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Abstract

Many evolutionary operations from diverse �elds of engineering and physical sciences go through abrupt
modi�cations of state at speci�c moments of time among periods of non-stop evolution. These operations
are more conveniently modeled via impulsive di�erential equations and inclusions. In this work, �rstly we
address the existence of mild solutions for nonlocal fractional impulsive semilinear di�erential inclusions
related to Caputo derivative in Banach spaces when the linear part is sectorial. Secondly, we determine the
enough, conditions for the controllability of the studied control problem. We apply e�ectively �xed point
theorems, contraction mapping, multivalued analysis and fractional calculus. Moreover, we enhance our
results by introducing an illustrative examples.
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1. Introduction

Due to the widespread use of fractional calculus in applications, fractional equations and inclusions have
appeared as an e�ective paradigm for the advent of recent ideas in mathematics, engineering and physics,
further to their potential to describe the dynamic demeanor for the real life. The di�erential systems of
fractional order are richer in summarizing problems than their corresponding ones in classical systems, as
these models play a paramount function in describing memory and genetic traits of many substances and
the start of applications in control theory, polymer biology, aerodynamics, electrical dynamics, nonlinear
oscillation of earthquake and di�erent other scienti�c disciplines. Such models are an e�cient substitutional
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to non-linear di�erential equations and inclusions, and this has speeded up the researchers keenness to
provide solution to these equations and inclusions and broadened the range of techniques that use �xed
point methods. We suggest for readers the preceding studies [20, 23, 26, 29, 30, 34] and the references
included within.

We add to this study the notion of impulsive di�erential systems, that interprets many operations of
evolution, and which are subject to unexpected alterations in a numerous of the continuous evolution oper-
ations. It can be detected withinside the disciplines of engineering, physics, nanoscale electronics, biology,
population dynamics, electromagnetic wave beam, aeronautics, and pharmaco kinetics, etc. For this reason
producing a higher knowledge of a number of the real-global problems in scienti�c application which, in
latest years, has been challenging investigations and a number of results can be found in preceding works
[5, 6, 28, 31, 33] and the references contained therein.

Furthermore, the non-local Cauchy problems, which have strong backdrop coming from physical problems,
were initiated by Byszewski [11]. Many researchers are concerned with non-local Cauchy problems for
di�erent types of di�erential equations and inclusions because the nonlocal initial conditions generalize
classical terms and play an important role in engineering and physics. For nonlocal fractional di�erential
equations and inclusions see [5, 6, 7, 13, 15, 26, 25].

In this article, we examine the following semilinear impulsive fractional evolution di�erential inclusion
cDα

t x(t) ∈ Ax(t) + F(t, x(t)), t ∈ J − {t1, t2, · · · , tm},
∆x(ti) = Ii(x(t

−
i )), i = 1, ...,m,

x(0) = a0 − G(x), a0 ∈ E,

(1)

where E is a Banach space, cDα is the Caputo derivative , A is sectorial operator on Banach space E,
F : J × E → P (E), 0 = t0 < t1 < · · · < tm < tm+1 = b, Ii : E → E, 1 ≤ i ≤ m, G : PC(J,E) → E and
∆x(ti) = x(t+i )− x(t−i ), x(t−i ) = lims→t−i

x(s), x(t+i ) = lims→t+i
x(s).

Recently,the topic of inclusions of evolution and equations involving sectorial or almost sectorial terms
has been extensively studied ( see [2, 7, 30, 31, 32, 34, 35, 37]). For instance, Shu et al. [31] introduced
a di�erent concept of mild solutions for (1) when F is a completely continuous single-valued function and
A is a sectorial operator with {Sα(t) : t ≥ 0} and {Tα : t ≥ 0} are compact. Agarwal et al. [2] proved the
results of (1) with the absence of impulses in case when the dimension of E is �nite and A is a sectorial
operator. They determined the dimension for mild solutions set. Zhang et al. [37] studied the existence
and controllability of (1) when when F is Lipschitz continuous single-valued function and A is a sectorial
operator.
In Section 3, we investigate the existence PC−mild solution of nonlocal fractional impulsive problem for
abstract evolution inclusion (1). Our fundamental result, Theorem 3.1, extends Theorem 3.1 of [31] and
Theorem 3.1 of [37] by discussing the problem in a new case. We study the problem when the function F is
upper semicontinuous multifunction.

In Section 4, we discuss the nonlocal controllability of impulsive fractional evolution inclusion of the
following form

cDα
t x(t) ∈ Ax(t) + F(t, x(t)) + B(u(t)), t ∈ J − {t1, t2, · · · , tm},

∆x(ti) = Ii(x(t
−
i )), i = 1, ...,m,

x(0) = a0 − G(x), a0 ∈ E,

(2)

where B is a linear bounded operator from X into E, u ∈ L2(J,X) is the control function.
The structure of the present article is as follows: Section 2 introduce some basic concepts from the

de�nitions and assumptions necessary for the subsequent sections. Sections 3 and 4 are devoted to presenting
the main existence and controllability results using multivalued analysis, fractional calculus and �xed point
theorem. At last, we have provided numerical examples to validate our results.
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2. Preliminaries

