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Abstract
In this paper, we study the spaces XΦ as Banach algebras, where X is a quasi-Banach
function space and Φ is a Young function, and extend some well-known facts regarding
Lebesgue and Orlicz spaces on this new structure. Also, for each p ≥ 1, we give some
necessary condition for the space Xp to be a Banach algebra under the pointwise product.
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1. Introduction and preliminaries
This is well-known that L1(G, m) is a Banach algebra with the convolution product,

where G is a locally compact group and m is a left Haar measure on G. Also, for each
1 < p < ∞, Lp(G, m) is a convolution Banach algebra if and only if G is compact; see
[20, 21, 23]. Moreover, for an abelian group G and 1 < p, q < ∞, Lp(G, m) ∗ Lq(G, m) ⊆
Lp(G, m) if and only if G is compact [19, Corollary 1.4]. In [24] a version of this result
for weighted Orlicz spaces on locally compact hypergroups is given. Orlicz spaces are a
significant extension of Lebesgue spaces. The weighted version of this structure in the
context of locally compact groups and hypergroups was studied in [15, 16]. In [1] we give
some necessary and sufficient conditions for a weighted Orlicz space to be a convolution
Banach algebra. In particular, for a class of locally compact groups, we prove that if the
weighted Orlicz space LΦ

w(G) is a convolution Banach algebra, then `Φ
w(H) is a convolution

Banach algebra too, where H is a countable discrete subgroup of G, w is a weight on G
and the Young function Φ ∈ ∆2 i.e. there are some constants c > 0 and x0 ≥ 0 such that
for each x ≥ x0, Φ(2x) ≤ c Φ(x). In [25], for a compactly generated abelian group G,
it is proved that if Φ is a Young function with ∆2-condition and satisfies some sequence
condition, then the Orlicz space LΦ(G) is a convolution Banach algebra if and only if
f ∗ g exists a.e. for all f, g ∈ LΦ(G). See also [3, 11, 12] for more researches on this topic
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in the context of quotient spaces and hypergroups. Motivated from Lebesgue spaces on
locally compact groups, H. Hudzik, A. Kamiska and J. Musielak in [9, Theorem 2] gave the
following interesting equivalent conditions for an Orlicz space LΦ(G) to be a convolution
Banach algebra:

Theorem 1.1. If G is a locally compact abelian group and Φ is a Young function satisfying
∆2-condition, then the followings are equivalent:

(1) LΦ(G) is a Banach algebra under convolution product;
(2) LΦ(G) ⊆ L1(G);
(3) limx→0+

Φ(x)
x > 0 or G is compact.

H. Hudzik also presented some conditions in [8] for an Orlicz space to be a Banach
algebra with the pointwise product. Recently in [5] the authors introduced Orlicz spaces
XΦ associated to a Banach function space X, where Φ is a Young function; see also [26].
This structure is a huge generalization of the classical Orlicz spaces. Previously, other
versions of this structure were given and studied in [10,13,17,18]. In fact, setting X := L1,
we have (L1)Φ = LΦ, where Φ is a Young function. Motivated by the above background,
in this paper we intend to give some conditions under which XΦ is a Banach algebra. In
Section 2, we assume that X is a Banach algebra with a product • and for each h, k ∈ X

and v ∈ SΨ := {v ∈ M0(Ω) : Ψ(|v|) ∈ X, ‖Ψ(|v|)‖X ≤ 1}, (h • k) v = h • (kv), and show
that if XΦ ⊆ X, then XΦ is a Banach algebra with •. In particular, if the underlying
measure space is finite and X is a Banach algebra with pointwise product, then XΦ is a
Banach algebra with pointwise product. Also, we show that if X is a solid Banach function
space and XΦ is an algebra with a positive product � satisfying the following conditions:

(1) |f � g| ≤ |f | � |g| for all f, g ∈ XΦ,
(2) for each fi, gi ∈ XΦ (i = 1, 2), if 0 ≤ fi ≤ gi, then f1 � f2 ≤ g1 � g2,

then XΦ is a Banach algebra. In section 3, we focus on pointwise product and among
other results we show that for each p ≥ 1, if Xp is closed under the pointwise product,
then inf{‖χA‖X : µ(A) > 0} > 0.

