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Abstract 

In this study, a new initial solution heuristic was proposed for the traveling salesman problem. The 
proposed maxS method is based on a new distance matrix obtained by normalizing the distance 
matrix of the problem being addressed according to the maximum row value. The proposed 
method was tested on 20 small and 11 large-scale problems, recommended by Hougardy and 
Zhong,  which are difficult to solve optimally. The same problems were also solved by Greedy, 
Boruvka, Quick-Boruvka, Nearest-Neighborhood and Lin-Kernighan heuristics working on the 
Concorde software. Based on the comparisons, it is seen that the recommended maxS heuristic 
performance was better than that of Greedy and Nearest-Neighborhood heuristics and it showed 
a similar performance with Boruvka in small-scale problems. When the same comparisons were 
made for large-scale problems, maxS showed better performance than Quick Boruvka and Nearest-
Neighborhood heuristics, on average. The maxS heuristic, which is very effective in terms of 
solution times, can be proposed as a promising initial solution method.  
Keywords: Traveling Salesman Problem, maxS, Boruvka, Nearest-Neighborhood, Lin-Kernighan, Initial Solutions  

Öz 

Bu çalışmada, gezgin satıcı problemi için yeni bir başlangıç çözüm sezgiseli önerilmiştir. Önerilen 
maxS metodu, üzerinde çalışılan problemin mesafe matrisinin maksimum satır değerine göre 
normalize edilmesiyle elde edilen yeni mesafe matrisi ile çalışır. Önerilen metot, Hougardy ve 
Zhong tarafından tavsiye edilen ve  optimal çözümü zor olan 20 küçük ve 11 büyük ölçekte  
problem üzerinde test edilmiştir. Aynı problemler, Concorde yazılımı üzerinde çalışan Greedy, 
Boruvka, Quick-Boruvka, Nearest-Neighborhood and Lin-Kernighan sezgiselleri ile de 
çözülmüştür. Çözümler karşılaştırıldığında  küçük ölçekli problemler için maxS sezgiselinin 
performansının Greedy ve Nearest-Neighborhood sezgisellerinden daha iyi olduğu ve Boruvka ile 
benzer  performansta olduğu gözlenmiştir. Benzer karşılaştırmalar büyük ölçekli problemler için 
yapıldığında maxS,  Quick Boruvka ve Nearest-Neighborhood sezgisellerinden ortalama olarak 
daha iyi performans göstermiştir. Çözüm zamanları açısından çok etkili olan maxS sezgiseli,  
gelecek vaadeden başlangıç çözüm yöntemi olarak önerilebilir.  

Anahtar Kelimeler: Gezgin Satıcı Problemi, maxS, Boruvka, Nearest-Neighbourhood, Lin-Kernighan, başlangıç çözümü 
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1. Introduction 

Thousands of years ago, the famous irony of 
Socrates expressed that knowledge is an immense 
ocean: "The only true wisdom is in knowing you 
know nothing." The Traveling Salesman Problem 
(TSP) can be expressed as the shortest possible 
travel plan starting from a salesman's starting 
position and providing all customer locations in 
the sales area only once and returning to the initial 
position in case that both all the locations to be 
traveled and the distances between the pairs of 
customer locations are known. This definition can 
tell someone who is not involved in the 
optimization field: What a simple problem! 
Indeed, explaining and defining TSP is a simple 
problem. But the solution is hard enough to 
remind the famous irony of Socrates, and it has a 
very important place in the scientific literature. In 
this context, there is a constant challenge in this 
area, and efforts to develop better solution 
approaches are ongoing. 

It would be appropriate to start by explaining 
some concepts from graph theory for TSP. A  G 
graph is a sequential pair of G=(V,E) where V is a 
finite set and E is a set of two-point subsets of V. 
The elements of the V set are vertices, the 
elements of the cluster E are called edges of the 
G [1]. An example diagram is given in Figure 1 
[2]. Walk, path, circuit, Hamiltonian path and 
TSP will be defined on this graph. 

 

 

  

 

 

 

Figure 1: A sample graph [2] 

Definition1. In a 𝐺 graph, 
𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, … , 𝑒𝑘 , 𝑣𝑘   as a list of vertices and 
edges are defined a walk, and here 𝑒𝑖  edge is the 
one that combines 𝑣𝑖  and 𝑣𝑖+1 vertices. In this 
case 𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, 𝑒3, 𝑣4, 𝑒6, 𝑣2,, 𝑒2, 𝑣3, list in 

Figure 1 is a walk. A walk is considered to be 
closed if the starting vertex is the same as the 
ending vertex, that is v0=vk. A walk is considered 
open otherwise. 

