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Abstract

This article studies H∞ control problem based on the event–triggered scheme with time
delays for the synchronization of an chaotic system represented by delayed Takagi–Sugeno
models. Firstly, this method depending on two scenarios: a) Each local subsystem in-
tegrated that the delayed T–S fuzzy model for the same value of input matrices for the
networked system and b) This is near steady-state zero-error diversification has to all be
the same local subsystems. Generally, in the case of fuzzy regulation, these in lieu of
generating the fuzzy regulator as a result of linear local controllers, circumstances were
adjusted by addressing the issue of fuzzy regulation for the delayed Takagi–Sugeno models
fuzzy model. Then, a delayed Takagi–Sugeno uses a fuzzy system to model the non–linear
regulator. On the other hand, communication delays are a vital factor that cannot be ig-
nored. To tackle the networked induced delay initially, author attempt to implement the
event–triggered scheme for output regulation which reduce the cost of network transmis-
sion. By constructing a Lyapunov functional and making use of event–triggered method,
some suitable circumstances that ensure asymptotic stability of H∞ performance index
for the resulting model were derived. Additionally, as the variations of the aforementioned
results, two scenarios were presented. Our developed approaches are demonstrated by a
final example illustrating their superiority, usefulness and reliability.
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1. Introduction
The latest development, delayed nonlinear systems have attained huge their widespread

use in practically every industry, including but not limited to associative memories, target
tracking, pattern recognition, and signal processing, fuzzy techniques [29, 30, 39] along
with combinatorial optimization [17, 20, 22], when the activation functions, connection
weights, and system states all have stochastic values. Thus, studies into the dynamics
of nonlinear systems are of great importance, and several outcomes have been published
in recent literature [15, 43]. The limited speed for signal traveling through this link [2]
also contributes to time delays when gathering information storage and transmission, and
ignoring these delays may lead to undesirable dynamics like oscillations and bifurcations.
Dynamic analysis of nonlinear delayed networks has yielded many results. For instance,
Sriraman et al.[41] discusses the asymptotic stability problem of stochastic systems, for
which time-varying delays are probabilistic. For coupled nonlinear systems with bounded
asynchronous delays, the anti-synchronization problem is addressed in [26].

There has been a growth in the popularity of nonlinear systems since it has a powerful
modelling dynamic systems that random flaws or structural possibilities mutations faults
of actuators, environmental noise. In the same consequences, tracking the desired signal
is imperative in control of non-linear systems. Since last decade, numerous methods have
been developed [24, 38, 47]. Based upon the previous research the regulation theory at-
tained significant attention to design the controllers to track the desired signal along with
the disturbance [34]. For the regulation problem, meanwhile, the goal is to determine a
state feedback controller that possesses a stable equilibrium point asymptotically indepen-
dent of external excitations. An exo-system generates the external reference signals and
perturbation signals, each of which makes the tracking error zero.

The linear regulator equation was initially solved by [12]. Francis [12] has given the
answer to a robust linear regulator equation keeping the system stability when there is
uncertainty system parameters. To achieve robust regulation, internal model based dy-
namic controller is required to be designed. As a result, Isidori and Byrnes [19] generalized
this findings in a nonlinear setting, as well as their has demonstrated which the nonlinear
regulator shall be derived from a series recognised as the class in a partial differential equa-
tions Francis–Isidori Byrnes (FIB) equations [23,37]. The presence of an adapted version
in the nonlinear case was seen to be a sufficient prerequisite for maintaining robustness
to parametric uncertainties. This internal model is generated by immersing this exosys-
tem in an dynamical system that produces all of the potential inputs for any parameter’s
steady–state variance that is permitted.

In many applications, several researchers design networked controllers with distributed
parameter agents, since the temporal and spatial dynamics for the system should also be
taken into account. Furthermore, this authors developed an sliding mode observer for
fractional super–twisting (FSTW) controllers [6]. Additionally, this paper develop an sys-
tematic strategy for the networked control of heterogeneous multi–agent systems (MASs)
with distributed parameter agents in an infinite-dimensional setting [25]. The general
framework for output regulation problems is established by considering both spatial and
temporal parameters. According to the literature, parabolic partial differential equations
(PPDEs) with spatiotemporal coefficients do not necessarily pose a challenging output
regulation problem. This outcome may also be applied to systems that varying parame-
ters. Further, Gao et al.[13] combine adaptive dynamic programming theory with output
regulation theory in [28]. The second method could be used to control plant uncertainty
by using both linear and nonlinear tight-feedback methods [7]. The output regulation of
dynamic systems has been studied many times since then. The output networked control
regulation has not been fully studied. This paper, we are analysing this kind of issue
positively.
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Networked Control Systems (NCSs) on the other hand, have been extensively employed
in large-scale power systems, satellite systems, economic management systems, and other
control domains. It displays a number of positive qualities, including ease of installation
and upkeep, affordable, and dependability. It exhibits numerous positive characteristics,
including ease of installation and maintenance, low cost, and great reliability. The trans-
mission of information in the network, however, introduces a number of issues related to
the introduction of the network into the control systems, including cyber attacks, packet
dropouts, tracking, network-induced time delays, etc. Networked control systems have
experienced rising interest in recent years. Choosing the information transmission scheme
and the frequency of controller execution is crucial when designing networks of control
systems [3, 16], and sliding mode control [31]. Time-triggered control and event-triggered
control are two popular and useful technologies. The output of the controller is applied to
the system which time-triggered control framework at sampling time, which is established
by a set sampling period [21, 42]. Event-triggered control belongs to a kind of control
strategies to execute the signal update when a certain event occurs. Event-driven controls
consume significantly less communication resources than time–driven controls [1, 4]. This
has led to the popularity of event-triggered control. Unfortunately, this scheme was not
fully investigated for the output regulation problems.

