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ABSTRACT 
Customer demand in global supply networks is highly uncertain due to unexpected global and local economic 
conditions and, in addition, affected by seasonal demand fluctuations for final products. Therefore, the design of 
shipping services for containerized goods has to prove its economic efficiency under varying conditions of 
transportation demand. Since liner shipping involves significant capital investments and huge daily operating costs, 
the appropriate design of the service network is crucial for the profitability of the container feeder lines. Usually, 
quantitative models used for shipping network design are based on deterministic forecasts, which are prone to errors 
caused by uncertainty factors and structural changes in the development of demand. This study puts special 
emphasis on the impact of seasonal demand fluctuations on the structure of the related service networks, the 
capacity of the fleet operating within the network, the deployment of ship types as well as on the associated routes 
of the ships. A simulation and artificial neural network based forecasting framework is developed to support the 
design of service networks of feeder shipping lines. The proposed methodology has been tested for a feeder shipping 
service in the East Mediterranean and Black Sea region. Numerical results show that seasonal demand fluctuations 
have vital impact on the network design of feeder lines. 

Mevsimsel Talep Dalgalanmalarının Besleyici Konteynır Hatlarının Servis Ağı Tasarımındaki 
Etkisi 
 
 
Anahtar Kelimeler: 
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ÖZ 
Küresel tedarik ağlarındaki müşteri talebi beklenmedik küresel ve yerel ekonomik krizlerden dolayı oldukça belirsiz olup 
son ürünlerdeki mevsimsel talep dalgalanmalarından etkilenmektedir. Bu nedenle konteynır yükleri için denizyolu 
taşımacılığı servis tasarımları, değişen nakliye talepleri altında ekonomik etkinliklerini ortaya koymak zorundadırlar. 
Düzenli hat deniz yolu taşımacılığı önemli bir sermaye yatırımı içerdiğinden  uygun servis ağı tasarımı besleyici 
konteynır hatlarının karlılığı için çok önemlidir. Genellikle denizyolu taşımacılığı ağ tasarımı için kullanılan sayısal 
modeller, belirsizlik faktörleri ve talebin gelişimindeki yapısal değişiklikler nedeni ile hatalara neden olabilen 
deterministik tahminlemelere dayanmaktadır. Bu çalışma mevsimsel talep dalgalarının ilgili servis ağlarının yapısındaki 
etkisi, ağ içerisinde operasyon gösteren filonun kapasitesi, gemi tiplerinin açılımıyla birlikte gemilerin ilişkilendikleri 
rotaların belirlenmesine de özel vurgu yapmaktadır. Çalışmada, denizyolu taşımacılığı servis ağlarının tasarlanmasına 
destek sağlamak için bir benzetim ve yapay sinir ağı temelli tahminleme yapısı besleyici tasarlanmıştır. Önerilen 
yöntem doğu Akdeniz ve Karadeniz havzasındaki bir besleyici denizyolu taşımacılığı servisi için test edilmiştir. Sayısal 
sonuçlar mevsimsel talep dalgalanmalarının besleyici hatların servis tasarımları üzerinde hayati öneme sahip olduğunu 
göstermektedir 
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1. INTRODUCTION 

In the early years of containerization, a deep-sea containership was calling a relatively 
large number of various-sized ports (multi-port calling). Later the evolution of mega-
sized containerships enabled significantly lower transportation costs over long 
distances. However, by visiting a number of regional ports, mega ships are not 
operated efficiently. Therefore, as an alternative to multi-port calling systems, hub & 
spoke (H&S) transportation networks were introduced. In H&S networks, large-sized 
containerships serve the hub ports and smaller sized feeder containerships provide 
services between the hub port and the regional feeder ports. In this way, large 
containerships do not waste sailing time by visiting small-sized ports with low 
demand, but concentrate on long-haul intercontinental lines. Therefore, regional 
feeder containership service has received a crucial position in the global H&S networks 
of shipping lines. According to Ducruet and Notteboom (2012b) about 80 % of 
worldwide vessel traffic occurs at distances of up to 500 km and more than one half 
at distances of 100 km. These figures clearly highlight the importance of feeder 
service. 