Definition 2: A Trail is defined as a walk with no 
repeated edges. In Figure 1, 
𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, 𝑒3, 𝑣4, 𝑒4, 𝑣1,, 𝑒5, 𝑣3 list is a trail. 

Definition 3: A Path is defined as an open trail 
with no repeated vertices. In Figure 1, 
𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, 𝑒3, 𝑣4 list is a path. 

Definition 4: A Cycle is defined as a closed trail 
where no other vertices are repeated apart from 
the start/end vertex. In Figure 1, 
𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, 𝑒5, 𝑣1 list is a cycle. 

Definition 5. Hamiltonian Cycle is a cycle that 
visits each node of the graph exactly once. In 
Figure 1, 𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, 𝑒3, 𝑣4, , 𝑒4, 𝑣1 list is a 
cycle. 

Calculating a tour in a graph with the minimum 
total weight values that can be found as a 
Hamiltonian cycle is called a Traveling Salesman 
Problem (TSP). For TSP, the weight values of the 
edges are retained as the distance matrix. TSP 
can be expressed in two ways as symmetric and 
asymmetric according to the distance matrix. For 
a TSP, if n is assumed to be the number of towns 
in the salesman's region, it is expressed by an n-
node graph. The distance between these n nodes 

is expressed as 𝐷 = [𝑐𝑖𝑗], 𝑛𝑥𝑛 distance matrix. In 

the distance matrix, if 𝑐𝑖𝑗 = 𝑐𝑗𝑖  and 𝑐𝑖𝑗 = 0, ∀𝑖 =

𝑗, it is defined as symmetric TSP. If 𝑐𝑖𝑗 ≠ 𝑐𝑗𝑖 , ∃𝑖 =

𝑗 and 𝑐𝑖𝑗 = 0, ∀𝑖 = 𝑗 then it is defined as an 

asymmetric TSP. 

Flood, a well-known researcher in the field of 
TSP, worked on school bus routing in 1937 to 
find optimal solutions. In the mid-1950s the TSP 
became one of the most up-to-date and 
challenging issues. One of the first references to 
the term TSP was given in 1949 by Robinson in 
his report entitled "Hamilton Game (Traveling 
Salesman Problem)". This report written by 
Robinson is a TSP solution report prepared due 
to a challenge for the RAND Corporation. The 
Hamiltonian cycle term was used for the 
memory of him. Hamilton is known for his work 
on the dodecahedron which shows that anyone 
can return to the starting point by moving over 
the distances, regardless of the point where  
he/she has started. In 1972, Karp showed that 
the Hamiltonian problem was NP-complete. TSP 
is a problem in the NP-difficult class [3,4,5]. 
Along with the improvements in computer 
software and hardware, 24978 vertices TSP 
solution was reached in 2004, 50 years after the 
49-node GSP solution of Dantzig, Fulkerson and 
Johnson. Table 1 shows solution milestones for 
TSP instances [6]. 
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Table 1. TSP Milestones [6] 

Year Researchers Problem Size Problem Name 

1954 G. Dantzig, R. Fulkerson, and S. Johnson 49 dantzig42 

1971 M. Held and R.M. Karp 64 64 random points 

1975 P.M. Camerini, L. Fratta, and F. Maffioli 67 67 random points 

1977 M. Grötschel 120 gr120 

1980 H. Crowder and M.W. Padberg 318 lin318 

1987 M. Padberg and G. Rinaldi 532 att532 

1987 M. Grötschel and O. Holland 666 gr666 

1987 M. Padberg and G. Rinaldi 2392 pr2392 

1994 D. Applegate, R. Bixby, V. Chvátal, and W. Cook 7397 pla7397 

1998 D. Applegate, R. Bixby, V. Chvátal, and W. Cook 13509 usa13509 

2001 D. Applegate, R. Bixby, V. Chvátal, and W. Cook 15112 d15112 

2004 D. Applegate, R. Bixby, V. Chvátal, W. Cook, 24978 sw24798 

2004 K. Helsgaun 24978 sw24798 

 

Different solution algorithms are available for 
TSP. A classification of solution approaches can 
be made in the form of constructive algorithms, 
tour improvement algorithms and hybrid 
algorithms.  

Constructive algorithms usually continue to visit 
the nodes by completing one of the nodes to be 
visited in each iteration until the tour is 
completed and finds a suitable solution. The 
nearest-neighborhood algorithm can be given as 
an example. The tour improvement algorithms 
consider a given initial solution and investigate 
whether there is a more least costly tour with 
changes to nodes and/or edges. If a possible low-
cost tour is available, the tour will be improved. 
An example of tour improvement algorithms is 
the 2-Opt algorithm. Hybrid algorithms are used 
to obtain the initial solution using any tour 
constructive algorithms and improve this initial 
solution with a metaheuristic algorithm [7,8]. In 
this study, the literature search will be 
concentrated at this point on constructive 

algorithms, as the algorithm is proposed to 
produce a constructive initial solution for TSP. 