Fuzzy regulation theory is related on crossed terms and derivative of membership func-
tion which are not taken into account by local linear regulators. So the solution of fuzzy
regulators is not similar to local linear regulators. In specific cases, these two characteris-
tics can be ignored. In [33] fuzzy regulators based on local linear regulators are discussed
in detail. Another approach concerned with tracking signals is developed in [9]. To explain
the constrained nonlinear output regulation problem, researchers explored in a properties
of model predictive control (MPC) framework [23,37]. In which fuzzy integral controller is
proposed for non-linear systems to identify inaccurate references. This formation of a fuzzy
integral regulator for both discrete- and continuous–time non–linear systems is founded on
integration of an integrator and parallel distributed compensator (PDC). These types of
controllers are robust and guarantee the H∞ performance index for external disturbances.
Computation of gain for the performance index based on the feasible linear matrix in-
equalities (LMIs) methods. This research takes benefits for the delayed Takagi-Sugeno
(T-S) fuzzy model with a networked control system, which has the ability to describe in
a very useful approach, nonlinear dynamics.

Inspired by above observation, in this article, our goal is to address the H∞ control
for output regulation problem with networked control systems. The following are some
examples of this article’s primary novelties:

(1) To overcome the tracking error, a stabilizer is introduced, which takes the states
that model yield in a steady-state error. Furthermore, we also design LMIs which
have the capability to investigate the H∞ control for nonlinear system with time
delays for the synchronization of the chaotic system based on delayed Takagi–
Sugeno models with appropriate LMIs.

(2) These are the first few attempts to introduce the event-triggered scheme for the
regulation problem to eliminate the communication burden over the networked
control system.

(3) The networked control system, the steady–state input responsible to keep tracking
of the reference signals by using the steady–state zero–error manifold. Further-
more, two issues are introduced in the regulation problem which consists of deter-
mining the steady–state input as well as the steady–state zero–error manifold (See
Figures 1 and 2.)
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2. Formulation of the problem
Suppose the nonlinear plant is given:

dx(t) = g(x(t), u(t), ω(t))
y(t) = c(x(t))
ω̇(t) = s(ω(t))

yref (t) = p(ω(t))
e(t) = h(x(t), ω(t))

(2.1)

From above equation, x(t) presents the state of the plant with dimension Rn, u(t) denoted
by the control input with length Rm, while ω(t) is the state vector for the exosystem which
belongs to W ⊂ Rs, which produces the perturbation and/or reference signal. Output
tracking which is denoted by e(t) and presented in Eq. (2.1) along with the dimension
Rm. This definition shows the difference between reference signal and output of the plant,
that is

h(x(t), ω(t)) = y(t) − yref (t)
= c(t) − p(ω(t)).

This is worth mentioning which in [5], having been proved that regulation problems it
cannot determined especially whenever the size u(t) can be smaller greater than the size
of e(t). Alternatively, when the length of the e(t) is smaller than u(t), the tracking problem
is not more challenging. In addition, it is made-up that the nonlinear system in Eq. (2.1)
is not a time variant. According to this, the formation of an internal plant is not examined
[5, 32].

To make a good estimate especially to the nonlinear system, T-S fuzzy model was firstly
suggested in [44]. According to this definition, we characterized the subsystem as indicated
by rules related to some physical information. After defining these subsystems properly,
the behavior of nonlinear framework in a predefined area of the state space. One of the
main themes of this work is to incorporate the time delays in the T-S fuzzy system to
get better tracking, which is still an open and challenging problem. Further proceeding
of this paper, we will be considered outputs of the system which depend upon or concur
the accurately with states x(t). The other assumptions in this paper are as g(0, 0, 0) = 0,
h(0, 0) = 0 and s(0).

At this stage, in the problem of regulation, to express the fuzziness of the plant’s non-
linearity, we have to use different eligibility criteria for the fuzzy model of the exosystem.
This volume of fuzzy the exosystem’s laws could be changed due to the number of fuzzy
rules of the fuzzy plant. These assumptions were compulsory to get a better result in the
analysis. In this paper, the tracking problem is expressed in Eq. (2.1) but for the other
case in which nonlinear terms like g(·, ·, ·), s(·), q(·), c(·) and h(·, ·) are presented using
the T-S fuzzy plant as given:
Plant Rule i: IF δ1

1(t) is ξ1
i1 and,· · ·,and δ1

p(t) is ξ1
ip, THEN{

ẋ(t) = Aix(t) + Adix(t − d) + Biu(t) + Piω(t)
y(t) = Cix(t), for i = 1, · · ·, r1 (2.2)

Exo-system (Fuzzy) i: IF δ2
1(t) is ξ2

i1 and· · ·and δ2
p(t) is ξ2

ip, THEN{
ω̇(t) = Siω(t)

yref (t) = Qiω(t), for i = 1, · · ·, r2 (2.3)

where r1 and r2 represent the number of fuzzy rules in the form (IF–THEN) for the fuzzy
plant and exosystem respectively. The sets ξ1

ip and ξ2
ip present the fuzzy sets which are

based upon the prior understanding of the dynamic of the two system. The concept of
linearizing is applied to obtained the matrices Ai, Adi, Bi, Pi, Ci, Qi and Sibased on
the suitable approximation points (x, u, ω)=(xi, ui, ωi), i.e.,
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 Ai Adi Pi

Bi Si Ci

Qi − −

 =


∂g(x,u,ω)

∂x |(xi,ui,ωi)
∂g(x,u,ω)

∂x |(xi,ui,ωi)
∂g(x,u,ω)

∂ω |(xi,ui,ωi)
∂g(x,u,ω)

∂u |(xi,ui,ωi)
∂s(ω)

∂ω |(ωi)
∂h(x,ω)