First, we recall some basic notions regarding XΦ spaces.
Throughout, (Ω,A, µ) is a σ-finite measure space, and the set of all A-measurable

complex-valued functions on Ω is denoted by M0(Ω).

Definition 1.2. Let X be a linear subspace of M0(Ω). If X equipped with a given norm
‖ · ‖X is a complete space, we say that X is a Banach function space or simply BFS on Ω.
In this case, X is called solid if for each f ∈ X and g ∈ M0(Ω) satisfying |g| ≤ |f | we have
g ∈ X and ‖g‖X ≤ ‖f‖X. We say that a Banach function space X satisfies property (∗) if
for each A ∈ A with µ(A) < ∞, we have χA ∈ X.

In this paper, we assume that Φ is a Young function with a corresponding complemen-
tary function Ψ.

Definition 1.3. Let X be a Banach function space on Ω. The set of all functions f ∈
M0(Ω) such that for some λ > 0, Φ( |f |

λ ) ∈ X, is denoted by XΦ. For each f ∈ XΦ we put

‖f‖Φ := sup{‖ |fv| ‖X : v ∈ SΨ}, (1.1)

where
SΨ := {v ∈ M0(Ω) : Ψ(|v|) ∈ X, ‖Ψ(|v|)‖X ≤ 1}

and also,

‖f‖◦
Φ := inf{λ > 0 : Φ( |f |

λ
) ∈ X,

∥∥∥∥Φ( |f |
λ

)
∥∥∥∥
X

≤ 1}. (1.2)
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2. Main results
We recall the following concept from [4].

Definition 2.1. A Banach function space X on Ω is called a PCS-space if for each sequence
(fn) in X, if fn → f in X, then there is a subsequence (fnk

) of (fn) such that fnk
→ f a.e.

Remark 2.2. Note that any solid BFS on a σ-finite measure space is PCS-space. Since
in this paper we have assumed that the measure space is always σ-finite, XΦ would be a
PCS-space, where X is a solid BFS.

Lemma 2.3. Let X and Y be solid BFS’s on Ω. Then, if X ⊆ Y, then there exists a
constant C > 0 such that for each f ∈ X, ‖f‖Y ≤ C ‖f‖X.

Proof. Let X ⊆ Y. Consider the inclusion mapping
T : X → Y, T (f) := f, (f ∈ X),

and put Gr := {(f, f) : f ∈ X}. Let {(fn, fn)}n be a sequence in Gr and let (fn, fn) →
(f, g) in X × Y. So, since X and Y are PCS spaces, there exists a subsequence {fnj }j such
that fnj → f a.e. and fnj → g a.e. This implies that (f, g) ∈ Gr, and thanks to The
Closed Graph Theorem, the proof is complete. �

Theorem 2.4. Let X be a solid BFS. Suppose that X is a Banach algebra by a product •
such that for each h ∈ X and v ∈ SΨ, we have hv ∈ X and for each k ∈ X,

(h • k) v = h • (kv). (2.1)
If XΦ ⊆ X, then XΦ is a Banach algebra.

Proof. Assume that XΦ ⊆ X. By Lemma 2.3 there is a constant C > 0 such that for each
f ∈ XΦ, ‖f‖X ≤ C ‖f‖Φ. Therefore, for each f, g ∈ XΦ we have

‖f • g‖Φ = sup{‖(f • g) v‖X : v ∈ SΨ}
= sup{‖f • (gv)‖X : v ∈ SΨ}
≤ ‖f‖X sup{‖gv‖X : v ∈ SΨ}
= ‖f‖X ‖g‖Φ

≤ C ‖f‖Φ ‖g‖Φ.

�

Corollary 2.5. Let X be a solid BFS on Ω, and µ(Ω) < ∞. If X is a Banach algebra
with a product • satisfying the relation (2.1), then XΦ is a Banach algebra with • too. In
particular, if X is a Banach algebra with pointwise product, then XΦ is a Banach algebra
with pointwise product.

Proof. Just note that by [5, Proposition 4.4], the assumption µ(Ω) < ∞ implies that
XΦ ⊆ X. Now, the conclusion follows from Theorem 2.4 and [14, Proposition 2.2 (i)]. �

In the following result we give some sufficient condition for XΦ ⊆ X. The main idea for
the proof of this theorem comes from [9, Theorem 2].