Srour et al. [9] proposed an approach for TSP 
solution called the Water Flow-Like Algorithm. 
In this study, the initial solutions were 
constructed with the nearest-neighborhood 
algorithm and water flow algorithm and ant 
colony system (ACS) solutions were compared. 
In another study, Brute Force, Greedy, Nearest-
Neighborhood, 2-Opt, Branch-Bound, Genetic 
Algorithm, Simulated Annealing and Artificial 
Neural Networks were used for TSP solutions 
and in terms of solution quality and solution 
times on the test bed. [10]. In another study, the 
initial solutions for a Water Flow-Like and Tabu 
Search hybrid method are constructed randomly 
[11]. Kamarudin et al. [12] proposed two 
different initial solutions for TSP: The Simulated 
Annealing and Nearest-Neighborhood 
algorithms and analyzed the performance of the 
Water Flow-Like algorithm and suggested that 
they achieved better performance with initial 
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solutions constructed by Simulated Annealing. 
Wu et al. [13] used the Enhanced Water Flow-
Like Algorithm for scheduling and sequencing of 
identical machines and constructed the initial 
solutions in a random format. Demiriz [14]  
proposed a solution based on the rank technique 
for TSP and solutions comparisons have been 
made using Concorde software. 

Some of the researchers in the field of 
combinatorial optimization think that initial 
solutions are not useful, while others suggest 
that initial solutions are useful. Lin and 
Kernighan [15] proposed a very effective TSP 
solution algorithm and this algorithm is referred 
to as the Lin-Kernighan algorithm. The Lin and 
Kernighan algorithm randomly produces an 
initial solution as the first step and  then tries to 
improve it. Later on, the Lin-Kernighan 
algorithm was improved by Helsgaun [8] and is 
now known as Lin-Kernighan-Helsgaun (LKH). It 
is one of the most effective TSP solution 
algorithms. It has been proposed by Helsgaun 
about the Lin-Kernighan algorithm and its initial 
solutions: The Lin-Kernighan algorithm 
repeatedly applies edge changes to different 
initial solutions for the same problem. The 
original Lin-Kernighan algorithm selects the 
initial tours randomly. Lin-Kernighan argues 
that the time spent on initial solutions is vaste of 
energy. They produce only constructive 
solutions that’s why there is only one initial 
solution. Furthermore, Helsgaun claims that the  
problem of dealing with initial solutions is not an 
easy-to-answer question. On the other hand, 
LKH code uses different initial solution 
algorithms. These algorithms are  Boruvka, 
Greedy, Nearest-Neighborhood, Quick-Boruvka, 
Sierpinski, Random Walk. The same algorithms 
are also included in the Concorde software, the 
world's fastest exact solver [6]. Karagül has 
proposed new solution approaches for TSP, 
based on Transportation Problem solution [16], 
based on Hungarian solution [17], Prüfer based 
solution [18], 2-opt local search algorithm based 
solution[22] and hybrid fluid genetic algortihm 
based solution[23]. Sahin et. al proposed 
metaheuristics approaches for TSP on a 
spherical surface[24].  Aydemir at al proposed an 
algorithm for generating  initial solutions for 
capacitated vehicle routing problem[25].  

In this study, an algorithm that produces initial 
solutions using a constructive solution approach 
for TSP is proposed. In the second section, the 

proposed algorithm is given and explained on a 
small sample graph. In the third section, the 
performance of the proposed algorithm is 
compared with various initial solution 
algorithms from the literature and the results are 
analyzed. In the last section, conclusions and 
discussions for further studies are given. 

2. Material and Method 

2.1. Explanation of maxS algorithm on Small 

TSP 

Explaining newly developed techniques through 
small sample problems facilitates both 
understanding and analysis. Therefore, the maxS 
method will be explained through the TSP 
example used in Demiriz [14]. The small instance 
problem data and the solution steps have been 
demonstrated step by step in Table 2. 

Step 1: Table 2(a) shows the distance matrix for 
the problem. The problem corresponds to the 
symmetric TSP problem and it has seven 
vertices. 

Step 2: Before moving to Table 2(b), the maxS 
column appears. This column represents the 
maximum value in each row. The maxS matrix is 
obtained by dividing each line of the distance 
matrix by the elements in the maxS column. 