As an example, one of the Asia-Europe routes of Orient Overseas Container Line 
(OOCL)'s container service is shown in Figure 1. OOCL based in Hong Kong is one of 
the world's largest shipping lines providing container services between all continents. 
Two of their major European destinations are Bremerhaven and Hamburg in Germany 
from where regional feeder services are provided into the Baltic Sea connecting 
several regional ports in different countries to the hub ports in Bremerhaven and 
Hamburg (see Figure 2). Similar H&S systems can be found in other parts of the world, 
e.g. in Asia with Singapore as hub port or in the Mediterranean with Port Said as hub 
for servicing spokes in the East Mediterranean and Black Sea region. 

 
Figure 1. One of OOCL's Asia-Europe container routes serviced by mega containerships (OOCL 2015a) 

 
Figure 2. Two of OOCL's feeder service routes with Bremerhaven and Hamburg as hub ports (OOCL 2015b) 
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The links between the hub port and the regional ports are typically operated as cyclic 
line bundling service, which simultaneously collect/distribute containers from/to 
specific regions with small or medium-sized feeder ships. Theoretically, a feeder ship 
could carry up to twice of its slot capacity in a cyclic route. In this case the ship departs 
from the hub port fully loaded with import containers, delivers the import containers 
to the regional feeder ports, simultaneously picks up an equivalent amount of export 
containers from there, and arrives back at the hub port fully laden with export 
containers. However, when the trade is imbalanced at the ports, some of the vessel's 
capacity usually remains idle at the departure or arrival of the ship from/to the hub 
port. Idle capacity further increases if there is an imbalance of trade in the whole 
region. As a result, transportation costs per container and total revenue of the 
shipping line depend of the utilization of the fleet of ships. 

Liner shipping requires high capital investment resulting in huge fixed costs for the 
entire fleet of containerships. At the same time there are considerable variable costs 
incurred for the operation of the vessels. The return on these investments depends 
on the transported container volume and the utilization of the vessels' capacity. 
Operational costs for a container line provider include ship related fixed costs and 
service related variable costs. Table 1 shows the respective basic cost calculations for 
a sailing season (Polat et al. 2014). 

Table 1. Basic calculations of total costs for a sailing season (Polat et al. 2014) 
Parameter Basic calculation 

Total costs Fixed costs + Variable costs 

Fixed costs Number of necessary ships  ∗ (Chartering + Operating costs) 

Variable costs Number of services * (Bunker (sea) + Bunker (port) + Port set up charges) 

Number of required ships [(Voyage duration + Lay-up duration) / Service frequency 

Number of services Planning period / Service frequency 

Voyage duration On-sea duration + On-port duration (feeder ports) + On-port duration (hub) 

Idle duration Number of necessary ships  ∗ Service frequency -  (Voyage + Lay-up duration) 

Ship total duration Voyage duration + Lay-up duration + Idle duration 

Basically, the demand for liner shipping is closely linked to the development of the 
world economy and world trade (Zachcial and Lemper 2006). In addition, there are 
close relationships between regional economic developments, which affect the 
supply of export goods as well as the demand for import goods and raw materials. 
Therefore, a change in world or regional trade will lead to a change in transportation 
volume (Lun et al. 2010). Apart from long-term economic trends and conditions faced 
by the global economy, the demand for container shipping fluctuates due to seasonal 
factors, peaks at certain times of years, and unexpected sharp drops and 
cancellations (Meng et al. 2012; Polat and Uslu 2010; Schulze and Prinz 2009). The 
production and consumption of some goods typically varies over the year, some 
following harvest seasons like fruit or fish products. In addition, public, national, and 
religious holidays cause variations in demand. While some of these factors only affect 
a single port or region, others even create peaks in global trade, like Christmas and 
Chinese New Year. Another factor that causes demand fluctuations is unexpected 
local and global economic development, e.g. financial and political crises. In these 
periods, the global and regional liner shipping industry usually experiences a sharp 
decline in demand. Hence the demand of the ports is only occasionally steady during 
a year (Løfstedt et al. 2010).  
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Consequently, the trade volume arising at ports determines the necessary fleet 
capacity for a shipping line. Since demand is uncertain, shipping lines must carefully 
consider their capacity decisions on whether or not to expand it. Postponing the 
increase of slot capacity entails the risk of shortages when the demand volume is 
increased (Lun et al. 2010). Essentially, transportation demand is the driving force in 
the design of the service network. Even small variations of the demand pattern may 
lead to an entirely different service network design (Andersen 2010).  