Theorem 2.6. Let X be a solid BFS on Ω. If limx→0+
Φ(x)

x > 0 or 1 ∈ X, then XΦ ⊆ X.

Proof. Suppose that f ∈ XΦ. Then, there exists some λ > 0 such that

Φ( |f |
λ

) ∈ X. (2.2)

Case 1. Assume that limx→0+
Φ(x)

x > 0. Then, since Φ is convex, there exists a constant
c > 0 such that

cx ≤ Φ(x), (x ≥ 0). (2.3)
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Since X is solid, by (2.3) and (2.2) we have f ∈ X.
Case 2. Assume that 1 ∈ X. By convexity of Φ, there are x0 > 0 and k > 0 such that

kx ≤ Φ(x), (x ≥ x0). (2.4)
Put

A := {x ∈ Ω : 1
λ

|f(x)| ≤ x0}.

Since X is solid, we have fχA ∈ X because
1
λ

|f | χA ≤ x0 χA ≤ x01 ∈ X.

Also, by relations (2.4) and (2.2) we have
k |f |

λ
χAc ≤ Φ( |f |

λ
) ∈ X.

This implies that f χAc ∈ X, so
f = f χA + f χAc ∈ X,

and the proof is complete. �

The following result covers the convolution Banach algebras LΦ(G), where G is a locally
compact group; see [9, Theorem 2]. Let α : Ω × Ω → Ω be a measurable function. Then,
for each g ∈ XΦ and v ∈ SΨ, we define

Tα(g, v)(x) := g(x) (v ◦ α)(x, ·), (x ∈ Ω).

Theorem 2.7. Let X be a solid BFS on Ω, XΦ ⊆ X, and α : Ω × Ω → Ω be a measurable
function such that for each g ∈ XΦ and v ∈ SΨ, (v ◦ α)(x, ·) ∈ SΨ and for all x ∈ Ω,
Tα(g, v)(x) ∈ X. If

‖(f � g) v‖X ≤
∥∥∥f(·) ‖Tα(g, v)(·)‖X

∥∥∥
X

(2.5)

for all f, g ∈ XΦ and v ∈ SΨ, then (XΦ, �) is a Banach algebra with the product �.

Proof. Let f, g ∈ XΦ. Then,
‖f � g‖Φ = sup{‖(f � g) v‖X : v ∈ SΨ}

≤ sup{
∥∥∥f(·) ‖T (g, v)(·)‖X

∥∥∥
X

: v ∈ SΨ}

≤ sup{‖f‖X ‖g‖Φ : v ∈ SΨ}
= ‖f‖X ‖g‖Φ

≤ C ‖f‖Φ ‖g‖Φ,

for some constant C > 0, thanks to Lemma 2.3. �

The next result would be an extension of the implication (1) ⇒ (3) of [9, Theorem 1].

Theorem 2.8. Assume that X is a solid BFS and XΦ is an algebra with a positive product
� such that |f � g| ≤ |f | � |g| for all f, g ∈ XΦ. Also, assume that for each fi, gi ∈ XΦ

(i = 1, 2), f1 � f2 ≤ g1 � g2 whenever 0 ≤ fi ≤ gi. Then, there is a constant C > 0 such
that for each f, g ∈ XΦ,

‖f � g‖Φ ≤ C ‖f‖Φ ‖g‖Φ.

Proof. In contrast, let (XΦ, �) be an algebra and for each n ∈ N, there are fn, gn ∈ XΦ

with ‖fn‖ = ‖gn‖ = 1 such that ‖fn � gn‖Φ ≥ n4n. So, for each n ∈ N, there is a number
0 < λn < 3

2 such that

Φ
( |fn|

λn

)
, Φ

( |gn|
λn

)
∈ X.
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For each m, k ∈ N with m > k we have

m∑
n=k

‖fn‖Φ
2n λn

≤
m∑

n=k

1
2n

.