This section provides some basic concepts, de�nitions and preliminary information that will help for the
development of this article.
Let (E, ∥ · ∥) be a Banach space , Pb(E) = {A : A ⊂ E, A ̸= ∅, A is bounded }, Pcl(E) = {A : A ⊂ E, A ̸=
∅, A is closed }, Pk(E) = {A : A ⊂ E, A ̸= ∅, A is compact }, Pc(E) = {A : A ⊂ E, A ̸= ∅, A is convex },
Pck(E) = {A : A ⊂ E, A ̸= ∅, A is convex and compact }, for i = 1, · · · ,m we have J0 = [0, t1], Ji = (ti, ti+1],
and
PC(J,E) = {x : J → E, x|Ji

∈ C(Ji, E), x(t+i ) and x(t−i ) exist }, with the norm ∥x∥PC = max{∥x(t)∥, t ∈
J}, L1(J,E) the space of E−valued Bochner integrable with the norm ∥f∥L1(J,E) =

∫ b
0 ∥f(t)∥dt, L(E) space

of all bounded linear operators on E.

Let us remember some de�nitions of fractional calculus. For more details [23, 29].

De�nition 2.1. ([23]). Let f ∈ L1(J,E) and α > 0. The fractional integral with the lower limit zero for f
is given by

Iαf(x) =
1

Γ(α)

∫ x

0
(x− s)α−1f(s)ds, x > 0,

provided that the right side is point-wise de�ned on [0,∞).

De�nition 2.2. ([23]). Let f ∈ Cn[0,∞) and α > 0. The Caputo derivative of the order α for f is given by

cDαf(x) =
1

Γ(n− α)

∫ x

0
(x− s)(n−α−1)fn(s)ds

= In−αfn(x), n = [α] + 1,

where [α] is the integer part of the real number α.

We also provide some primary de�nitions and results of multivalued functions.
A multivalued function F : E → P (E) is called upper semi-continuous (u.s.c) on E if ∀ x ∈ E, F (x) is

nonempty subset of E and for each open set B ⊂ E with F (x) ⊂ B, there is a neighborhood V of x with
F (V(x)) ⊂ B. F is closed if its graph ΓF = {(x, y) ∈ E ×E : y ∈ F (x)} is closed subset of the space E ×E.
F completely continuous if for each bounded set B ⊂ E, F (B) is relatively compact. If F is completely
continuous with nonempty values, then F is u.s.c. if and only if F has a closed graph. If there is x ∈ E
with x ∈ F (x), then F has a �xed point. The �xed points set of F is denoted by Fix(F ). For more details
we refer to [18, 21, 22].

De�nition 2.3. Let W = {fn : n ∈ N} ⊂ L1(J,E). We said W is semi-compact if

1. It is integrably bounded i.e. there is ϑ ∈ L1(J,R+) with ∥fn(t)∥ ≤ ϑ(t)a.e.t ∈ J.

2. The set {fn(t) : n ∈ N} is relatively compact in E a.e. t ∈ J.

Lemma 2.4. ([22]). In L1(J,E) every semi-compact sequence is weakly compact.

Lemma 2.5. ([24]). Let G : J × E → Pck(E) be Carathéodory multivalued map, for each u ∈ E the set
SG = S1

G,u = {f ∈ L1(J,E) : f(t) ∈ G(t, u(t)) a.e. t ∈ J} ≠ ∅ and F : L1(J,E) → C(J,E) a continuous
linear map. Then the operator

F ◦ SG : C(J,E) → Pck(C(J,E)),

u → (F ◦ SG)(u) = F(SG,u)

is a closed graph operator in C(J,E)× C(J,E).

De�nition 2.6. Let F : E → Pcl(E). Then F is called
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(i) γ−Lipschitz if there is γ > 0 with

H(F (x), F (y)) ≤ γd(x, y), x, y ∈ E.

(ii) A contraction if it is γ−Lipschitz with γ < 1.

De�nition 2.7. Let A : D(A) ⊂ E → E be linear closed operator. We say that A is sectorial if ∃ ω ∈
R, θ ∈ [π2 , π] and M > 0, with

1. ρ(A) ⊂ Σ(θ,ω) = {λ ∈ C : λ ̸= ω, |arg(λ− ω)| < θ}.

2. ∥R(λ,A)∥L(E) ≤
M

|λ− ω|
, λ ∈ Σ(θ,ω).

For more details on sectorial, we refer to [9, 16]. To study the existence of mild solutions and controllability
of fractional inclusions when A is a sectorial of type (M, θ, ω), we need help of solutions operators Tα(t),
Sα(t), where

Tα(t) =
1

2πi

∫
Υ
eλtλα−1 R(λα, A)dλ,

Sα(t) =
1

2πi

∫
Υ
eλt R(λα, A)dλ,

where Υ is a suitable path.

Lemma 2.8. ([31]). If A ∈ Aα(θ0, ω0) and α ∈ (0, 1), then ∀t > 0, ω > ω0 we have

∥Tα(t)∥L(E) ≤ Meωt

∥Sα(t)∥L(E) ≤ Ceωt(1 + tα−1).

Let MTα = sup0≤t≤b ∥Tα(t)∥L(E), MSα = sup0≤t≤bCeωt(1 + tα−1). Then we get

∥Tα(t)∥L(E) ≤ MTα ,

∥Sα(t)∥L(E) ≤ tα−1MSα .