Step 3: Table 2(b) is the solution matrix of the 
proposed method. Using this solution matrix, the 
steps of the algorithm are completed and the TSP 
initial solution is obtained. 

Step 4: As in Table 2(c), the first row is used and 
the element with the smallest on this row is 
found. The smallest element in this row is 0, 
which corresponds to the first column. 
Therefore, the first node of the TSP solution 
becomes 1. This column is then closed with 1 
values. Then as the selected node is 1, the 
algorithm goes to the related row 1. 

Step 5: In Table 2(d), the element with the 
smallest value in row 1 is 0.32 which 
corresponds to column 7. In this case, node 7 is 
added as the second node of the TSP solution and 
column 7 is closed with 1 value. 

Step 6: In Table 2(e), the algorithm goes to row 
7 where the element with the smallest value is 
0.44 which corresponds to column 4. Thus, the 
next node of the TSP solution is added as 4 and 
column 4 is closed with 1 value. 
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Step 7: In Table 2(f), the algorithm is positioned 
on row 4 in the maxS matrix where the smallest 
element is 0.32. This cell points to column 3 and 
thus node 3 is added to the TSP solution. And 
then column 3 is closed by 1 value. 

Step 8: In Table 2(g), the algorithm goes to row 
3 in the maxS matrix where the smallest element 
is 0.71, which indicates column 6. Thus, node 6 is 
added to the TSP solution and column 6 is closed 
with 1 value. 

Step 9: In Table 2(h), the algorithm moves to  
row 6 in the maxS matrix and the smallest 
element indicates column 2 with 0.29. Therefore, 

node 2 is added to the TSP solution and column 
2 is closed with 1 value. 

Step 10: In Table 2(i), the algorithm goes to row 
2 in the maxS matrix where the smallest element 
is 0.61. This cell points to column 5. Therefore, 
node 5 is added to the TSP solution and column 
5 is closed with 1 value. 

Step 11: In Table 2(j), as all of the maxS matrices 
are covered with 1 value, there is no node left to 
be added to another TSP solution. This 
terminates the algorithm. 

 

 

Table 2. Proposed Algortihm: maxS Solution Steps 

(a) 
        

(b) 
       

Distance Matrix 
 

maxS Matrix 

 
1 2 3 4 5 6 7 maxS 

 
1 2 3 4 5 6 7 

1 0 786 549 657 331 559 250 786 1 0.00 1.00 0.70 0.84 0.42 0.71 0.32 

2 786 0 668 979 593 224 905 979 2 0.80 0.00 0.68 1.00 0.61 0.23 0.92 

3 549 668 0 316 607 472 467 668 3 0.82 1.00 0.00 0.47 0.91 0.71 0.70 

4 657 979 316 0 890 769 400 979 4 0.67 1.00 0.32 0.00 0.91 0.79 0.41 

5 331 593 607 890 0 386 559 890 5 0.37 0.67 0.68 1.00 0.00 0.43 0.63 

6 559 224 472 769 386 0 681 769 6 0.73 0.29 0.61 1.00 0.50 0.00 0.89 

7 250 905 467 400 559 681 0 905 7 0.28 1.00 0.52 0.44 0.62 0.75 0.00 

(c) 
        

(d) 
       

 
1 2 3 4 5 6 7 

  
1 2 3 4 5 6 7 

1 
 

0.00 1.00 0.70 0.84 0.42 0.71 0.32 
  

1 1 1.00 0.70 0.84 0.42 0.71 0.32 

2 0.80 0.00 0.68 1.00 0.61 0.23 0.92 
 

2 1 0.00 0.68 1.00 0.61 0.23 0.92 

3 0.82 1.00 0.00 0.47 0.91 0.71 0.70 
 

3 1 1.00 0.00 0.47 0.91 0.71 0.70 

4 0.67 1.00 0.32 0.00 0.91 0.79 0.41 
 

4 1 1.00 0.32 0.00 0.91 0.79 0.41 

5 0.37 0.67 0.68 1.00 0.00 0.43 0.63 
 

5 1 0.67 0.68 1.00 0.00 0.43 0.63 

6 0.73 0.29 0.61 1.00 0.50 0.00 0.89 
 

6 1 0.29 0.61 1.00 0.50 0.00 0.89 

7 0.28 1.00 0.52 0.44 0.62 0.75 0.00 
 

7 1 1.00 0.52 0.44 0.62 0.75 0.00 

TSP 1 
       

TSP 1 7 
     

(e) 
        

(f) 
       

  1 2 3 4 5 6 7 
  

1 2 3 4 5 6 7 
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1 1 1.00 0.70 0.84 0.42 0.71 1 
 