This implies that the function F :=
∑∞

n=1
|fn|

2n λn
belongs to XΦ. Similarly, G :=

∑∞
n=1

|gn|
2n λn

∈
XΦ. But, for each n ∈ N we have

‖F � G‖Φ ≥
∥∥∥∥ |fn| � |gn|

4n λ2
n

∥∥∥∥
Φ

≥ 1
4n λ2

n

‖ |fn � gn| ‖Φ

= 1
4n λ2

n

‖fn � gn‖Φ

≥ n 4n

4n λ2
n

≥ 4n

9 ,

and so, F � G /∈ XΦ, a contradiction. �

Sequence conditions. We say that two Young functions Φ1 and Φ2 satisfy the se-
quence conditions if there are sequences {αn} and {βn} of nonnegative real numbers such
that

∞∑
n=1

αn βn = ∞,
∞∑

n=1
Φ1(αn) < ∞,

∞∑
n=1

Φ2(βn) < ∞.

Theorem 2.9. Let X be a solid BFS on Ω, and two Young functions Φ1 and Φ2 satisfy
the above sequence conditions. Assume that (Vn) and (Wn) are sequences of elements of
A satisfying the following properties:

(1) supn ‖χVn‖X < ∞ and supn ‖χWn‖X < ∞;
(2) for each distinct m, n ∈ N, Vn ∩ Vm = Wn ∩ Wm = ∅;
(3) there is a set A ∈ A with µ(A) > 0 such that for some M > 0 and for each x ∈ A

and n ∈ N, we have M ≤ (χVn � χWn)(x), where � is a product on characteristic
functions;

(4) for each distinct m, n ∈ N, we have χVn � χWm = 0 on A.

Then, � does not have a natural extension on XΦ1 × XΦ2.

Proof. Define

f :=
∞∑

n=1
αn χVn and g :=

∞∑
n=1

βn χWn . (2.6)

Then, since Φ1(0) = 0 we have

Φ1(f) =
∞∑

n=1
Φ1(αnχVn) =

∞∑
n=1

Φ1(αn) χVn .

For each m, k ∈ N with k > m we have∥∥∥∥∥
k∑

n=m

Φ1(αn) χVn

∥∥∥∥∥
X

≤
k∑

n=m

Φ1(αn) ‖χVn‖.
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This implies that f ∈ XΦ1 since X is complete and supn ‖χVn‖X < ∞. Similarly, we have
g ∈ XΦ2 . On the other hand, for each x ∈ A,

(f � g)(x) =
∞∑

n=1
αn (χVn � g)(x)

=
∞∑

n=1
αn

∞∑
m=1

βm (χVn � χWm)(x)

=
∞∑

n=1
αn βn(χVn � χWn)(x)

≥ M
∞∑

n=1
αn βn = ∞.

�

Corollary 2.10. Let X be a solid BFS and (X, �) be an algebra such that the hypothesis
(1) − (4) in Theorem 2.9 hold. Then, Φ does not satisfy the sequence conditions.

This statement is a development of the following result which has been proved in [25].

Corollary 2.11. Let G be a compactly generated locally compact abelian group and Φ be
a Young function with Φ ∈ ∆2 satisfying the sequence condition and limx→0+

Φ(x)
x = 0.

Then, LΦ(G) is a Banach algebra under the convolution ∗ if and only if for each f, g ∈
LΦ(G), (f ∗ g)(x) exists for almost every x ∈ G.

3. On Xp spaces
For each p ≥ 1, the function Φp defined by Φp(x) := xp for all x ≥ 0, is a Young

function. We denote Xp := XΦp and ‖ · ‖Xp := ‖ · ‖◦
Φp

. In fact, for each f ∈ Xp we have

‖f‖Xp = ‖ |f |p ‖
1
p

X . Note that if X := L1(µ), then Xp = Lp(µ), the classical Lebesgue
spaces. In this section specially we study Xp as an algebras with the poitwise product.
First we give a general result regarding XΦ spaces which is an extension of [22, Theorem
7 page 64].

Theorem 3.1. Let X be a solid BFS on Ω, and Φi be a strictly increasing Young function
for i = 1, 2, 3 such that

Φ−1
1 (x) Φ−1

2 (x) ≤ Φ−1
3 (x) (3.1)

for all x. Then, XΦ1 ·XΦ2 ⊆ XΦ3 and ‖fg‖◦
Φ3

≤ ‖f‖◦
Φ1

‖g‖◦
Φ2

for all f ∈ XΦ1 and g ∈ XΦ2.

