (depth of the cell), and 𝑁𝑁𝛽𝛽𝑝𝑝 is the number 
of absorber plates that a track could span. 
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Figure 2. Average scattering angles as a function of the number of crossed cells for different muon 

beam energies. The solid lines are the fit functions given by Equation 5 
  
The average scattering angles were determined based on the number of crossed cells. These angles 
could be fitted with Equation 5 to determine the particle momentum.  
 
The absorber's length was taken as the number of crossed cells in the equation since we used 50 layers 
of absorber thickness of 1 mm. The beam momentum could be predicted in the numerical approach 
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by fitting the average scattering angle distributions with Equation 5 by defining momentum (𝑝𝑝) as a 
free parameter. The fit example is shown in Figure 2 for various beam energies. 
 

𝜎𝜎0 ≈
13.6 𝑀𝑀𝑀𝑀𝑀𝑀
𝛽𝛽𝛽𝛽𝛽𝛽

�𝑁𝑁𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝
5.6

�1 + 0.038  ln �𝑁𝑁𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝
5.6

��                                        (5) 

  
In this approach, it is suitable to produce two different momentum distributions obtained with fit 
parameters to analyze momentum resolutions: distributions of fit momentum parameters (𝑝𝑝) and 
inverse fit momentum parameters(1/𝑝𝑝). Then, fitting those distributions with an appropriate function 
provided the momentum resolution with a specified resolution description. This study investigated 
the momentum resolutions with the fit method for the beam energies of 1 GeV, 2 GeV, 4 GeV, and 6 
GeV. The reconstructed momentums (𝑝𝑝𝑟𝑟𝑀𝑀𝛽𝛽𝑟𝑟𝑝𝑝) were obtained with fit momentum parameters. Then, 
the momentum resolutions were obtained with two different distributions: One uses (1/𝑝𝑝𝑟𝑟𝑀𝑀𝛽𝛽𝑟𝑟𝑝𝑝) and 
the other takes only(𝑝𝑝𝑟𝑟𝑀𝑀𝛽𝛽𝑟𝑟𝑝𝑝). Both distributions were fit with the function of 
𝑓𝑓(𝐴𝐴;  𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖;𝜎𝜎;𝜎𝜎𝜎𝜎;𝜎𝜎𝜎𝜎; 𝛽𝛽𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖) given by Equation 6. 
 

𝑔𝑔𝑚𝑚𝑔𝑔𝑐𝑐 = 𝐴𝐴 𝑚𝑚𝑥𝑥𝑝𝑝 �−0.5 × �
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 − 𝑥𝑥

𝜎𝜎
�
2
� 

𝑚𝑚𝑥𝑥𝑝𝑝𝑐𝑐𝜎𝜎 = 𝐴𝐴 𝑚𝑚𝑥𝑥𝑝𝑝 �0.5 × (𝜎𝜎𝜎𝜎)2 − �
𝑥𝑥 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖

𝜎𝜎
� × (𝜎𝜎𝜎𝜎)� 

𝑚𝑚𝑥𝑥𝑝𝑝𝑐𝑐𝜎𝜎 = 𝐴𝐴 𝑚𝑚𝑥𝑥𝑝𝑝 �0.5 × (𝜎𝜎𝜎𝜎)2 − �𝑐𝑐𝑀𝑀𝑝𝑝𝑝𝑝−𝑥𝑥
𝜎𝜎

�× (𝜎𝜎𝜎𝜎)�                           (6)          

𝜎𝜎𝑖𝑖𝑔𝑔ℎ𝑖𝑖𝑡𝑡𝑔𝑔𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 + (𝜎𝜎) × (𝜎𝜎𝜎𝜎)   ;    𝜎𝜎𝑚𝑚𝑓𝑓𝑖𝑖𝑡𝑡𝑔𝑔𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 − (𝜎𝜎) × (𝜎𝜎𝜎𝜎) 
 

𝑓𝑓(𝐴𝐴;  𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖;𝜎𝜎;𝜎𝜎𝜎𝜎;𝜎𝜎𝜎𝜎; 𝛽𝛽𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖) = �
𝑔𝑔𝑚𝑚𝑔𝑔𝑐𝑐 + 𝛽𝛽𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖, 𝑥𝑥 < 𝜎𝜎𝑖𝑖𝑔𝑔ℎ𝑖𝑖𝑡𝑡𝑔𝑔𝑖𝑖 𝑚𝑚𝑖𝑖𝑎𝑎 𝑥𝑥 > 𝜎𝜎𝑚𝑚𝑓𝑓𝑖𝑖𝑡𝑡𝑔𝑔𝑖𝑖
𝑚𝑚𝑥𝑥𝑝𝑝𝑐𝑐𝜎𝜎 + 𝛽𝛽𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖, 𝑥𝑥 ≥ 𝜎𝜎𝑖𝑖𝑔𝑔ℎ𝑖𝑖𝑡𝑡𝑔𝑔𝑖𝑖
𝑚𝑚𝑥𝑥𝑝𝑝𝑐𝑐𝜎𝜎 + 𝛽𝛽𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖, 𝑥𝑥 ≤ 𝜎𝜎𝑚𝑚𝑓𝑓𝑖𝑖𝑡𝑡𝑔𝑔𝑖𝑖