De�nition 2.9. Let x ∈ PC(J,E), we say that x is PC−mild solution for (1) if there exists an integrable
selection f ∈ F(·, x(·)) such that

x(t) =


Tα(t)(a0 − G(x)) +

∫ t
0 Sα(t− s)f(s)ds t ∈ J0,

Tα(t)(a0 − G(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t
−
k ))

+
∫ t
0 Sα(t− s)f(s)ds, t ∈ Ji, i = 1, · · · ,m.

Theorem 2.10. (Covitz and Nadler [14]). Let P : E → Pcl(E) be γ−contraction, then Fix(P) ̸= ∅, where
(E, d) is a complete metric space.

Theorem 2.11. (Bohnenblust and Karlin [10]). Let E be Banach space and D ∈ Pcl,c(E). If P : D →
Pcl,c(E) is u. s. c. with P(D) ⊆ D and P(D) is relatively compact, then P has a �xed point.

3. Main Results

Theorem 3.1. Let A ∈ Aα(θ0, ω0) for θ0 ∈ (0, π2 ] and ω0 ∈ R. Suppose that the following conditions hold:

H1 : The semigroup {Sα(t) : t > 0} is compact.

H2 : F : J×E → Pck(E), for each x ∈ E F is measurable to t, for each t ∈ J , F is upper semicontinuous to
x and the set S1

F(·,x(·)) = {f ∈ L1(J,E) : f(t) ∈ F(t, x(t)), a.e.} is nonempty for each x ∈ PC(J,E).
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H3 : There exists a function ϑ ∈ L1(J,R+) with

∥F(t, x(t))∥ = sup{∥f∥ : f(t) ∈ F(t, x(t)), t ∈ J} ≤ ϑ(t).

H4 : G : PC(J,E) → E is compact, continuous and ∥G(x)∥ ≤ N, ∀ x ∈ PC(J,E), where N > 0.

H5 : For each i = 1, 2, · · · ,m, Ii : E → E is continuous, compact and there is ζi > 0 with ∥Ii(x)∥ ≤ ζi∥x∥,
x ∈ E.

Then (1) has PC−mild solution provided that ∃ r > 0 such that

MTα(∥a0∥+N + rζ) +MSα

bα

α
∥ϑ∥L1(J,R+) ≤ r, (3)

where ζ =
∑m

i=1 ζi

Proof. From H2, for each x ∈ PC(J,E), S1
F(·,x(·)) ̸= ∅. Thus, we are able to de�ne the multivalued operator

Ω : PC(J,E) → 2PC(J,E) as follows : if x ∈ PC(J,E), then y ∈ Ω(x) if and only if

y(t) =


Tα(t)(a0 − G(x)) +

∫ t
0 Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)(a0 − G(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t
−
k ))

+
∫ t
0 Sα(t− s)f(s)ds, t ∈ Ji,

(4)

where i = 1, · · · ,m and f ∈ S1
F(·,x(·)). By using Theorem 2.11, we show that Ω has �xed point which is

PC−mild solution for 1 . For easy of reading, we divide the proof into a sequence of steps.
Step 1: For each x ∈ PC(J,E), Ω(x) is convex.
Let y1, y2 ∈ Ω(x) and λ ∈ (0, 1). If t ∈ J0 then, from (4) we have

λy1(t) + (1− λ)y2(t) = Tα(t)(a0 − G(x)) +
∫ t

0
Sα(t− s)(λf1(s) + (1− λ)λf2(s))ds,

where f1, f2 ∈ S1
F(·,x(·)). Because F has convex values, S1

F(·,x(·)) is convex. Then (λf1(s)+(1−λ)f2(s)) ∈
S1
F(·,x(·)). Thus, λy1(t) + (1 − λ)y2(t) ∈ Ω(x). Similarly, for t ∈ Ji, i = 1, · · · ,m, we can prove that

λy1(t) + (1− λ)y2(t) ∈ Ω(x). Therefore, Ω(x) is convex for each x ∈ PC(J,E).

Step 2: For any positive number r, let Er = {x ∈ PC(J,E) : ∥x∥PC ≤ r}. Clearly, Er is convex, closed
and bounded subset of PC(J,E). In this step we will prove that Ω(Er) ⊆ Er.
Let x ∈ Er, y ∈ Ω(x), then by using Lemma 2.8, H3 and H4 for t ∈ J0, we get

∥y(t)∥ = ∥Tα(t)(a0 − G(x)) +
∫ t

0
Sα(t− s)f(s)ds∥

≤ MTα(∥a0∥+N) +MSα

bα

α
∥ϑ∥L1(J,R+) ≤ r.

Similar if t ∈ Ji, i = 1, · · · ,m, from Lemma 2.8, H3, H4 and H5 we obtain

∥y(t)∥ ≤ MTα(∥a0∥+N + rζ) +MSα

bα

α
∥ϑ∥L1(J,R+) ≤ r.

Hence, Ω(Er) ⊆ Er.
Step 3: We show that Ω(Er) is equicontinuous in PC(J,E).
Let B = Ω(Er). We show that for i = 0, 1, · · · ,m,, BJi

is equicontinuous , where

BJi
= {y∗ ∈ C(Ji, E) : y∗(t) = y(t), t ∈ Ji, y∗(ti) = y(t+i ), y ∈ B}.