1 1 1.00 0.70 1 0.42 0.71 1 

2 1 0.00 0.68 1.00 0.61 0.23 1 
 

2 1 0.00 0.68 1 0.61 0.23 1 

3 1 1.00 0.00 0.47 0.91 0.71 1 
  

3 1 1.00 0.00 1 0.91 0.71 1 

4 1 1.00 0.32 0.00 0.91 0.79 1 
 

4 1 1.00 0.32 1 0.91 0.79 1 

5 1 0.67 0.68 1.00 0.00 0.43 1 
 

5 1 0.67 0.68 1 0.00 0.43 1 

6 1 0.29 0.61 1.00 0.50 0.00 1 
 

6 1 0.29 0.61 1 0.50 0.00 1 

7 
 

1 1.00 0.52 0.44 0.62 0.75 1 
 

7 1 1.00 0.52 1 0.62 0.75 1 

TSP 1 7 4 
     

TSP 1 7 4 3 
   

(g) 
        

(h) 
       

 
1 2 3 4 5 6 7 

  
1 2 3 4 5 6 7 

1 1 1.00 1 1 0.42 0.71 1 
 

1 1 1.00 1 1 0.42 1 1 

2 1 0.00 1 1 0.61 0.23 1 
 

2 1 0.00 1 1 0.61 1 1 

3 
 

1 1.00 1 1 0.91 0.71 1 
 

3 1 1.00 1 1 0.91 1 1 

4 1 1.00 1 1 0.91 0.79 1 
 

4 1 1.00 1 1 0.91 1 1 

5 1 0.67 1 1 0.00 0.43 1 
  

5 1 0.67 1 1 0.00 1 1 

6 1 0.29 1 1 0.50 0.00 1 
 

6 1 0.29 1 1 0.50 1 1 

7 1 1.00 1 1 0.62 0.75 1 
 

7 1 1.00 1 1 0.62 1 1 

TSP 1 7 4 3 6 
   

TSP 1 7 4 3 6 2 
 

(i) 
        

(j) 
       

 
1 2 3 4 5 6 7 

  
1 2 3 4 5 6 7 

1 1 1 1 1 0.42 1 1 
 

1 1 1 1 1 1 1 1 

2 
 

1 1 1 1 0.61 1 1 
 

2 1 1 1 1 1 1 1 

3 1 1 1 1 0.91 1 1 
 

3 1 1 1 1 1 1 1 

4 1 1 1 1 0.91 1 1 
 

4 1 1 1 1 1 1 1 

5 1 1 1 1 0.00 1 1 
 

5 1 1 1 1 1 1 1 

6 1 1 1 1 0.50 1 1 
 

6 1 1 1 1 1 1 1 

7 1 1 1 1 0.62 1 1 
 

7 1 1 1 1 1 1 1 

TSP 1 7 4 3 6 2 5 
 

TSP 1 7 4 3 6 2 5 

         
Cost = 2585 km  /  Optimal=2575 km 

 

The maxS solution for this problem was found to 
be 2585 km and the related route is [1-7-4-3-6-

2-5]. The optimal solution value for the problem 
is given as 2575 km. In this case, the maxS 
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solution approach was able to approach the 
optimal solution with a 0.388% gap value. 

2.2. Proposed Algorithm maxS Matlab/ 

Octave Code 

In this subsection, Matlab / Octave code for the 
proposed solution approach is given as in Figure 

2, to guide the reader. Octave is an alternative 
open source application to the Matlab scientific 
computing language. The code in Figure 2 is 
designed to be easy to read and easy to use in 
scientific studies. Using the code of the proposed 
algorithm maxS, performance analysis will be 
explained in the next section. 

% maxS.m algorithm Matlab/Octave Code for TSP 

xy=Read(berlin52.tsp);   % Read the TSP data file and get the xy coordinates. 

D=Distance(xy);                % Calculate the distance matrix and assign to matrix D. 

[m,n]=size(D);                   % Get the size information. 

xD=D;                                   % Prepare the temporary distance matrix xD. 

maxS=zeros(1,m);           % Create an empty maxS vector. 

for i=1:m 

    maxS(i)=max(xD(i,:));   % Get each row’s max value and assign to the maxS vector. 

end 

M=zeros(m,m);                   %Create an empty maxS matrix. 

for i=1:m 

    M(i,:)=xD(i,:)./maxS(i); % Calculate the elements of maxS matrix. 

end 

A=M; % Assign the maxS matrix to matrix A and use matrix A for routing. 