In this study, a Monte Carlo simulation and artificial neural network based forecasting 
framework is developed in order to analyze the impact of seasonal demand 
fluctuations on the feeder service network design. The proposed model 
implementation is tested for the container feeder service in the East Mediterranean 
and Black Sea region. The remainder of this study is structured as follows. In the next 
section, a brief review of the relevant literature with a focus on forecasting container 
transportation demand and liner network design is given. In Section 3 a forecasting 
framework is proposed. Section 4 introduces the case study of feeder service in the 
East Mediterranean and Black Sea region and summarizes detailed numerical results. 
Finally, conclusions are drawn and suggestions for further research are given in 
Section 5. 

2. RELEVANT LITERATURE 

In recent years, maritime liner shipping has become a popular topic of academic 
research worldwide. A number of papers addresses different planning aspects in this 
area has been published in recent years. See Ronen (1983; 1993), Notteboom (2004),  
Christiansen et al. (2013; 2004), Kjeldsen (2011), Hoff et al. (2010), Ducruet and 
Notteboom (2012a), Yang et al. (2012), Zheng et al. (2015) and Tran and Haasis 
(2015) for comprehensive reviews on liner shipping. In this study, therefore, we review 
studies focussing on container throughput forecasting rather than studies related to 
liner shipping.  

Since the mid-1950s, forecasting accurate container throughput demand of ports is 
one of the major challenges of all port operators (Goulielmos and Kaselimi 2011). 
Forecasting transport demand for a shipping line in a region with the desired accuracy 
is nearly impossible. However, this does not mean that forecasting is pointless. The 
aim of forecasting is to understand the uncertain future developments through 
exploring the currently available information on historical demand figures. Therefore, 
forecasting container throughput of ports plays a critical role in decision making of 
shipping lines. Table 2 summarizes some related studies on container throughput 
forecasting and highlights the methodologies and case studies used in the related 
papers. In the published studies, the authors usually present alternative forecasting 
methods for container feeder lines under a fixed demand pattern without considering 
seasonal demand fluctuations, which does not reflect the reality of container 
shipping. Effective service network designs strongly contributes to the overall 
economic position of the container feeder lines due to considerable capital 
investments and huge daily operating costs of shipping lines. 
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Table 2. Container throughput forecasting studies 
Authors (Years) Proposed Methodology Benchmark methodology Port/Region 

Walter and Younger 
(1988) 

Iterative Nonlinear Programming  New design 

de Gooijer and Klein 
(1989) 

One Vector Autoregressive moving 
average 

One-variable Auto Regression Integrated 
Moving Average (ARIMA) Antwerp 

Zohil and Prijon (1999) Ordinary least squares regression  Mediterranean 

Fung (2001) 
Vector Error Correction Model with 
Structural Identification  Hong Kong 

Seabrooke et al. (2003)  Ordinary least squares regression  Hong Kong 

Mostafa (2004) Multilayer Perception Neural Network ARIMA Suez Canal 

Lam et al. (2004) Multilayer Perception Neural Network Linear Multiple Regression Hong Kong 

Hui et al. (2004) Error Correction Model Approach  Hong Kong 

Guo et al. (2005) The grey Verhulst model Grey Model (1,1)  

Liu et al. (2007) 

Grey Prediction Model and Cubic 
Polynomial Curve Prediction Model 
mixed by the Radial Basis Function 
Neural Network 

Radial Basis Function Neural Network 
With Grey Prediction Model, Radial Basis 
Function Neural Network With Cubic 
Polynomial Curve Prediction Model 

Shanghai 

Mak and Yang (2007) 
Approximate Least Squares Support 
Vector Machine 

Support Vector Machine, Least Squares 
Support Vector Machine, Radial Basis 
Function Neural Network 

Hong Kong 

Hwang et al. (2007) 
Neuro-Fuzzy Group Method Data 
Handling Type Neural Networks 

Conventional Multilayered Group Method 
Data Handling Type Neural Networks Busan 

Schulze and Prinz (2009) Seasonal Auto-Regressive Integrated 
Moving Average (SARIMA) 

Holt–Winters Exponential Smoothing Germany 

Peng and Chu (2009) The classical decomposition model  
Trigonometric regression, regression 
model with seasonal dummy variables, 
grey model, hybrid grey model, SARIMA 