Proof. Pick non-zero functions f ∈ XΦ1 and g ∈ XΦ2 . Then, there are λ1, λ2 > 0 such
that Φ1( f

λ1
) ∈ X with

∥∥∥Φ1( f
λ1

)
∥∥∥
X

≤ 1 and Φ2( g
λ2

) ∈ X with
∥∥∥Φ2( g

λ2
)
∥∥∥
X

≤ 1. Then, by
[22, Lemma 6 page 63], the inequality (3.1) implies that

Φ3( |fg|
2λ1λ2

) ≤ 1
2

(
Φ1( f

λ1
) + Φ2( g

λ2
)
)

.

Consequently, by solidity of X we have fg ∈ XΦ3 and the requested inequality holds. �

Corollary 3.2. Let 1
p + 1

q ≤ 1
r . Then,

(1) Xp · Xq ⊆ Xr.
(2) The equality Xp · Xq = Xr holds if 1

p + 1
q = 1

r .

Proof. Part (1) directly follows from Theorem 3.1. For part (2), just note that if 1
p + 1

q = 1
r ,

then for each f ∈ Xr we have f
p

p+q ∈ Xq, f
q

p+q ∈ Xp and f = f
p

p+q · f
q

p+q . �
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A subset E of a topological vector space X is called spaceable if there is an infinitely
dimensional closed subspace Y of X with Y ⊆ E ∪ {0}.

For each function f on Ω, Ef := {x ∈ Ω : f(x) 6= 0}.

Definition 3.3. [2, Definition 4.1] Let B be a topological vector space. We say that a
relation ∼ on B has property (D) if the following conditions hold:

(1) If (xn) is a sequence in B such that xn ∼ xm for all distinct index m, n, then for
each disjoint finite subsets A, B of N we have∑

n∈A

αnxn ∼
∑

m∈B

βmxm,

where αn and βm’s are arbitrary scalars.
(2) If a sequence (xn) converges to x in B and for some y ∈ B, xn ∼ y for all n ∈ N,

then x ∼ y.

Here, we recall the following theorem that is an applicable version of the useful theorem
3.3 in [4].

Theorem 3.4. Let (B, ‖ · ‖) be a Banach space, ∼ be a relation on B with property D,
and K be a nonempty cone subset of B. Assume that:

(1) there is a constant c > 0 such that ‖x + y‖ ≥ c ‖x‖ for all x, y ∈ B with x ∼ y;
(2) if x, y ∈ B such that x + y ∈ K and x ∼ y then x, y ∈ K;
(3) there is an infinite sequence {xn}∞

n=1 ⊆ B−K such that for each distinct m, n ∈ N,
xm ∼ xn.

Then, B − K is spaceable in B.

Proof. See Theorem 4 in [2]. �

In the following as an application of Theorem 3.4 we generalized [7, Theorem 2] to Xp

spaces. First we recall the following lemma from [2, Lemma 1].

Lemma 3.5. Let X be a solid Banach function. Then, the followings are equivalent:
a) inf{‖χF ‖X : F ∈ A and µ(F ) > 0} = 0.
b) there is a pairwise disjoint sequence {An}∞

n=1 in A such that

0 < ‖χAn‖X ≤ 1
2n

, (n ∈ N).

In next result, the set Xp × Xq is equipped with the norm ‖ · ‖ defined by
‖(f, g)‖ := ‖f‖Xp + ‖g‖Xq

for all (f, g) ∈ Xp × Xq.
Let inf{‖χA‖X : µ(A) > 0} = 0, and assume that 1

p + 1
q > 1

r . Then, pq
p+q < r and so by

[26, Theorem 2.1], we have X
pq

p+q * Xr. Pick h ∈ X
pq

p+q − Xr. Then, Xp · Xq * Xr because
f := h

q
p+q ∈ Xp and g := h

p
p+q ∈ Xq, but fg = h /∈ Xr; see [6, Theorem 9] for the case of

Lebesgue spaces. In next result we give a generalization of [7, Theorem 2] and we show
that the difference Xp · Xq − Xr is enough large.

Theorem 3.6. Let 1
p + 1

q > 1
r and inf{‖χA‖X : µ(A) > 0} = 0. Then, the set {(f, g) ∈

Xp × Xq : fg /∈ Xr} is spaceable in Xp × Xq.