%--------Creating TSP tour------------------------ 

rotaMx=zeros(1,m);  % Create an empty route vector. 

t=1; ss=1; 

while t<=m 

    [~,bx]=min(A(ss,:)); 

    rotaMx(t)=bx; 

    A(:,bx)=1; 

    ss=bx;  

    t=t+1; 

end 

rotaCost=CostTSP(rotaMx,D);   % Calculate TSP cost and assign cost to rotaCost. 

Figure 2. maxS Algorithm Code for Matlab/Octave 

3. Computational Analysis for maxS 

Algorithm  

For the analysis and comparison of the proposed 
method, a TSP test bed was chosen and the 
algorithms in version 1.1 of the Concorde 
software was used for comparisons. Concorde 
software can produce solutions for Greedy, 
Boruvka, Quick-Boruvka (QBoruvka), Nearest-
Neighborhood (NN), Lin-Kernighan (L-K) 
algorithms. The proposed algorithm maxS was 
coded in Matlab environment. The solutions of 
the maxS heuristic were obtained using Matlab 

version 2016b, 2.40 GHz Intel Dual Core, 8 MB 
memory and single kernel on Linux operating 
system. For the analysis of the heuristics on the 
Concorde software, the Windows operating 
system, Intel Core (TM) i7-4800MQ CPU 
2.70GHz, 16 MB RAM was used with only a single 
core.  

In their study conducted on the test bed 
instances by Hougardy and Zhong [19], detailed 
explanations about the problems were given. 
They have explained how difficult it is to solve 
these new problem types optimally, and at the 
same time they analyzed solutions from 52 to 
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199 nodes with Concorde software, the world's 
fastest exact solver. As seen in Table 3, 
Concorde's solution times were far beyond the 
acceptable limits. However, solutions were 
produced and reported by Helsgaun using LKH 
for all of these problems [20]. The test problems 
produced by Hougardy and Zhong can be found 

on the University website of Hougardy [21]. In 
our study, the first 20 test bed problems 
produced by Hougardy and Zhong were selected 
for the analysis. 

 

Table 3. Exact and heuristic solutions of Concorde and maxS solutions 

P.No P. Name A (s) B (s) Optimal maxS Greedy Boruvka Qboruvka NN L-K 

1 Tnm52 12 0,004006 551609 616205 621663 635322 610775 663064 552619 

2 Tnm55 17 0,001212 605778 676292 679763 696292 679406 731891 606838 

3 Tnm58 21 0,000935 660687 734525 743899 755968 732429 735026 661279 

4 Tnm61 30 0,001033 716131 795235 811773 871037 792790 812696 717865 

5 Tnm64 33 0,000831 770162 831125 862167 851075 855268 882447 772302 

6 Tnm67 47 0,000908 825328 918639 945407 929682 921815 915631 825328 

7 Tnm70 68 0,000771 881036 989672 1001787 988407 980248 984974 881440 

8 Tnm73 84 0,000781 893843 1043838 1066162 1075388 1041748 1063838 938396 

9 Tnm76 103 0,000955 949961 1069196 1141042 1116756 1117109 1093550 992771 

10 Tnm79 152 0,000790 1006535 1170144 1195862 1149375 1138971 1137707 1048105 

11 Tnm82 190 0,000862 1062686 1252852 1214567 1250845 1203570 1203439 1107116 

12 Tnm85 164 0,000900 1117381 1314011 1315646 1216265 1275674 1339318 1156776 

13 Tnm88 196 0,000944 1172734 1296026 1316025 1277425 1291828 1277426 1174331 

14 Tnm91 275 0,001672 1228726 1318062 1396595 1338027 1353120 1326122 1229432 

15 Tnm94 397 0,001604 1285416 1425383 1396066 1399991 1396675 1396066 1285626 

16 Tnm97 566 0,001022 1342086 1503342 1481644 1466578 1443332 1474709 1342567 

17 Tnm100 664 0,001247 1398070 1574837 1565822 1507563 1513639 1544845 1399036 

18 Tnm103 478 0,001465 1412229 1584255 1589900 1557687 1560003 1602903 1455346 

19 Tnm106 761 0,001446 1469617 1717744 1659819 1628262 1654474 1688920 1513698 

20 Tnm109 1068 0,001692 1527709 1780021 1699171 1709318 1667927 1760381 1569687 

Averages 1043886 1180570 1185239 1171063 1161540 1181748 1061528 

A : Concorde run time (s) / B: maxS run time (s) / Optimal: Concorde optimal solutions / s:seconds 

 

In Table 3, the numbers next to each problem 
name refer to the number of nodes in the related 

problem. The times shown in column A are 
Concorde's solution times and for instance 1069 
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seconds were spent for a 109 node TSP. The 
solution times for the maxS approach are given, 
but there are no solution times for heuristic 
methods on the Concorde software interface. 
Therefore, no comparisons will be made for the 
time durations. Only the simulated times for 
maxS are added as a reference for further 
studies. Since the L-K approach in these heuristic 
solutions uses these solutions by using an initial 

solution, the L-K algorithm is not only used for 
comparisons but is intended as a reference for 
future studies. In order to make a better 
comparision between  the maxS approach and 
the approaches that produce different  starting 
solution, the gap% values that indicate the 
deviations from the optimal are given in Table 4. 