∂x |(xi,ωi)
∂h(x,ω)

∂ω |(xi,ωi) − −


Taking into account phenomena about the nonlinear sector approach which is proposed
in [45]. It is observed that this phenomenon produced an accurate demonstration of
nonlinear model especially in the local region rather than the estimate which is obtained
by the aforementioned local linearization technique before. By using this center average
approach for de–fuzzifier with the dynamics of the fuzzy system Eq. (2.1) are inferred
using a singleton fuzzifier and fuzzy inference as

ẋ(t) =
∑r1

i=1 λ1
i (δ1(t)) [Aix(t) + Adix(t − d) + Biu(t) + Piω(t)]

ω̇(t) =
∑r2

i=1 λ2
i (δ2(t))Siω(t),

e(t) =
∑r1

i=1 λ1
i (δ1(t))Cix(t) −

∑r2
i=1 λ2

i (δ2(t))Qiω(t)
(2.4)

where x(t) denotes the state of the model with dimension Rn; u(t) ∈ Rm presents the
control signal; exosystem is expressed with ω(t) ∈ Rs; e(t) ∈ Rm is the error track-
ing; function for x(t) and/or ω(t) is δ?(t) = [δ?

1(t), δ?
1(t), · · ·, ·, δ?

p(t)]T . In the same way,
membership function for exosystem and plant fulfill the χ̄?

i (δ?(t)) =
∏p?

j=1 ξ?
ij(δ?

j (t)) with
λ?

i (δ?(t)) = χ̄?
i (δ?(t))∑r?

i=1 χ̄?
i (δ?(t))

, for all t > 0 in the term ξ?
ij(δ?

j (t)) is the membership values for

ξ?
ij at δ?

j (t). In addition:
r?∑

i=1
χ̄?

i (δ?(t)) > 0 (2.5)

χ̄?
i (δ?(t)) ≥ 0, i, · · ·, r? (2.6)

On the other side:
r?∑

i=1
λ?

i (δ?(t)) = 1 (2.7)

λ?
i (δ?(t)) ≥ 0, i, · · ·, r? (2.8)

for all t > 0. For the simplicity, ‘1’ & ‘2’ for the plant and exosystem respectively. At this
stage, overall system delayed T-S fuzzy system Eq. (2.4) can be written as

ẋ(t) = A (λ)x(t) + Ad(λ)x(t − d) + B(λ)u(t) + P(λ)ω(t)
ω̇(t) = S (λ)ω(t),
e(t) = C (λ)x(t) − Q(λ)ω(t)

(2.9)

A (λ) =
r1∑

i=1
λ1

i (δ1(t))Ai

Ad(λ) =
r1∑

i=1
λ1

i (δ1(t))Adi

B(λ) =
r1∑

i=1
λ1

i (δ1(t))Bi

P(λ) =
r1∑

i=1
λ1

i (δ1(t))Pi
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C (λ) =
r1∑

i=1
λ1

i (δ1(t))Ci

S (λ) =
r2∑

i=1
λ2

i (δ2(t))Si

Q(λ) =
r2∑

i=1
λ2

i (δ2(t))Qi

The ground reality behind the above demonstration rests on this fact which membership
functions in the exosystem and the plant sequentially rely upon t. Before proceeding
further for the existence conditions of regulation, we assume same assumptions regarding
networked fuzzy control system as mentioned [49].

2.1. Event-triggered mechanism
The sampler in this article is time-driven, that a sampling interval ~ > 0, which is an

sample of the real input x(t). In the conventional approach, after each sample, the con-
troller will receive the sampled data sampling cycle, requiring additional band resources.
To overcome this limitation, we add a processor that responds to events between the sam-
pler and the controller that determines if the current to the controller should be delivered
sampled data. If the most recently released input is îk, the following instant, îk+1, is
defined in the subsequent condition:

îk+1~ = îk~ + min︸︷︷︸
j≥1

{j~ | eT
k (tn

k~)z`ek(tn
k~) ≥ ρyT (tk~)z`y(̂ik~)}, (2.10)

where ρ ∈ (0, 1) and z` > 0, ` = 1, 2 are event–triggered parameters.

ek(tn
k~) = y(tn

k~) − y(̂ik~), (2.11)

where tn
k~ = îk~ + j~, n ∈ N.

The event-triggered condition (5) therefore results in:
Control rule i: IF δ1

1(t) is ξ1
i1 and,· · ·,and δ1

p(t) is ξ1
ip, THEN

u(t) = Ki(̂ikh), t ∈ [̂ik~ + τîk
, îk+1 + τîk+1

), (2.12)

where Ki(i = 1, 2, · · ·, r1) are to determine controller gains. From the Eq. (2.4), controller
design will be calculated later.

Remark 2.1. This event–triggered condition Eq. (2.9), defined this paper is similar with
[10]. In this paper, we assume that the sampler samples the output measurements with
a period of ~ > 0. It suggests that only at the sample instants is the event triggering
condition Eq. (2.9) validated, so event triggering control directly offers a minimum inter–
event time that is guaranteed (at least ~ > 0) [48]. So, the Zeno behaviour will not occurs
in our design method.