Nawal.A. Alsarori, K.P. Ghadle, Results in Nonlinear Anal. 5 (2022), 235�249. 240

Let y ∈ B. Then there exist x ∈ Er with y ∈ Ω(x). Form the de�nition of Ω, there is f ∈ S1
F(.,x(.)) such

that

y(t) =


Tα(t)(a0 − G(x)) +

∫ t
0 Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)(a0 − G(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t
−
k ))

+
∫ t
0 Sα(t− s)f(s)ds, t ∈ Ji, i = 1, · · · ,m.

We consider the following cases:
Case 1. When i = 0, let t, t+ τ ∈ J0 = [0, t1], then

∥y∗(t+ τ)− y∗(t)∥ = ∥y(t+ τ)− y(t)∥ ≤ ∥Tα(t+ τ)(a0 − G(x))− Tα(t)(a0 − G(x))∥

+∥
∫ t+τ

0
Sα(t+ τ − s)f(s)ds−

∫ t

0
Sα(t− s)f(s)ds∥

≤ Ω1 +Ω2 +Ω3,

where
Ω1 = ∥Tα(t+ τ)(a0 − G(x))− Tα(t)(a0 − G(x))∥,
Ω2 = ∥

∫ t
0 [Sα(t+ τ − s)− Sα(t− s)]f(s)ds∥,

Ω3 = ∥
∫ t+τ
t Sα(t+ τ − s)f(s)ds∥.

We need to prove that Ωi → 0 as τ → 0 ∀ i = 1, 2, 3.

lim
τ→0

Ω1 ≤ (∥Ω0∥+ sup
x∈Er

∥G(x)∥) lim
τ→0

∥Tα(t+ τ)− Tα(t)∥ = 0,

independently of x ∈ Er.
For Ω2, from Lebesgue dominated convergence Theorem and the de�nition of Sα(t), we obtain

Ω2 ≤
∫ t

0
∥ [Sα(t+ τ − s)− Sα(t− s)]f(s)∥ds → 0, as τ → 0,

independently of x ∈ Er.
For Ω3,

lim
τ→0

Q3 = lim
τ→0

∥
∫ t+τ

t
Sα(t+ τ − s)f(s)ds∥ ≤ MSα∥ϑ∥ lim

τ→0

∫ t+τ

t
(t− s)t+τ−sds = 0,

independently of x ∈ Er.
Therefore,

lim
τ→0

∥y(t+ τ)− y(t)∥ = 0. (5)

Case 2. When t ∈ Ji, i ∈ {1, 2, · · · ,m}. If t, t+ τ ∈ Ji, then by (4) we have

∥y∗(t+ τ)− y∗(t)∥ = ∥y(t+ τ)− y(t)∥
≤ ∥Tα(t+ τ)(a0 − G(x))− Tα(t)(a0 − G(x))∥

+

k=i∑
k=1

∥Tα(t+ τ − tk)Ik(x(t
−
k ))− Tα(t− tk)Ik(x(t

−
k ))∥

+ ∥
∫ t+τ

0
Sα(t+ τ − s)f(s)ds−

∫ t

0
Sα(t− s)f(s)ds∥.

We argue as in the �rst case, we get

lim
τ→0

∥y(t+ τ)− y(t)∥ = 0. (6)
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Case 3. When t = ti, i = 1, 2, · · · ,m. If τ > 0 and δ > 0 such that ti + τ ∈ Ji and ti < δ < ti + τ ≤ ti+1,
then

∥y∗(ti + τ)− y∗(ti)∥ = lim
δ→t+i

∥y(ti + τ)− y(δ)∥.

From (4), we obtain

∥y(ti + τ)− y(δ)∥ ≤ ∥Tα(ti + τ)(ax0 − G(x))− Tα(δ)(a0 − G(x))∥

+
k=i∑
k=1

∥Tα(ti + τ − tk)Ik(x(t
−
k ))− Tα(δ − tk)Ik(x(t

−
k ))∥

+ ∥
∫ ti+τ

0
Sα(ti + τ − s)f(s)ds−

∫ δ

0
Sα(δ − s)f(s)ds∥.

If we argue as in the �rst case, then we obtain

lim
τ→0
δ→t+i

∥y(ti + τ)− y(δ)∥ = 0. (7)

From (5), (6) and (7), BJi
is equicontinuous ∀ i = 0, 1, · · · ,m.

Step 4: We prove that (ΩEr)(t) = {y(t) : y ∈ Ω(Er)} is relatively compact in E for each t ∈ J .
Let 0 < t ≤ s ≤ t1 and ε ∈ (0, t)

yε(t) = Tα(t)(a0 − G(x)) +
∫ t−ε

0
Sα(t− s)f(s)ds,

where f ∈ F(·, x(·))). Since G is compact and for t > 0 Sα(t) is compact, the set Yε = {yε(t) : yε ∈ Ω(Er)}
is relatively compact in E. Moreover,

∥y(t)− yε(t)∥ ≤ ∥
∫ t

t−ε
Sα(t− s)f(s)ds∥. (8)