 
 

Table 4. Gaps % of the Concorde heuristics and maxS solutions from optimal 

    Gap % 

P.No P. Adı maxS Greedy Boruvka Qboruvka NN L-K 

1 Tnm52 11.71 12.70 15.18 10.73 20.21 0.18 

2 Tnm55 11.64 12.21 14.94 12.15 20.82 0.17 

3 Tnm58 11.18 12.59 14.42 10.86 11.25 0.09 

4 Tnm61 11.05 13.36 21.63 10.70 13.48 0.24 

5 Tnm64 7.92 11.95 10.51 11.05 14.58 0.28 

6 Tnm67 11.31 14.55 12.64 11.69 10.94 0.00 

7 Tnm70 12.33 13.71 12.19 11.26 11.80 0.05 

8 Tnm73 16.78 19.28 20.31 16.55 19.02 4.98 

9 Tnm76 12.55 20.11 17.56 17.60 15.12 4.51 

10 Tnm79 16.25 18.81 14.19 13.16 13.03 4.13 

11 Tnm82 17.89 14.29 17.71 13.26 13.25 4.18 

12 Tnm85 17.60 17.74 8.85 14.17 19.86 3.53 

13 Tnm88 10.51 12.22 8.93 10.16 8.93 0.14 

14 Tnm91 7.27 13.66 8.90 10.12 7.93 0.06 

15 Tnm94 10.89 8.61 8.91 8.66 8.61 0.02 

16 Tnm97 12.02 10.40 9.28 7.54 9.88 0.04 

17 Tnm100 12.64 12.00 7.83 8.27 10.50 0.07 

18 Tnm103 12.18 12.58 10.30 10.46 13.50 3.05 

19 Tnm106 16.88 12.94 10.79 12.58 14.92 3.00 

20 Tnm109 16.52 11.22 11.89 9.18 15.23 2.75 

Averages 12.86 13.75 12.85 11.51 13.64 1.57 
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When Table 4 and the heuristic approach 
compared to the first 20 problems selected from 
the Euclidean GSP test bed of Hougardy and 
Zhong that are difficult to solve, are evaluated, it 
is possible to sort the algorithms QBoruvka, 
Boruvka and maxS at the first row as scoreless 
and then NN as the second one and Greedy as the 
third one according to the average solution gaps. 
These comparisons are also clearly visible on the 

graph given in Figure 3. The algorithms shown 
by the signs A, B, C, D, E in Figure 3 are maxS, 
Greedy, Boruvka, Qboruvka, NN, respectively. As 
can be seen from this comparison chart, it can be 
said that maxS shows a competitive deviation 
from the optimal on average. 

 

 

 

 

Figure 3: maxS Algorithm and Other Heuristics Deviations from the Optimal 

 

Table 5. Heuristics and maxS solutions for Large-Scale Instances 

P.N
o 

P. Name H 
maxS 
(sec) 

BKS maxS Greedy Boruvka Qboruvka NN L-K 

1 Tnm502 * 0.01 8749995 9106673 9030246 9006411 8978114 9362888 8755518 

2 Tnm1000 * 0.08 18137296 18553989 18454589 18438723 18426701 19618679 18145598 

3 Tnm2002 * 0.22 37029600 37475105 37370253 37288700 38108787 37698300 37046387 

4 Tnm3001 * 0.50 55939349 56399706 56373914 56197326 56623001 59962938 55948513 

5 Tnm4000 * 0.86 74858233 75252693 75236866 75226869 75254384 76282814 74863285 

6 Tnm5002 * 1.32 93784081 94254080 94154563 94084686 94487854 97922507 93790079 

7 Tnm6001 * 1.96 
11270811

8 
11318144

0 
11307122

3 
11298934

6 
11378711

1 
11379702

5 
11271224

7 

8 Tnm7000 * 2.58 
13163337

1 
13212088

0 
13200833

8 
13199231

4 
13218999

6 
13582585

3 
13164287

8 
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9 Tnm8002 * 3.42 
15056144

6 
15103751

8 
15101848

3 
15090251

4 
15087894

3 
15202370

0 
15056148

6 

10 Tnm9001 * 4.86 
16948754

6 
16988992

3 
16986405

4 
16980404

5 
17020377

5 
17531763

6 
16949233

8 

11 
Tnm1000

0 
* 7.22 

18841426
2 

18889312
1 

18878176
3 

18871674
2 

18868399
9 

19667886
1 

18841518
4 

Averages 2.09 
9466393

6 
9510592

0 
9503311

7 
9496797

0 
9523842

4 
9768101

8 
9467031

9 

* : Keld Helsgaun Solutions / BKS: Best Known Solutions calculated by Keld Helsgaun [20]. 