Proof. We show that the requirements of Theorem 3.4 hold taking B := Xp × Xq, K :=
{(f, g) ∈ Xp × Xq : fg ∈ Xr}, and the relation ∼ defined by

(f1, g1) ∼ (f2, g2) if and only if Ef1 ∩ Ef2 = Eg1 ∩ Eg2 = ∅
for all (f1, g1), (f2, g2) ∈ B. By some calculations one can see that the relation ∼ satisfied
the property (D) in Definition 3.3. Also, one can easily see that items (1) and (2) in



198 C.-C. Chen, A.R. Bagheri Salec, S.M. Tabatabaie

Theorem 3.4 hold. So, it would be sufficient to prove the condition (3). Since inf{‖χA‖X :
µ(A) > 0} = 0, by Lemma 3.5 there exists a pairwise disjoint sequence {An}∞

n=1 in A such
that 0 < ‖χAn‖X ≤ 1

2n for all n ∈ N. Let {Nn}n∈N is a family of pairwise disjoint infinite
subsets of N. For each n ∈ N set

fn :=
∑

k∈Nn

χAk(
k2‖χAk

‖X
) 1

p

, gn :=
∑

k∈Nn

χAk(
k2‖χAk

‖X
) 1

q

.

Since ∑
k∈Nn

∥∥∥∥∥∥ χAk(
k2‖χAk

‖X
) 1

p

∥∥∥∥∥∥
Xp

=
( ∑

k∈Nn

1
k2

) 1
p < ∞,

the series
∑

k∈Nn

χAk(
k2‖χAk

‖X
) 1

p
is Cauchy in Xp, and so by completeness of Xp there exists

an element f̃n ∈ Xp such that f̃n =
∑

k∈Nn

χAk(
k2‖χAk

‖X
) 1

p
in Xp. But Xp is a PCS-space, and

so for each n ∈ N we have fn =
∑

k∈Nn

χAk(
k2‖χAk

‖X
) 1

p
= f̃n a.e. Therefore, fn ∈ Xp (n ∈ N).

Similarly we have gn ∈ Xq for all n ∈ N. On the other hand since Ak’s are disjoint,

fngn =
∑

k∈Nn

χAk(
k2‖χAk

‖X
) 1

p
+ 1

q

/∈ Xr, (n ∈ N).

Indeed, if fngn ∈ Xr, then |fngn|r ∈ X, but for each s ∈ Nn we have(
‖|fngn|r‖X

) 1
r =

(
‖

∑
k∈Nn

χAk(
k2‖χAk

‖X
)(

1
p

+ 1
q

)
r
‖X

) 1
r

≥
‖χAs‖

1−
(

1
p

+ 1
q

)
r

X

s
2r

(
1
p

+ 1
q

)
≥2

[(
1
p

+ 1
q

)
r−1

]
·s

s
2r

(
1
p

+ 1
q

) ,

and so ‖|fngn|r‖X = ∞, a contradiction. This implies that {(fn, gn)}∞
n=1 is an infinite

sequence in B − K with (fn, gn) ∼ (fm, gm) for all distinct m, n ∈ N because Nn ∩ Nm =
∅. �

Setting p = q = r in the above theorem we conclude the next fact.

Corollary 3.7. For each p ≥ 1, if Xp is closed under the pointwise product, then inf{‖χA‖X :
µ(A) > 0} > 0.

Remark 3.8. In Corollary 3.7 replacing X by XΦ and setting p := 1 we conclude that if
XΦ is closed under pointwise product, then

inf

 1
Φ−1( 1

‖χA‖X )
: µ(A) > 0

 > 0,

and then equivalently we have inf{‖χA‖X : µ(A) > 0} > 0. In particular, if inf{µ(A) :
µ(A) > 0} > 0, then the the Orlicz space LΦ is not a Banach algebra with the pointwise
product.

Acknowledgment. The authors would like to thank the referee of this paper for helpful
remarks and suggestions.



Orlicz algebras associated to a Banach function space 199

References
[1] A.R. Bagheri Salec and S.M. Tabatabaie, Some necessary and sufficient conditions for

convolution weighted Orlicz algebras, Bull. Iranian Math. Soc. 48, 2509-2520, 2022.
[2] A.R. Bagheri Salec, S. Ivkovic and S.M. Tabatabaie, Spaceability on some classes of

Banach spaces, Math. Ineq. Appl. 25(3), 659-672, 2022.
[3] A.R. Bagheri Salec, V. Kumar and S.M. Tabatabaie, Convolution properties of Orlicz

spaces on hypergroups, Proc. Amer. Math. Soc. 150(4), 1685-1696, 2022.
[4] L. Bernal-González and M.O. Cabrera, Spaceability of strict order integrability, J.