Using the same idea as in [46], taking the network–induced time delay into account. Let
τ(t) = t − îk~, this yields to 0 ≤ τîk

≤ τ(t) ≤ îk+1~− îk~+ τîk
, τM . One might represent

the transmitted state as x(̂ikh) = x(t−τ(t))+ek(tn
k~). The controller’s defuzzified output

is then:

u(t) =
∑r1

j=1 λ1
jKj [x(t − τ(t)) + ek(tn

k~)] , t ∈ [̂ik + τîk
, îk+1 + τîk+1

). (2.13)
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Prior to presenting this paper’s main theorem, we simplify the notation for the main model
e.g. A (λ) presents Ai. Furthermore, it is recalled the Isidori’s regulation theory especially
for nonlinear system from Eq. (2.1) is given with the event–triggered effect bellow as

ẋ(t) = Aix(t) + Adix(t − d) + BiKjx(t − τ(t)) + Biek(tn
k) + Piω(t)

ω̇(t) = S ω(t), t ∈ [̂ik + τîk
, îk+1 + τîk+1

)
e(t) = Cix(t) − S ω(t)

(2.14)

and regulation problem for nonlinear system (RNS) includes to determine the controller:

ẋ(t) = β(x(̂ik~), ω(t)), t ∈ [̂ik + τîk
, îk+1 + τîk+1

) (2.15)

which is closed–loop system:
ẋ(t) = A x(t)+Adx(t−d)+Bβ(x(̂ik~), 0)+Bek(tn

k), t ∈ [̂ik~+τîk
, îk+1+τîk+1

) (2.16)

has an asymptotic stability with equilibrium point and the answer to close–loop system
from the Eq. (2.15) and Eq. (2.16) fulfills:

lim
t→∞

e(t) , 0

Therefore, Γω(t) presents the steady–state zero-error manifold and ζω(t) denotes the
steady–state input, then the preceding theorem provides an existence in the solution of
RNS [18].

Theorem 2.2. Assume the below conditions hold:
Σ1 : The exosystem dω(t) = s(ω(t)) is Poisson stable.
Σ2 : There is controller gain Kj exist such that delayed system Eq. (2.14) stable under
the event-triggered scheme Eq. (2.9).
Σ3 : There exist scalings such that:

xss(t) = π(ω(t)),
uss(t) = γ(ω(t)),

with initial conditions (π(0), γ(0)) = (0, 0), satisfying{
∂πω(t)
∂ω(t) s(ω(t)) = f(πω(t), ω(t), γω(t))

p(πω(t), ω(t)) = 0.
(2.17)

Furthermore, the RNS is solvable, and controller is given as

u(t) =
r1∑

j=1
λ1

jKj(x(̂ik~) − πω(t)) + γω(t), t ∈ [̂ik~ + τîk
, îk+1 + τîk+1

). (2.18)

Proof: With necessity and sufficient condition follows immediately from Lemma 1 in
[19]. It should be observed that by Assumption 2, there exists a matrix Kj such that in
Eq. (2.14) has eigenvalues. Let us assume that the Eq. (2.17) are fulfilled with π(ω(t))
and γ(ω(t)), and set:

η(x, ω) = γω(t) +
r1∑

j=1
λ1

jKj(x(̂ik~) − πω(t)), t ∈ [̂ik~ + τîk
, îk+1 + τîk+1

).

This option obviously satisfies Ia) In fact, the Jacobian matrix of f(πω(t), ω(t), γω(t))η(x, 0)
is exactly same to Eq. (2.14). Furthermore, by construction:

η(π(ω), ω) = γ(ω)
and therefore, first part of Eq. (2.17) reduces to (5.la) in [19]. On the other hand, second
part of Eq. (2.17) is identical to (5.Ib) in [19]. Thus, by Lemma 1 in [19], requirement
Eq. (2.17) is also fulfilled.
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It is evident from the Theorem 3.1, regulation problem for nonlinear plant consists of
partial differential equations, that rely on convolution for the exosystem and/or plant
which possibly very hard, and in several situations difficult to handle it. Because of this
research another a method to handling the regulation problem for nonlinear plant is set
on the foundation of the delayed T–S fuzzy models under networked control system.
The mappings for the linear example are readily apparent:

xss(t) = π(ω(t)),
uss(t) = γ(ω(t)),

convert into

xss(t) = πω(t),
uss(t) = γω(t).

Therefore, conditions Eq. (2.17) to a linear matrix equation reduction (Francis equations).

ΠS = AiΠ + BiΓ + Pi

CiΠ − Q = 0

Therefore, regulation problem to nonlinear system is well characterised as the issue to
find:

u(t) = β(x(̂ik~), ω(t)), (2.19)

such that:
• Equilibrium point x(t) = 0 for closed–loop without external signal

u(t) = β(x(̂ik~), ω(t)) (2.20)

is called asymptotically stable.
• Find the solution of closed–loop system Eq. (2.9) and Eq. (2.20) fulfils:

lim
t→∞

e(t) , 0,

when the model is under behavior of exosystem with networked control system.

Remark 2.3. From the Eq. (2.4), the control signal is presented with a very simple way
by presenting the weight sum with local regulation:

u(t) =
r1∑

i=1
λ1

i (δ1(t))Ki

x(t) −
r1∑

i=1
λ1

i (δ1(t)) ×
r2∑

j=1
λ1

i (δ2(t))Πijω(t)


+

r1∑
i=1

λ1
i (δ1(t))

r2∑
j=1

λ1
i (δ2(t))Γijω(t). (2.21)

From the controller Eq. (2.18) is presented in the form of Kj , which alter by the fuzzy
stabilize and also doing the mapping π(ω(t)) and γ(ω(t)). This mapping is further solved
by the exact output fuzzy regulation problem (EOFRP) for the plant Eq. (2.4).