The most large-scale problem that can be solved 
with Concorde is the 199-node Tnm example. 
Therefore, for large-scale test problems, 11 
large-scale problems produced by Hougardy and 
Zhong are selected. These problems do not seem 
to be solvable by the Concorde software in 
today's conditions. In Table 5, with the  BKS 
column, the solutions obtained by Helsgaun with 
LKH code are given. At the same time, the 
solution values of the maxS method in seconds 

are given for reference in future studies. In Table 
6, the percentage gap values of solved heuristics 
from BKS are given both for maxS and for the 
algorithms of Concorde software. The Greedy 
and Boruvka algorithms were found to have a 
better mean deviation than maxS in the case of 
large-scale problems. On the other hand, the 
Qboruvka and NN methods are behind the maxS 
performance. 

Table 6. Heuristics and maxS gap (%) values for large-scale TSPs 

  
Gap % 

P.No P. Name maxS Greedy Boruvka QBoruvka NN L-K 

1 Tnm502 4.08 3.20 2.93 2.61 7.00 0.06312 

2 Tnm1000 2.30 1.75 1.66 1.60 8.17 0.04577 

3 Tnm2002 1.20 0.92 0.70 2.91 1.81 0.04533 

4 Tnm3001 0.82 0.78 0.46 1.22 7.19 0.01638 

5 Tnm4000 0.53 0.51 0.49 0.53 1.90 0.00675 

6 Tnm5002 0.50 0.40 0.32 0.75 4.41 0.00640 

7 Tnm6001 0.42 0.32 0.25 0.96 0.97 0.00366 

8 Tnm7000 0.37 0.28 0.27 0.42 3.18 0.00722 

9 Tnm8002 0.32 0.30 0.23 0.21 0.97 0.00003 

10 Tnm9001 0.24 0.22 0.19 0.42 3.44 0.00283 

11 Tnm10000 0.25 0.20 0.16 0.14 4.39 0.00049 

Averages 1.00 0.81 0.70 1.07 3.95 0.01800 
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4. Conclusions and Discussion 

In this study, maxS was proposed as a new initial 
solution method for TSP. Solutions and the 
solution times were obtained on 20 small size 
and 11 large size problems that were chosen 
from the problem group defined by Hougardy 
and Zhong as difficult to find the optimal solution 
problems. The size of the small problems ranges 
from 52 nodes to 109 nodes. The size of the large 
problems ranges from 502 nodes to 10000 
nodes. The same problems were also solved with 
the Greedy, Boruvka, Qboruvka, NN and L-K 
heuristics provided by the Concorde software 
and the results were recorded. 

The average deviations of maxS, Greedy, 
Boruvka, QBoruvka, NN and L-K heuristic 
algorithms for small problems were calculated 
as 12.86, 13.75, 12.85, 11.51, 13.64, 1.57. The 
average deviations of maxS, Greedy, Boruvka, 
QBoruvka, NN and L-K heuristic algorithms for 
large-scale problems were found as 1.00, 0.81, 
0.70, 1.07, 3.95, 0.018. The maxS algorithm 
shows an equal performance with the Boruvka 
algorithm while showing a better performance 
than the Greedy, and NN algorithms in small 
problems. For the large-scale problems, the 
maxS algorithm performed better than the 
Qboruvka and NN algorithms, but remained 
behind the Greedy and Boruvka algorithms. In 
the light of these analysis, maxS heuristics which 
is proposed as a new initial solution algorithm, 
shows a very competitive performance. Another 
case is the performance of the proposed maxS 
solution times. The average solution time for 20 
small problems is 0.0012 seconds. The average 
solution time for 11 large-scale problems was 
recorded as 2.09 seconds.  

The proposed new approach is important from 
two points of view. The first one is that it is 
competitive with the methods in the literature  in 
terms of the test results. Therefore, some tour 
improvement methods and/or initial solutions 
for metaheuristics may be proposed as 
constructive heuristics. From another point of 
view, it can be proposed as a constructive 
solution approach to the application and 
solution of different problems that can be 
modeled as TSP because it produces fast and 
effective results. 
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