Similarly, for t ∈ (ti, ti+1], i = 1, · · · ,m. Let ti < t ≤ s ≤ ti+1 and ε ∈ (0, t). For x ∈ Er, we de�ne

yε(t) = Tα(t)(a0 − G(x)) +
k=i∑
k=1

Tα(t− tk)Ik(x(t
−
k )) +

∫ t−ε

0
Sα(t− s)f(s)ds,

where f ∈ F(·, x(·)). Since Sα(t) for t > 0 , G and Ik, k = 1, · · · ,m are compact , Yε = {yε(t) : yε ∈
Ω(Er)} is relatively compact in E. Furthermore,

∥y(t)− yε(t)∥ ≤ ∥
∫ t

t−ε
Sα(t− s)f(s)ds∥. (9)

Obviously, (8) and (9) tend to zero when ε tend to 0. Then, a relatively compact set exists that can be
arbitrary close to (ΩEr)(t) = {y(t) : y ∈ Ω(Er)} for t ∈ J . Therefore, (ΩEr)(t) is relatively compact in E for
t ∈ J . From Step 2 to 4 together with Arzelá-Ascoli theorem, Ω is completely continuous.

Step 5: We show that Ω has a closed graph.

Let xn → x as n → ∞, yn ∈ Ω(xn) with yn → y as n → ∞. We need to prove that y ∈ Ω(x). Because
yn ∈ Ω(xn), from (4) there exists fn ∈ S1

F (·,xn(·)) such that
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yn(t) =


Tα(t)(a0 − G(xn)) +

∫ t
0 Sα(t− s)fn(s)ds, t ∈ J0,

Tα(t)(a0 − G(xn)) +
∑k=i

k=1 Tα(t− tk)Ik(xn(t
−
k ))

+
∫ t
0 Sα(t− s)fn(s)ds, t ∈ Ji.

For t ∈ J0, we show that ∃ f ∈ S1
F(·,x(·)) with

y(t) = Tα(t)(a0 − G(x)) +
∫ t

0
Sα(t− s)f(s)ds.

Let F : L1(J0, E) → C(J0, E) de�ned by

F(f)(t) =

∫ t

0
Sα(t− s)f(s)ds.

Obviously, F is continuous linear operator. Moreover,

∥Ff∥PC ≤ MSα

∫ t

0
(t− s)α−1f(s)ds

≤ MSα

bα

α
∥ϑ∥L1(J0,E).

Obviously,
∥[yn(t)− Tα(t)(a0 − G(xn))]− [y(t)− Tα(t)(a0 − G(x))]∥ → 0 as n → ∞.
From Lemma 2.5, F ◦ S1

F is closed graph operator. Also, from the de�nition of F, we get ∀t ∈ J0,

yn − Tα(t)(a0 − G(xn)) ∈ F(S1
F(·,xn(·))).

Since xn → x as n → ∞, from Lemma 2.5 we get

y − Tα(t)(a0 − G(x)) =
∫ t

0
Sα(t− s)f(s)ds,

for some f ∈ S1
F(·,x(·)). Therefore,

y(t) = Tα(t)(a0 − G(x)) +
∫ t

0
Sα(t− s)f(s)ds.

Similarly, if t ∈ Ji, i = 1, · · · ,m, we show that ∃ f ∈ S1
F(·,x(·)) such that

y(t) = Tα(t)(a0 − G(x)) +
k=i∑
k=1

Tα(t− tk)Ik(x(t
−
k )) +

∫ t

0
Sα(t− s)f(s)ds.

Let F : L1(Ji, E) → C(Ji, E) de�ned by

F(f)(t) =

∫ t

0
Sα(t− s)f(s)ds.

Clearly,
∥[yn(t)−Tα(t)(a0−G(xn))−

∑k=i
k=1 Tα(t−tk)Ik(xn(t

−
k ))]−[y(t)−Tα(t)(a0−G(x))−

∑k=i
k=1 Tα(t−tk)Ik(x(t

−
k ))]∥ →

0 as n → ∞.
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From Lemma 2.5, F ◦ S1
F is closed graph operator. Also, from the de�nition of F, we obtain

yn − Tα(t)(a0 − G(xn))−
k=i∑
k=1

Tα(t− tk)Ik(xn(t
−
k )) ∈ F(S1

F(·,xn(·))).

Since xn → x as n → ∞, from Lemma 2.5 we have

y − Tα(t)(a0 − G(x))−
k=i∑
k=1

Tα(t− tk)Ik(x(t
−
k )) =

∫ t

0
Sα(t− s)f(s)ds,

for some f ∈ S1
F(·,x(·)). Therefore,

y(t) = Tα(t)(a0 − G(x)) +
k=i∑
k=1

Tα(t− tk)Ik(x(t
−
k )) +

∫ t

0
Sα(t− s)f(s)ds.

This means y ∈ Ω(x). Hence, Ω has closed graph.
Therefore, by Theorem 2.11, Ω has �xed point which is PC−mild solution of problem (1).

4. Controllability results

Our aims in this section to investigate the controllability of the system (2).

De�nition 4.1. The function x ∈ PC(J,E) is called PC−mild solution for (2) if there exists an integrable
selection f ∈ F(·, x(·)) with

x(t) =


Tα(t)(a0 − G(x)) +

∫ t
0 Sα(t− s)f(s)ds

+
∫ t
0 Sα(t− s)B(uf (s))ds, t ∈ J0,

Tα(t)(a0 − G(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t
−
k ))

+
∫ t
0 Sα(t− s)f(s)ds+

∫ t
0 Sα(t− s)B(uf (s)))ds, t ∈ Ji, 1 ≤ i ≤ m.