In the next section, we will design the nonlinear regulator, such that the methodology
can be implemented to get an efficient result than the traditional method which is based
on the local regulator.
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2.2. Fuzzy output regulation problem
Let us consider the delayed fuzzy plant Eq. (2.4), it can be seen from the previous result

design, procedure for the fuzzy stabilizer is compulsory. While in the article, we design the
fuzzy stabilizer with the new Lyapunov matrix theory for the networked control system,
which can be implemented without losing generality. According to the Remark (2.3), the
overall control input will be

u(t) =
r1∑

i=1
λ1

i (δ1(t))Ki [x(t) − π(ω(t))] + γ(ω(t)). (2.22)

On the other hand, in this case the steady–state zero-error manifold like xss(t) = π(ω(t)),
while steady–state input uss(t) = γ(ω(t)). So overall steady-state error can be written as

ess(t) = x(t) − xss(t)
= x(t) − π(ω(t)), (2.23)

where ess(t) ∈ Rn with proper dimension like Eq. (2.9).
It can be seen that ess(t) presents the error between the steady–state zero-error and

the model’s states x(t) manifold π(w(t)), on the other aspects, e(t) shows the difference
between reference signal and output of the model. So, π(w(t)), can be calculated in the
frame of asymptotic stability. Now, we describe the design procedure in detail.
Using the delayed T–S fuzzy plant Eq. (2.4), the definition of steady state–error is

π(w(t)) = Π̆(w(t)), (2.24)
with incorporated the steady–state input

γ(w(t)) = Γ̆(w(t)), (2.25)
where Π̆(t) and Γ̆(t) are time–varying matrices with proper dimensions, while π(w(t)) =
Π̆(w(t)) is the part of Ck−1 function. Now, we take differentiation for the steady–state
error Eq. (2.23) with respect to time ′t′ with consideration of Eq. (2.24), Eq. (2.25).

ėss(t) = ẋ(t) − ˙̆Π(w(t)) − Π̆(ẇ(t)) (2.26)
ėss(t) = Aix(t) + Adi

x(t − d) + BiKjx(t − τ(t)) + Biek(tn
k) + Piω(t)

− ˙̆Π(w(t)) − S̆ (t)(w(t)), t ∈ [̂ik~ + τîk
, îk+1~ + τîk+1

) (2.27)

Therefore, from Eq. (2.14) and Eq. (2.22)–(2.25) with considering
u(t) = us(t) + uss(t),

while

us(t) =
r1∑

i=1
λ1

i (δ1(t))Ki

[
x(t) − Π̆(ω(t))

]
,

considering at a stable part, while uss(t) = Γ(t)(ω(t)), as a steady–state input, then
following parts can be written as

ėss(t) = Aiess(t) + Adi
ess(t − d) + BiKjess(t − τ(t)) + Biek(tn

k) + Piω(t)

− ˙̆Π(w(t)) − S̆ (t)(w(t)), t ∈ [̂ik~ + τîk
, îk+1~ + τîk+1

). (2.28)

Conversely, ω(t) is assumed to maintain the reference signal’s ability to resist zero decay
as time goes on, it must be Poisson stable. Similarly, we follow the same procedure which
is given in [35]. To understand the procedure, we also introduced Figure 1 and Figure
2. Figure 1(a) and 1(b) represent graphical representations of challenges with linear and
nonlinear regulation, respectively. This instance, without regard for linear subsystems,
both the steady–state zero–error representation and the steady–state input are built solely
for the overall T–S fuzzy plant. In Figure 1, the authors present the control law with
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incorporated steady-state, then evaluate the steady–state zero–error which is presented
by ess. Stable–state zero-error manifolds are center manifolds that become invariant when
steady–state inputs are applied. From the above assumption, we integrate the Francis
equation and make the relax stabilization conditions. To understand the hierarchy of the
system, we also present the block diagram (see Figure 2).

(a) y = x (b) y = 3sinx

Figure 1. Typical regulation scheme [35].

Sample data

dynamic

Controller

Exo-system for

Fuzzy Model

Delayed Fuzzy

Model

Event-triggered

Scheme

disturbance

y     (t)

u(t)w(t)

y(t)

x(t)

e(t)

e(i ђ)

ref

k

+

_

Figure 2. Control scheme for output regulation.
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3. H∞ control design
As a part of this section, NCSs are aimed at obtaining asymptotically stable non–linear
systems with time–varying delays. Let’s analyze the non-linear system that follows from
system Eq. (2.1).

Theorem 3.1. Considered the following the conditions:
Σ̄1 : For the exosystem ω̇(t) =

∑r2
i=1 λ1

i (δ2(t))Siω(t) is Poisson stable.
Σ̄2 : There exit matrices P > 0, Qv > 0, z` > 0, v, ` = 1, 2 and Kj, such that

θij + θji < 0, (3.1)

where

θij =



θ11
ij PAdi

PBiKj 0 PBi PPi

♣ −Q1 0 0 0 0
♣ ♣ −Q2 + ρC T

i z`Ci 0 0 0
♣ ♣ ♣ −Q3 ρC T

i z` 0
♣ ♣ ♣ ♣ −z` 0
♣ ♣ ♣ ♣ ♣ −γ2I


θ11

ij = PAi + A T
i P +

3∑
v=1

Qv + C T
i Ci

Σ̄3 : The solution of Π̆(t) and Γ̆(t) can be obtained by the function of λ1
♦,i(δ1(t)) ≥ 0,

i = 1, 2, · · ·, r♦ for all the values of t ≥ 0 (1 denoted for model and 2 for exosystem):

Π̆S̆ = AiΠ̆ + BiΓ̆ + Pi, (3.2)
CiΠ̆ − Q̆ = 0, (3.3)

such that Π̆ is directly obtained, while on the other side Π̆0 is calculated by putting the x0
and ω0 into Π̆0. Then, EOFRP is solvable.

Proof: Let’s considered the following Lyapunov–Krasovskii functional for system Eq.
(2.4):

G(t) = x(t)T Px(t) +
3∑

v=1

∫ t

t−av

x(α)T Qvx(α)dα, (3.4)

where (a1, a2, a3) = (d, τ(t), dM ). Calculate the time derivative of G(t) along with the
solutions to Eq. (2.4). The result obtained is

Ġ(t) = 2x(t)T Pẋ(t) + xT (t)
( 3∑

v=1
Qv

)
x(t) − x(t − d)T Q1x(t − d)

−x(t − τ(t))T Q2x(t − τ(t)) − x(t − dM )T Q3x(t − dM ) − eT
k (tn

k~)z`ek(tn
k~)

+eT
k (tn

k~)z`ek(tn
k~).