 

 
Here (𝜎𝜎𝜎𝜎) and (𝜎𝜎𝜎𝜎) denote how many (𝜎𝜎) beyond the mean the right and left tails of the distribution 
begin, respectively. 𝐴𝐴 refers to the amplitude of the function. 

 
Figure 3. Inverse reconstructed momentum distributions of 2 GeV/c muon beam. The solid red line 
represents the fit function given by Equation 6. The blue lines correspond to the borders of the 𝜎𝜎68 

interval defined in the text. 
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This fit function is defined to be Gaussian with exponential tails. It was found that this function 
describes both momentum distributions quite well. The fit examples are shown in Figure 3 and Figure 
4 for inverted and not inverted reconstructed momentum distributions, which belong to 2 GeV/c 
beams, respectively. The resolution was then determined using a 68% interval around the mean of 
the distribution. The interval covering 68% side area was determined with fit parameters on each side 
around the mean. Then, the half-width of the whole interval was defined to be 𝜎𝜎68 and 𝜎𝜎68/𝑝𝑝𝑐𝑐𝑀𝑀𝑝𝑝𝑝𝑝 
was taken as the resolution value.  

 
Figure 4. Reconstructed momentum distributions of 2 GeV/c muon beam. The solid red line 

represents the fit function given by Equation 6. The blue lines correspond to the borders of the 𝜎𝜎68 
interval defined in the text. 

 
2.2.2. Deep Neural Network 
 
Keras [33], written in Python, is a deep learning API (application programming interface). It runs on 
Tensorflow [34], an open-source machine learning platform that allows the development and trains 
machine learning models, instant model iteration, and easy debugging. The Keras contains essential 
abstractions and building blocks with high iteration velocity. 
 
Layers and models are the main structures in Keras. The sequential model in Keras includes a linear 
stack of layers. The sequential model could be considered a functional API model in which each layer 
has input and output attributes. This study used the sequential model to define hidden layers, input 
shape, and output layer. 
 
Keras has different activation functions: RELU, sigmoid, softmax, Softplus, Softsign, Tanh, Selu, 
Elu, and Exponential. Relu is the rectified linear unit activation function. The Relu activation function 
was used for the hidden layers in this study. This function is linear for positive input values and 
nonlinear for values less than 0. This activation function could be described mathematically as below 
with Equation 7 for the input value of z: 
 

𝑔𝑔(𝑧𝑧) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑧𝑧)                                                                 (7) 
 

The function does not require exponential computing, so it takes less computation time. The linearity 
of the function also eliminates the gradient vanishing effect caused by nonlinear functions [35].  
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On the other hand, the sigmoid function was used as the activation function between the last hidden 
layer and the output layer. This function returns the values between 0 and 1 and could be considered 
the 2-element softmax function, whose second element is 0. The sigmoid function is given by 
Equation 8. 
 

𝑐𝑐𝑖𝑖𝑔𝑔𝑚𝑚𝑐𝑐𝑖𝑖𝑎𝑎(𝑥𝑥) = 1/�1 + 𝑚𝑚𝑥𝑥𝑝𝑝(−𝑥𝑥)�                                                      (8) 
 

Adam (Adaptive Moment Estimation) is an optimization algorithm that uses the stochastic gradient 
descending (SGD) method. This method is efficient in the case of situations with extensive data and 
parameters [36]. It is stated that hyper-parameters need little tuning in the algorithm, which is also 
helpful for noisy problems and sparse gradients. SGD method is efficient in deep learning applications 
[37-41]. Adam takes advantage of two different methods: One is helpful for sparse gradients [42], 
and the other is efficient in online and non-stationary settings [43]. 
 
In the present study, binary cross-entropy class was used as the probabilistic losses where cross-
entropy metrics are computed between the true and predicted labels. On the other hand, the argument 
"learning_rate" was used to determine the step size during the updating weights. This argument was 
set in the Adam optimization method. Metric is used to determine the level of the successfulness of a 
model. The main difference between the metrics and losses is that metrics are not used in the training 
process, while losses functions are used. In this study, an accuracy metric was used to evaluate the 
performance of the fit model. This metric compares the true and predicted labels and defines how 
often labels and predictions match. Input parameter set and true labels were scaled through 
"MinMaxScaler ." This scaling is done so that the scaled data sets take values between 0 and 1. In 
this way, the predicted labels were then obtained for the values again between 0 and 1. The formula 
for scaling is given with Equation 9. 
 

    𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐 = 𝑋𝑋−𝑐𝑐𝑖𝑖𝑝𝑝(𝑋𝑋)
𝑐𝑐𝑝𝑝𝑥𝑥(𝑋𝑋)−𝑐𝑐𝑖𝑖𝑝𝑝(𝑋𝑋)                                                                 (9) 

 
Where 𝑋𝑋 is the value to be normalized and 𝑚𝑚𝑖𝑖𝑖𝑖(𝑋𝑋) and 𝑚𝑚𝑚𝑚𝑥𝑥(𝑋𝑋) are the minimum and the maximum 
values in a given data set, respectively. 
 
3. Results and Discussion 
 
The resolution values obtained with the fitting method are shown in Table 1 for different beam 
energies. It is seen that the results are close to each other regarding beam energies, and they take the 
average values between 17% and 18%. The average values were obtained over two different fitting 
methods. The resolution errors were defined by taking the differences of the individual resolutions 
from the average resolution. 
 

Table 1. Reconstructed momentum values vs. true momentum values. Average reconstructed 
momentums < 𝑝𝑝 > and momentum resolutions < 𝜎𝜎68

𝛽𝛽𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚
> % are shown 

 
𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡𝑀𝑀 (𝐺𝐺𝑚𝑚𝐺𝐺/𝛽𝛽) < 𝑝𝑝 > (𝐺𝐺𝑚𝑚𝐺𝐺/𝛽𝛽) 

 
<

𝜎𝜎68
𝑝𝑝𝑐𝑐𝑀𝑀𝑝𝑝𝑝𝑝

> % 

1 0.99 ∓ 0.02 17.86 ∓ 0.13 
2 2.03 ∓ 0.05 17.52 ∓ 0.14 
4 4.13 ∓ 0.18 17.95 ∓ 0.48 

6 6.23 ∓ 0.17 17.69 ∓ 0.20 
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Error calculation related to the prediction of the true labels with deep learning structures was 
performed with the RMSE (Root Mean Squared Error) value. The formulation of such error is given 
with Equation 10.   
 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 = �1
𝑁𝑁
∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1                                                     (10) 

 
where  𝑥𝑥𝑖𝑖 is the predicted label value and 𝑦𝑦𝑖𝑖 is the true label value for the 𝑖𝑖𝑡𝑡ℎ data. 
 
The detector geometry used with ANN was the same as that used for the fitting procedure. This time, 
the muon beam energies were uniformly and randomly distributed in the simulation with 100000 
muon particles. Half of this data was used for training purposes, and the remaining data were for the 
testing process. 30% of the data was left for validation purposes in the training process. The learning 
rate and batch size hyperparameters were optimized as 0.01 and 32, respectively. In the model, three 
different numbers of hidden layers (1, 2, and 3) and four different numbers of neurons (30, 60, 120, 
and 180) at each layer were set up and tested. Table 2 shows the configurations for each model. The 
RMSE values corresponding to each setup were obtained according to Equation 10 and are shown in 
Table 3. As it is shown, the best score was obtained through 3 layer configuration, each with 120 
neurons. It is also seen that there is no significant difference between models in terms of RMSE 
values. Table 4 shows the hyperparameters which provide the best estimation. It was seen that there 
is no significant difference between validation and training loss during the training process. 
 

Table 2. Deep learning models used for the estimation of muon momentums 
 

 # of hidden layers # of neurons at each layer 

Model #1 1 30 

Model #2 1 60 

Model #3 1 120 

Model #4 1 180 

Model #5 2 30 

Model #6 2 60 

Model #7 2 120 

Model #8 2 180 

Model #9 3 30 

Model #10 3 60 

Model #11 3 120 

Model #12 3 180 
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Table 3. Performance results of different deep learning models 

 rMSE 

Model #1 0.433549 

Model #2 0.431063 

Model #3 0.436451 

Model #4 0.434121 

Model #5 0.44378 

Model #6 0.438078 

Model #7 0.439559 

Model #8 0.431312 

Model #9 0.432711 

Model #10 0.43679 

Model #11 0.430044 

Model #12 0.434951 

 

Table 4. Parameters of the neural network model which leads to the best accuracy 

Parameter  Value 

Number of hidden layers 

Number of neurons 

Learning rate  

Batch size 

#epochs 

 

3 

120 

0.01 

32 

100 

 