De�nition 4.2. We say that the system (2) is nonlocally controllable on [0, b] if ∀ a0, a1 ∈ E, ∃ u ∈ L2(J,X)
with a solution of (2) satis�es x(0) = a0 − G(x) and x(b) = a1 − G(x), where u is called control function.

Let E be a real separable Banach space and X a real Banach space.

Theorem 4.3. We assume the following conditions:

C1 : A is a sectorial operator.

C2 : Let F : J × E → Pck(E), with t → F(t, x) , is measurable for each x ∈ E.

C3 : There exists a function ς ∈ L1(J,R+) with

(a) H(F(t, x),F(t, y)) ≤ ς(t)∥x− y∥, for a. e. t ∈ J, x, y ∈ E.
(b) ∥F(t, x)∥ = sup{∥f∥ : f(t) ∈ F(t, x(t))} ≤ ς(t), a. e. t ∈ J and x ∈ E.

C4 : G : PC(J,E) → E, there is R > 0 with

∥G(x)− G(y)∥ ≤ R∥x− y∥, ∀ x, y ∈ PC(J,E).

C5 : For each i = 1, · · · ,m, Ii : E → E, there is κi > 0 with

∥Ii(x)− Ii(y)∥ ≤ κi∥x− y∥, ∀ x, y ∈ E.
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C6 : The linear bounded operator W : L2(J,X) → E given by

W (u) =

∫ b

0
Sα(b− s)B(u(s))ds

has an invertible operator W−1 : E → 2(J,X)/Ker(W ) and there are two positive constants β1, β2 with
∥B∥ ≤ β1 and ∥W−1∥ ≤ β2.

Then (2) is controllable on [0, b] provided that[
MTα(R+ κ) + η + β1β2MSα

b
2α−1

2

(2α− 1)
1
2

(MTαR+R+ η)

]
< 1. (10)

Where κ =
∑m

i=1 κi, η = MSα
bα

α ∥ς∥L1

Proof. From C2, C3 and Theorem 8.2.8 in [8], we get ∀ x ∈ PC(J,E) the set

S1
F(·,x(·)) = {f ∈ L1(, E) : f ∈ F(t, x(t)) a.e.} ≠ ∅.

Then, we can de�ne the multifunction P : PC(J,E) → 2PC(J,E) as follow: y ∈ P(x) if and only if

y(t) =


Tα(t)(a0 − G(x)) +

∫ t
0 Sα(t− s)f(s)ds

+
∫ t
0 Sα(t− s)B(uf (s))ds, t ∈ J0,

Tα(t)(a0 − G(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t
−
k ))

+
∫ t
0 Sα(t− s)f(s)ds+

∫ t
0 Sα(t− s)B(uf (s))ds, t ∈ Ji,

(11)

where 1 ≤ i ≤ m, and f ∈ S1
F(·,x(·)). Let x ∈ PC(J,E) and f ∈ S1

F(·,x(·)), by using C6 we may de�ne the
control function uf as

uf (t) = W−1{a1 − G(x)− Tα(b)(a0 − G(x))−
∑k=m

k=1 Tα(b− tk)Ik(x(t
−
k ))

−
∫ b
0 Sα(b− s)f(s)ds}(t). (12)

By using (11), we prove that P has �xed point and it is PC−mild solution of the system (2).

As the �rst, we show that the system (2) is nonlocally controllable on [0, b]. Let x be a �xed point for
P, then from (11) and (12) we get

x(b) = Tα(b)(a0 − G(x)) +
k=m∑
k=1

Tα(b− tk)Ik(x(t
−
k )) + +

∫ b

0
Sα(b− s)f(s)ds

+

∫ b

0
Sα(b− s)B(uf (s))ds

= Tα(b)(a0 − G(x)) +
k=m∑
k=1

Tα(b− tk)Ik(x(t
−
k ))

+

∫ b

0
Sα(b− s)f(s)ds+W (uf )

= Tα(b)(a0 − G(x)) +
k=m∑
k=1

Tα(b− tk)Ik(x(t
−
k )) +

∫ b

0
Sα(b− s)f(s)ds

+ a1 − G(x)− Tα(b)(a0 − G(x))−
k=m∑
k=1

Tα(b− tk)Ik(x(t
−
k ))

−
∫ b

0
Sα(b− s)f(s)ds

= a1 − G(x).
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This means that u
f
steers the system (2) from a0 to a1 in a �nite time b.

Now, let us prove that P ful�lls all hypotheses of Theorem 2.10. The proof will present in two steps:
Step1. We prove that P(x) is closed for every x ∈ PC(J,E).
Let {ω}n≥1 be a sequence in P(x) such that ωn → ω in PC(J,E). We want to prove that ω ∈ P(x). From
(11), there exists a sequence {fn : n ≥ 1} in S1

F(·,x(·)) with

ωn(t) =


Tα(t)(a0 − G(x)) +

∫ t
0 Sα(t− s)fn(s)ds

+
∫ t
0 Sα(t− s)B(ufn(s)))ds, t ∈ J0,

Tα(t)(a0 − G(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t
−
k ))

+
∫ t
0 Sα(t− s)fn(s)ds+

∫ t
0 Sα(t− s)B(ufn(s)))ds, t ∈ Ji.