From the event–triggered condition Eq. (2.10), t ∈ [̂ik~ + τîk
, îk+1+̂τîk+1

) we have

eT
k (tn

k~)z`ek(tn
k~) ≤ ρy(̂ik~)Tz`y(̂ik~),

which yields

[xT (t − τ(t)) eT
k (tn

k~)]
[

ρC T
i z`Ci −ρC T

i z`

♣ κρ

] [
x(t − τ(t))

eT
k (tn

k~)

]
≤ 0. (3.5)

Augmented matrix define as

ζ(t) = {x(t), x(t − d), x(t − τ(t)), x(t − dM ), eT
k (tn

k~), w(t)}.
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From the above analysis, we can say that

Ġ(t) − J(t) ≤ ζ(t)T θijζ(t)
Ġ(t) − y(t)T y(t) − γ2ω(t)T ω(t) ≤ ζ(t)T θijζ(t) (3.6)

The following theorem, which offers sufficient circumstances, is based on the conditions
derived in Theorem 3.2 and supplies those conditions. 2

Theorem 3.2. Considered the following the conditions:
Σ̃1 : For the exosystem ω̇(t) =

∑r2
i=1 λ1

i (δ2(t))Siω(t) is Poisson stable.
Σ̃2 : There exit matrices X > 0, Q̄v > 0, z̄` > 0, v, ` = 1, 2 and K̄j, such that

θ̄ij + θ̄ji < 0, (3.7)

where

θ̄ij =



θ̄11
ij Adi

X BiK̄j 0 BiX PiX C T
i

♣ −Q̄1 0 0 0 0 0
♣ ♣ −Q̄2 + ρC T

i z̄`Ci 0 0 0 0
♣ ♣ ♣ −Q̄3 ρC T

i z̄` 0 0
♣ ♣ ♣ ♣ −z̄` 0 0
♣ ♣ ♣ ♣ ♣ −γ2I 0
♣ ♣ ♣ ♣ ♣ ♣ −I


θ11

ij = AiX + XA T
i +

3∑
v=1

Q̄v.

Σ̃3 : The solution of Π̆(t) and Γ̆(t) can be obtained by the function of λ1
♦,i(δ1(t)) ≥ 0,

i = 1, 2, · · ·, r♦ for all the values of t ≥ 0 (1 denoted for model and 2 for exosystem):

Π̆S̆ = AiΠ̆ + BiΓ̆ + Pi (3.8)
CiΠ̆ − Q̆ = 0 (3.9)

such that Π̆ is directly obtained, while on the other side Π̆0 is calculated by putting the x0
and ω0 into Π̆0. Then, EOFRP is solvable.

Proof: Let suppose X−1 = P , then pre-multiplying by H and post-multiplying J to Eq.
(3.1) which yields to Eq. (3.7) with implementing the Schur complement, where

(H, J) =
[
{X−1, X−1, X−1, X−1, X−1, I}, {X, X, X, X, X, I}

]
.

Furthermore, Q̄v = X−1QvX, z̄` = X−1z`X, and K̄j = KjX. The proof is completed. 2

4. Simulation example
In this part, together fuzzy regulation method based upon the linear regulator and the

techniques designed in the last section are implemented with 2 by 2 fuzzy rules with no
external noise.

Exosystem in linear for fuzzy regulation: In this example, we select the delayed T-S
fuzzy plant with Plant Rule i: IF ξ1

i1 and,· · ·, δ1
p(t) is ξ1

ip, THEN
ẋ(t) =

∑r1
i=1 λ1

i (δ1(t)) [Aix(t) + Adix(t − d) + Biu(t)]
ω̇(t) = S ω(t),
e(t) = Cix(t) − Qω(t),

(4.1)
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where

[
A1 Ad1 B1
A2 Ad2 B2

]
=


0 1 0.5 −1 0
2 0 −0.1 0 2
0 1 −0.9 0 0
3 0 −0.85 −0.25 1


S =

[
0 1

−1 0

]
, C1 = C2 = Q =

[
1 0

]
.

Now, we define the initial conditions for x0 =
[

0.5
−2.5

]
ω0 =

[
1.5
0

]
. Membership

functions used are

λ1
1(δ1(t)) = 1

2(1 + δ1(t)
30 ),

λ1
2(δ1(t)) = 1 − λ1

1(δ1(t). (4.2)

It can be observed that reference signal is produced in a linear system.

Using matrices Eq. (4.1), which is seen the results of the delayed fuzzy model is y(t) =
x1(t), on the other side about the reference signal e.g. exosystem’s output yref (t) = ω(t).
Its mean regulation problem can be expressed by a u(t) such that x1(t) coincide to w1(t) as
times grow. Using the same technique of [33], it can be found that the regulation problem
will be encountered when x1 = w1, when we fuzzy mappings turn to:

π(ω(t)) = Π1(ω(t)) = Π2(ω(t)) = diag{1, 1}ω(t) = Π1(ω(t)).

In the same consequences

γ(ω(t)) =
2∑

i=1
δi(ω1(t))Γiω(t) = −3

2h1(ω1(t))ω1(t) − 4h2(ω1(t))ω1(t).

Then, set the γ = 5.5, (z̄1, z̄2) = (0.4520) and solving the LMI Eq. (3.7), with the feasible
solution of controller gain: [

K1
K2

]
=

[
0.1648 1.3270
1.3270 18.5162

]
Then, the following controller can be directly calculated:

u(t) =
2∑

i=1
λ1

i (x1(t))Ki [x(t) − Π(ω(t))] +
2∑

i=1
λ1

i (x1(t))Γi(ω(t)). (4.3)

Figure 3 presents the simulation result after implementing the Eq. (4.3), while the
inter-event intervals and release instants are displayed by Figure 4.