Math. Anal. Appl. 385, 303-309, 2012.
[5] R. del Campo, A. Fernández, F. Mayoral and F. Naranjo, Orlicz spaces associated

to a quasi-Banach function space. Applications to vector measures and interpolation,
Collect. Math. 72, 481-499, 2021.

[6] S. Glab and F. Strobin, Dichotomies for Lp spaces, J. Math. Anal. Appl. 368, 382-390,
2010.

[7] S. Glab and F. Strobin, Spaceability of sets in Lp × Lq and C0 × C0, J. Math. Anal.
Appl. 440, 451-465, 2016.

[8] H. Hudzik, Orlicz spaces of essentially bounded functions and Banach-Orlicz algebras,
Arch. Math. 44, 535-538, 1985.

[9] H. Hudzik, A. Kamiska and J. Musielak, On some Banach algebras given by a mod-
ular, in: Alfred Haar Memorial Conference, Budapest, Colloquia Mathematica Soci-
etatis J anos Bolyai (North Holland, Amsterdam), 49, 445-463, 1985.

[10] P. Jain, L.E. Persson and P. Upreti, Inequalities and properties of some generalized
Orlicz classes and spaces, Acta Math. Hungar. 117, 161-174, 2007.

[11] V. Kumar, R. Sarma and N. Shravan Kumar, Orlicz algebras on homogeneous spaces
of compact groups and their abstract linear representations, Mediterr. J. Math. 15(4),
186, 2018.

[12] V. Kumar, R. Sarma and N. Shravan Kumar, Orlicz spaces on hypergroups, Publ.
Math. Debrecen 94(1-2), 31-47, 2019.

[13] L. Maligranda and L.E. Persson, Generalized duality of some Banach function spaces,
Proc. Konin. Nederlands Akad. Wet. 92, 323-338, 1989.

[14] S. Okada, W. Ricker, and E.A. Sánchez-Pérez, Optimal domain and integral extension
of operators acting in functions spaces, Operator Theory: Advances and Applications,
vol. 180, Birkhäuser, Verlag, Besel, 2008.

[15] A. Osançlıol and S. Öztop, Weighted Orlicz algebras on locally compact groups, J.
Aust. Math. Soc. 99, 399-414, 2015.

[16] S. Öztop and S.M. Tabatabaie, Weighted Orlicz algebras on hypergroups, FILOMAT,
34(7), 2131-2139, 2020.

[17] L. E. Persson, Some elementary inequalities in connection with Xp-spaces, in: Con-
structive Theory of Functions, 367-376, 1988.

[18] L. E. Persson, On some generalized Orlicz classes and spaces, Research Report 1988-3,
Department of Mathematics, Lulea University of Technology, 1988.

[19] T.S. Quek and L.Y.H. Yap, Sharpness of Young’s inequality for convolution, Math.
Scand. 53, 221-237, 1983.

[20] M. Rajagopalan, Lp-conjecture for locally compact groups-I, Trans. Amer. Math. Soc.
125, 216-222, 1966

[21] M. Rajagopalan and W Zelazko, Lp-conjecture for solvable locally compact groups, J.
Indian Math. Soc. 29, 87-93, 1965.

[22] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
[23] S. Saeki, The Lp-conjecture and Young’s inequality, Illinois Journal of Mathematics,

34(3), 614-627, 1990.



200 C.-C. Chen, A.R. Bagheri Salec, S.M. Tabatabaie

[24] S.M. Tabatabaie and A.R. Bagheri Salec, Convolution of two weighted Orlicz spaces
on hypergroups, Revista Colombiana de Matemáticas, 54(2), 117-128, 2020.

[25] S.M. Tabatabaie, A.R. Bagheri Salec and M. Zare Sanjari, A note on Orlicz algebras,
Oper. Matrices, 14(1), 139-144, 2020.

[26] S.M. Tabatabaie and A.R. Bagheri Salec, On The inclusion of XΦ spaces, Mathe-
matica Bohemica, 148(1), 65-72, 2023.