(13)

By (C3), for every n ≥ 1 and a.e. t ∈ J we have ∥fn(t)∥ ≤ ς(t). Thus, {fn : n ≥ 1} is integrable bounded.
Also, {fn(t) : n ≥ 1} is relatively compact in E for a.e. t ∈ J because {fn(t) : n ≥ 1} ⊂ F(t, x(t)). Then,
the set {fn : n ≥ 1} semicompact. By Lemma 2.4, in L1(J,E) {fn : n ≥ 1} is weakly compact. We may
assume that {fn : n ≥ 1} converges weakly to f ∈ L1(J,E). There is a sequence {Vn}∞n=1 ⊆ conv{fn : n ≥ 1}
such that Vn converges strongly to f ( Mazur's Lemma). As F has convex and compact values, S1

F(·,x(·)) is

convex and compact set. Therefore, {Vn}∞n=1 ⊆ S1
F(·,x(·)) and f ∈ S1

F(·,x(·)). Also, by using Lemma 2.8 we

have ∀ n ≥ 1, t, s ∈ J, s ∈ (0, t],

∥Sα(t− s)fn(s)∥ ≤ |t− s|α−1MSας(s) ∈ L1(J,R+),

∥Sα(t− s)B(ufn(s)))∥ ≤ β1|t− s|α−1MSας(s) ∈ L1(J,R+).

So, by the Lebesgue dominated convergence Theorem, for 1 ≤ i ≤ m, we obtain

lim
n→∞

ωn(t) = ω(t) =


Tα(t)(a0 − G(x)) +

∫ t
0 Sα(t− s)f(s)ds

+
∫ t
0 Sα(t− s)B(uf (s))ds, t ∈ J0,

Tα(t)(a0 − G(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t
−
k ))

+
∫ t
0 Sα(t− s)f(s)ds+

∫ t
0 Sα(t− s)B(uf (s))ds, t ∈ Ji.

This means, ω ∈ P(x). Therefore, ∀ x ∈ PC(J,E), P(x) is closed.
Step2. We show that P is γ−contraction.
Let x1, x2 ∈ PC(J,E). We prove that ∃ γ ∈ (0, 1) with

H(P(x1),P(x2)) ≤ γ∥x1 − x2∥PC , ∀ x1, x2 ∈ PC(J,E).

Let z1 ∈ P(x1), then there exists f1 ∈ S1
F(·,x1(·)) such that

z1(t) =


Tα(t)(a0 − G(x1)) +

∫ t
0 Sα(t− s)f1(s)ds

+
∫ t
0 Sα(t− s)B(uf1(s)))ds, t ∈ J0,

Tα(t)(a0 − G(x1)) +
∑k=i

k=1 Tα(t− tk)Ik(x1(t
−
k ))

+
∫ t
0 Sα(t− s)f1(s)ds+

∫ t
0 Sα(t− s)B(uf1(s)))ds, t ∈ Ji.

From C3 (a) we have
H(F(t, x1),F(t, x2)) ≤ ς(t)∥x1(t)− x2(t)∥PC .

Thus, ∃ µ ∈ F(t, x2(t)) such that

∥f1(t)− µ∥ ≤ ς(t)∥x1(t)− x2(t)∥, t ∈ J.

Let M : J → 2E de�ned as:

M(t) = {µ ∈ E : ∥f1(t)− µ∥ ≤ ς(t)∥x1(t)− x2(t)∥}.
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Since f1, ς, x1, x2 are measurable, by using proposition 3.4 in [12], we get t → M(t) ∩ F (t, x2(t)) is
measurable. Moreover, its values are nonempty and compact. So, from Theorem 1.3.1 in [19], there exist
f2 ∈ F(t, x2(t)) such that

∥f1(t)− f2(t)∥ ≤ ς(t)∥x1(t)− x2(t)∥, ∀ t ∈ J.

Now, de�ne

z2(t) =


Tα(t)(a0 − G(x2) +

∫ t
0 Sα(t− s)f2(s)ds

+
∫ t
0 Sα(t− s)B(uf2(s))ds, t ∈ J0,

Tα(t)(a0 − G(x2) +
∑k=i

k=1 Tα(t− tk)Ik(x2(t
−
k ))

+
∫ t
0 Sα(t− s)f2(s)ds+

∫ t
0 Sα(t− s)B(uf2(s))ds, t ∈ Ji.

Clearly, Z2 ∈ P(x2). Let t ∈ J0, by C3, C4, (11) and (12) we have

∥z1(t)− z2(t)∥ ≤ MTα∥G(x1)− G(x2)∥+MSα

∫ t

0
(t− s)α−1∥f1(s)− f2(s)∥ds

+MSα

∫ t

0
(t− s)α−1∥B(uf1(s))− B(uf2(s))∥ds

≤ MTαR∥x1 − x2∥PC +MSα

∫ t

0
(t− s)α−1ς(s)∥x1 − x2∥PCds

+MSα

∫ t

0
(t− s)α−1∥B∥ ∥uf1(s)− uf2(s)∥ds

≤ MTαR∥x1 − x2∥PC +MSα

∫ t

0
(t− s)α−1ς(s)∥x1 − x2∥PCds

+ β1MSα

[∫ t

0
(t− s)2(α−1)ds

] 1
2

∥uf1 − uf2∥L2(J,X)

.