So, the new approach which is designed for the networked control system is imple-
mented. In this scenario, mapping issue is attained by considering dynamic adaptation of
Francis Equations Eq. (3.2) and Eq. (3.3).

Calculating the steady-state zero-error: This scenario, the method for design Π̄(t)
can proceed as below.

x1(t) = ω1(t), with differentiating ẋ1(t) = ω̇1(t) (4.4)

Alternatively, it is easily inferred from the delayed T–S fuzzy model and its suitable
matrices that [

ẋ1(t)
ω̇1(t)

]
=
[

x2(t)
ω2(t)

]
. (4.5)
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(a) y = x (b) y = 3sinx

Figure 3. Trajectory of output versus reference.
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Figure 4. Release instant and interval.

Furthermore, from Eq. (4.4) and Eq. (4.5), the steady-state error shall be written as[
x1(t)
x2(t)

]
=

[
ω1(t)
ω2(t)

]
=
[

1 0
0 1

] [
ω1(t)
ω2(t)

]
= Π̄ω(t) = π(ω(t)) = xss(t).

Calculating the steady-state input: Differentiating the Eq. (4.5) w.r.t time with
considering the delayed T–S fuzzy plant Eq. (2.9), one can get:

ẋ1(t) = ω̇2(t)
= 2λ1

1(x1(t)) · x1(t) + 3λ1
2(x1(t)) · x1(t) + 2λ1

1(x1(t)) · u(t) + λ1
2(x1(t)) · u(t)(4.6)

= −ω1(t).

So, this investigation must be performed in steady–state. Consequently, according towards
the steady-state manifold, π(ω(t)), that is computed above, we found that[

x1(t)
x2(t)

]
=
[

ω1(t)
ω2(t)

]
.
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According to the Eq. (4.6)
2λ1

1(ω1(t)) · ω1(t) + 3λ1
2(ω1(t)) · ω1(t) + 2λ1

1(x1(t)) · uss(t) + λ1
2(ω1(t)) · uss(t) = −ω1(t). (4.7)

Construction of the steady–state input can be followed as

uss(t) = −2λ1
1(ω1(t)) + 3λ1

2(ω1(t)) + 1
2λ1

1(ω1(t)) + λ1
2(ω1(t))

ω1(t) (4.8)

=
[

−2λ1
1(ω1(t))+3λ1

2(ω1(t))+1
2λ1

1(ω1(t))+λ1
2(ω1(t)) 0

] [ ω1(t)
ω2(t)

]
,

which is equivalent to Γ̄(t)ω(t) = γ(ω(t)).
Finally, we can say:

π(ω(t)) = Π̄(t)ω(t) = diag{1, 1}ω(t) = Πω(t) (4.9)

γ(ω(t)) = Γ̄(ω(t))
[

−2λ1
1(ω1(t))+3λ1

2(ω1(t))+1
2λ1

1(ω1(t))+λ1
2(ω1(t)) 0

] [ ω1(t)
ω2(t)

]
(4.10)

It is noted that Eq. (4.8) and Eq. (4.9) are the solution of dynamic version of Francis
equation. Detail comparison of the event–triggered scheme (ETS) is given in Table 1.
In the same consequences, after implementing the controller on the delayed T–S fuzzy
system plant is shown in Figures 5 and 6. It can be noted in designed controller through
implementing the time–varying parameters to achieve the solution of a dynamic version
of Francis equation outperform the controller for the linear regulators.

Table 1. An analysis of event-triggered schemes.

ρ Time–triggered Event–triggered Savage use of resources
0.15 300 41 13.65%
0.25 300 47 18.42%
0.40 300 52 21.17%
0.55 300 55 24.85%
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Figure 5. Control inputs.

Remark 4.1. In this research, we investigate the output regulation for H∞ control over
the networked control system. However, due to the inherent delay in the networked control
system, it is difficult to achieve the exact tracking for the nonlinear system. So this problem
can be investigated further for the exact output regulation by using the optimal control
[40], adaptive control [27], and neural network [11].
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Figure 6. Trajectory error.

Remark 4.2. In this section, authors describe the procedure of the control scheme and
present the theoretical results obtained using the proposed algorithm. First initialize the
system parameters Ai, Adi, Bi, Pi, and Ci. For the output, define the maximum allowable
delay ~, and communication delay dM . Then obtain the feasible solution by applying the
LMI Eq. (3.7) of Theorem 3.2. After calculating the controller gain using LMI Eq. (3.7)
taking into account output regulation theory. Using Simulink in Matlab, we can obtain
simulation results.

Example: We will describe the chaotic Synchronization problem. So this scenario, the
system can be explained through fuzzy Rössler attractor, the while fuzzy Lorenz attractor
is regarded as the response mechanism [35] as shown.