Since beam momentum distribution is uniform for this study, the differences between expected and 
predicted momentum values were evaluated. The distributions of these differences were fitted again 
with Equation 6. Then, half-width at half maximum was determined through the 𝜎𝜎68 parameter. These 
distribution plots were produced for the data around specific expected beam momentums to compare 
the results with the ones obtained with the fit method explained in Section 2. For example, the data 
around 2 GeV beam was taken as 1.95 𝐺𝐺𝑚𝑚𝐺𝐺 <  𝑝𝑝 <  2.05 𝐺𝐺𝑚𝑚𝐺𝐺. Here, 𝑝𝑝 is the expected (true) beam 
momentum. These difference distributions were also produced by the fit method for comparison. The 
fit examples are shown in Figure 5 and Figure 6 obtained with the ANN and the fit method for the 
beam around 1 GeV/c, respectively. Then, 𝜎𝜎68 values were compared for two different methods. Table 
5 shows the results, and it is seen that the results are significantly better with deep neural network 
structures than the ones with the fit method. Regarding two different 𝜎𝜎68 values, the improvement 
with ANN was determined to be from 38% to 54%, considering the mentioned beam energies (1 to 6 
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GeV). For example, at 0.95 𝐺𝐺𝑚𝑚𝐺𝐺 <  𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡𝑀𝑀 <  1.05 𝐺𝐺𝑚𝑚𝐺𝐺, the 𝜎𝜎68 value was 0.0889 GeV/c with the 
ANN method, while it was 0.1774 GeV/c with the fit method. 

 
Figure 5. The differences between the true momentum values and the predicted ones were obtained 
with the ANN method. The solid red line represents the fit function given by Equation 6. The blue 

lines correspond to the borders of the 𝜎𝜎68 interval in the fit function 

 
 

Figure 6. The differences between the true momentum values and the predicted ones were obtained 
with the fit method. The solid red line represents the fit function given by Equation 6. The blue lines 

correspond to the borders of the 𝜎𝜎68 interval in the fit function 
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Table 5. Momentum resolutions with deep neural networks and comparison with the results 
obtained from the fit method 

Momentum resolutions related to the distributions for the difference between expected (true) and 
predicted momentum values 

  ANN  Fit method  Comparison 

Momentum [GeV/c]  𝜎𝜎68 𝑝𝑝𝑐𝑐𝑀𝑀𝑝𝑝𝑝𝑝  𝜎𝜎68 𝑝𝑝𝑐𝑐𝑀𝑀𝑝𝑝𝑝𝑝  𝛥𝛥𝜎𝜎68/𝜎𝜎68(𝑓𝑓𝑖𝑖𝑖𝑖) % 

0.95 < 𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡𝑀𝑀 > 1.05  0.0889 -0.0433  0.1774 0.0350  49.9 

1.95 < 𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡𝑀𝑀 > 2.05  0.2012 -0.0829  0.3251 -0.0409  38.1 

3.95 < 𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡𝑀𝑀 > 4.05  0.3538 0.0158  0.7721 -0.1287  54.2 

5.95 < 𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡𝑀𝑀 > 6.05  0.5141 -0.3462  1.0463 -0.2587  50.9 

 
4. Conclusions 
 
Using simulation software to determine their energies, muons, vertically hitting a 1 mm thick 50 lead 
layers, were investigated through scattering angles. The aim was to use deep neural network structures 
to improve the energy resolutions obtained through numerical algorithms. The fit method takes 
account of average scattering angles in terms of the number of crossed cells by the incoming muon 
beam. This method was applied for the data, considering the configuration of 50 layers of lead 
absorbers. The average scattering angles were determined for the number of crossed cells from 1 to 
10. Then, the obtained average angle distributions were fitted with the function of the well-known 
Coulomb scattering formula. The fit results provided the predicted momentum values, set as a free 
parameter in the fit function. Then, the momentum resolutions were obtained by fitting the 
distributions of the reconstructed momentums with an appropriate function. The fitting procedure was 
applied for the specific beam energies of 1, 2, 4, and 6 GeV/c muon beam, and it was seen that the 
resolutions are close to each other. The resolutions were around 17%, and it was found to be 17.5% 
for the beam momentum of 1 GeV/c. The related data were obtained with a muon beam whose energy 
is uniformly and randomly distributed to study momentum reconstruction with ANN. In total, 100000 
events were constructed in the simulation program to be used with ANN structures. It was found that 
the momentum resolutions obtained with ANN are significantly better than the ones with the fit 
method. The improvements are achieved up to 54% considering the difference in 𝜎𝜎68 values. The 
results show that deep neural network structures are worth using for the momentum reconstruction of  
cosmic ray muon beam or generally for charged beam momentum unfolding through scattering off 
dense objects in layers. 
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