To simplify the calculation , we �nd

∥uf1 − uf2∥L2(J,X) ≤ ∥W−1∥ [ ∥G(x1)− G(x2)∥+ ∥Tα(b)∥∥G(x1)− G(x2)∥

+ ∥
∫ b

0
Sα(b− s)(f1(s)− f2(s))ds∥]

≤ β2R∥x1 − x2∥PC +Rβ2MTα∥x1 − x2∥PC

+ β2MSα

∫ b

0
(b− s)α−1∥f1(s)− f2(s)∥ds

≤ β2∥x1 − x2∥PC [R+RMTα + η] . (14)

Then by using (14), we get

∥z1(t)− z2(t)∥ ≤ MTαR∥x1 − x2∥PC + η ∥x1 − x2∥PC

+ β1MSα

b2α−1
2

(2α− 1)
1
2

β2∥x1 − x2∥PC [R+RMTα + η]

≤

[
MTαR+ η + β1β2MSα

b2α−1
2

(2α− 1)
1
2

(R+RMTα + η)

]
∥x1 − x2∥PC

≤ γ∥x1 − x2∥PC . (15)
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Similarly, if t ∈ Ji, for any i = 1, · · · ,m, by using C3, C4, C5 and (14) we obtain

∥z1(t)− z2(t)∥ ≤

[
MTα(R+ κ) + η + β1β2MSα

b
2α−1

2

(2α− 1)
1
2

((MTαR+R) + η)

]
∥x1 − x2∥PC

≤ γ∥x1 − x2∥PC . (16)

From (15) and (16) we get

H(P(x1),P(x2)) ≤ γ∥x1 − x2∥PC , ∀x1, x2 ∈ PC(J,E).

From (10), we have

γ =

[
MTα(R+ κ) + η + β1β2MSα

b
2α−1

2

(2α− 1)
1
2

((MTαR+R) + η)

]
< 1.

Thus, P is γ−contraction. Therefore, by Theorem 2.10 P has a �xed point which is PC−mild solution for
the system (2). Consequently, the system (2) is controllable on the interval J .

5. Examples

To illustrate the application of our main results, let us examine the following examples:

5.1. Example

Let J = [0, 1], E = R{
cD

1
2
t x(t) ∈ x(t) + F(t, x(t)) + u(t)), t ∈ [0, 1],

x(0) = 0,
(17)

where A = B = 1. It is clear that C1 and C6 are satis�ed.
The mild solution of (17) will be

x(t) =

∫ t

0
Sα(t− s)(f(s) + uf (s))ds.

We will de�ne uf as

uf (t) = W−1

[
−
∫ 1

0
Sα(t− s)f(s)ds

]
(t).

Let P : R → P (R) with

P(x)(t) =

∫ t

0
Sα(t− s)(f(s) + uf (s))ds.

F : [0, 1]× R → P (R) with

F(t, x(t)) =

(
t√

(t+ 1)
,
cot−1 x

2
√
t2 + 1

+
sin t√
t+ 1

)
.

One can easily prove that F satis�es C2. The condition C3 is satis�ed because

∥F(t, x)∥ ≤ π

2
√
t2 + 1

+
sin t√
t+ 1

= ς(t).

Also,

∥P(x)− P(y)∥ ≤ 1

2
∥x− y∥, ∀ x, y ∈ R.

So, γ ≤ 1
2 < 1. Moreover, C4 and C5 are valid because G = 0, Ii(x) = 0. Therefore, by Theorem 4.3 the

system (17) is controllable on [0, 1].
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5.2. Example

Let J = [0, 5].
cDαx(t) =

|x(t)|
(1 + et)(1 + |x(t)|

, t ∈ [0, 5],

x(0) = 0,

∆x(ti) =
x
2i
, i = 1, · · · ,m,

(18)

Not that A = B = 0 and thus C1 and C6 are satis�ed.
Let F : J × [0,∞) → [0,∞). Clearly, for each x ∈ [0,∞), t ∈ J we have

∥F(t, x)∥ =
1

1 + et
|x|

|(1 + x)|
≤ 1

4
|x| = ς(t).

So, C2 and C3 are satis�ed.
For every i = 1, · · · ,m, Ii : [0,∞) → [0,∞) de�ne by

Ii(x(ti)) =
x

2i
.

Note that C5 is valid since

∥Ii(x(ti))− Ii(y(ti))∥ =
1

2i
∥x− y∥.

Also, C4 is valid because G = 0. Thus, all assumptions of Theorem 4.3 are satis�ed. So, the system (18) is
controllable on [0,5].

Conclusion

We investigated the existence of mild solutions for nonlocal fractional impulsive semilinear di�erential
inclusions related to Caputo derivative in Banach spaces when the linear part is sectorial. Secondly, we
determined the enough, conditions for the controllability of the studied control problem. We applied e�ec-
tively �xed point theorems, contraction mapping, multivalued analysis and fractional calculus. Moreover,
we enhanced our results by introducing an illustrative examples.
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