Fuzzy Plant
Plant Rule i: IF ξ1

i1 and,· · ·, δ1
p(t) is ξ1

ip, THEN

ẋ(t) = Aix(t) + Adix(t − d) + Biu(t), i = 1, · · · , 2. (4.11)

Exo-system (Fuzzy)
Plant Rule i: IF δ2

1(t) is ξ2
i1 and· · · δ2

p(t) is ξ2
ip, THEN

ω̇(t) = Siω(t), i = 1, · · · , 2. (4.12)

Hence, the nonlinear dynamics were presented as
ẋ(t) =

∑r1
i=1 λ1

i (δ1(t)) [Aix(t) + Adix(t − d) + Biu(t)] ,

ω̇(t) =
∑r2

i=1 λ2
i (δ2(t))Siω(t),

e(t) =
∑r1

i=1 λ1
i (δ1(t))Cix(t) −

∑r2
i=1 λ2

i (δ2(t))Qiω(t).
(4.13)

Parameters for the system are defined as

[
A1 Ad1
A2 Ad2

]
=



−aL aL 0 −(1 − aL) (1 − aL) 0
cL −1 −dL (1 − cL) −1 −(1 − dL)
0 dL −bL 0 (1 − dL) −(1 − bL)

−aL aL 0 −(1 − aL) (1 − aL) 0
cL −1 −dL (1 − cL) −1 −(1 − dL)
0 dL −bL 0 (1 − dL) −(1 − bL)


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[
S1 B1
S2 B2

]
=



0 −1 −1 0
1 aR 0 1

bR 0 −dL 0
−0 −1 −1 0
1 aR 0 1
0 dL −bL 0


, C = Q =

[
1 0 0

]

with (aL, bL, cL) = (10, 8
3 , 28), (aR, bR, dR, dL) = (0.34, 0.4, 10, 30), with x0 =

 15
5

−7

,

and ω0 =

 2.5
0

−1.5

. The membership function for the above systems are given below:

Fuzzy Plant:

(λ1
1(δ1(t)), λ1

2(δ1(t))) =
(

1
2

[
x1(t)+dL

dL

]
, 1

2

[
−x1(t)+dL

dL

])
Exo-system (Fuzzy):

(λ1
1(δ2(t)), λ1

2(δ2(t))) =
(

1
2

[
1 + cR−ω1(t)

dR

]
, 1

2

[
1 − cR−ω1(t)

dR

])
,

with cR = 4.5. Furthermore, in this example for the delayed T–S fuzzy system and their
appropriate matrices that can reduce the plant output, e.g. y(t) = x1(t). Now we use the
controller in the form Eq. (2.21), which comes from the foundation of the linear regulator
[33], can be designed as

[
Π11 Π12
Π21 Π22

,

]
=



1 0 0 1 0 0
1 −0.1 −0.1 1 −0.1 −0.1

10.47 2.48 −1.02 10.26 2.41 0.57
1 0 0 1 0 0
1 −0.1 −0.1 1 −0.1 −0.1

10.47 2.48 −1.02 10.26 2.41 0.57

.


 Γ11 Γ12

Γ21 Γ22
K11 K12

 =

 287 73.41 −30.66 280.62 71.341 15.1
287 73.41 −30.66 280.62 71.341 15.1

−159.12 0.4147 121.89 −159.12 0.4147 121.89


Behavior of the synchronization can be calculated from the controller which is based

on the local regulator (linear), this concept can be observed in the Figures 7–9, which is
necessary for investigating the robust fuzzy control problems.
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Figure 7. Synchronization based upon the fuzzy controller for Example



Output regulation for networked control system 1299

0 5 10 15 20 25 30

Time (Seconds)

-2

0

2

4

6

8

10

12

14

A
m

pl
itu

de

Figure 8. Trajectory error
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Figure 9. Control signal for Example.

Remark 4.3. In this section, authors compare their developed algorithms in order to
demonstrate their superiority. The paper examines output regulation of fuzzy systems
under networked control systems with a H∞ performance index. So, we provide a numer-
ical comparison by considering the same problem. However, we note that Chen et al. [8],
Gnaneswaran and Joo [14] and Pam and Yang [36] does not address output regulation
design with H∞ performance, which is a special problem in our paper. So, we considered
this special case and provided a numerical comparison between our method and that in
[8,14,36]. The comparison is given in the following Table 2. It can clearly be seen that our
newly proposed approach gives less conservative results than the existing ones in [8,14,36].

Table 2. Optimal performance for minimum performance with different sampling
period.

~ 0.05 0.1 0.2 0.4
Pam and Yang 0.8821 0.9823 1.2964 2.4591

Gnaneswaran and Joo 0.5818 0.6317 0.7145 2.1574
Chen et al. 0.4602 0.5389 0.6893 1.6201

Theorem 3.2 0.1731 0.1937 0.2109 0.2367
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5. Conclusions
A delayed T–S fuzzy modeling with H∞ performance index has been investigated over

the networked control system with utilising both linear regulation theory and (dynamical
Francis equations). In an effort to minimize the burden of network transmission, an event-
triggering mechanism has been proposed. New stability conditions in the form of EOFRPs
with NCS have been defined. To take the advantage of global convergence can be attained,
based upon the nonlinear regulator’s regional characteristics technique. In addition, the
mapping process gives assurance the regulation property can be calculated by solving the
dynamical linear equations (dynamical Francis equations).

By constructing an Lyapunov functional and making use of event-triggered method,
some are sufficient requirements that ensure asymptotically stability of H∞ performance
index for the resulting model is constructed. This result, the designed the tracking issue
can be identified as a result in practice. In general, the fuzzy regulation method is more
difficult as compared to the simple regulation method which is designed by the linear local
regulators. To show the two numerical examples are shown, applicability, validity, benefits
of the suggested methodology over traditional approaches.

Remark 5.1. In the future, this proposed algorithm can also be used to design dissipative
controllers for multi-agent systems. In light of this article, fuzzy Markov jump systems
can also be analyzed with a fault isolation delay and actuator saturation. In addition,
automation systems and grid–connected photovoltaic plants, as well as mobile robots and
cascaded H-bridge converters, have all been implemented using networked control systems
in industrial systems. Communication networks, however, present considerable challenges
with respect to modeling, analyzing, and synthesizing NCSs. These include network-
induced delays, data packet dropouts, limited widths, and quantization.

Acknowledgment. The work is supported by starting Ph.D fund No. 20z14. Avail-
ability of data and material: Data used to support the findings of this work are available
from the corresponding author upon request.
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