Taiwan 

Gosasang et al. (2011) Multilayer Perception Neural Network Linear Regression Bangkok 

Sun (2010) 
Conditional Expectation with 
Probability Distribution  Shandong 

Chen and Chen (2010) Genetic Programming 
X-11 Decomposition Approach, Seasonal 
Auto Regression Integrated Moving 
Average 

Taiwan 

Wu and Pan (2010) 
Support Vector Machine with Game 
Theory  Jiujiang 

Li and Xu (2011) 
Prediction Based on Optimal Combined 
Forecasting Model 

Cubic exponential smoothing, GM (1,1), 
Multiple regression analysis  Shanghai 

Goulielmos and Kaselimi 
(2011) 

The Non-Linear Radial Basis Functions  Piraeus 

Zhang and Cui (2011) Elman neural network, Grey mode  Shanghai 

Polat et al. (2011) Monte Carlo Simulation with Holt–
Winters Exponential Smoothing 

 Turkey 

Xiao et al. (2012) 
Feed forward neural network with 
particle swarm optimization  Tianjin 

Wang et al. (2013) Bounded polyhedral set   Asia-Europe 

Xie et al. (2013)  

Hybrid approaches (SARIMA, seasonal 
decomposition, classical 
decomposition) based on least squares 
support vector regression (LSSVR) 

Back-Propagation Neural Networks, 
support vector regression, ARIMA, 
SARIMA 

Shanghai, 
Shenzhen 

Huang et al. (2014) Domain knowledge based algorithm ARIMA with Explanatory Variable Guangzhou 

Xiao et al. (2014) Transfer forecasting model with 
discrete particle swarm optimization  

Analog complexing, ARIMA, Elman neural 
network 

Shanghai, 
Ningbo 

Tao and Wang (2015) Multiplicative SARIMA SARIMA Shanghai 

Anqiang et al. (2015) 
Hybrid  approaches (SARIMA, LSSVR, 
ANN) SARIMA, LSSVR, ANN Qingdao 

Huang et al. (2015a) 
Hybrid  approaches (SARIMA, genetic 
programming (GP), projection pursuit 
regression (PPR)) 

SARIMA, PPR, ANN Qingdao 
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Authors (Years) Proposed Methodology Benchmark methodology Port/Region 

Huang et al. (2015b) Interval knowledge based forecasting 
paradigm 

ARIMA Qingdao 

Zha et al. (2016) Hybrid  approaches (SARIMA, ANN) SARIMA, ANN Shanghai 

Gao et al. (2016) Model averaging and Model selection 
variants 

SARIMA Hong Kong, 
Shenzhen 

All these works produced good results under low uncertainty conditions. However, 
the 2008/2009 economic crisis showed that deterministic forecasts may be prone to 
failure in the long term (Pallis and de Langen 2010). More advanced stochastic 
forecasting methods, which could be able to reflect uncertainty more effectively, are 
not applied in maritime business because of their complexity and high statistical data 
requirement (Khashei et al. 2009). On the other hand, simulation could be employed 
as major component of a forecasting framework combined with deterministic 
forecasting methods that only need a limited amount of data. Indeed, a simulation-
based forecasting framework might be better suited in a stochastic environment 
where unexpected drops or peaks occur. 

In the literature, considerable attention has been given to the service network design 
of shipping lines under stable demand conditions and on forecasting annual container 
throughput of ports. However, the impact of seasonal demand fluctuations on service 
network design is not investigated according to the best knowledge of the authors. 
Therefore, the main contribution of this paper is to put special emphasis on the 
impact of seasonal demand fluctuations on the structure of the related H&S 
networks, the capacity of the fleet operating within the network, the deployment of 
ship types as well as on the associated routes of the ships. As a case study feeder 
services for containerized freight in the East Mediterranean and Black Sea region are 
investigated. 

3. THE METHODOLOGY 

The dynamic and complex nature of container trade makes accurate forecasting a 
critical challenge for shipping lines. Therefore, it is important to develop an efficient 
methodology for forecasting container throughput at the individual ports in order to 
better assist liner shipping companies in defining their strategies and investment 
plans. 

Essentially, forecasting is a procedure of predicting the future as accurately as 
possible. In business, the task is typically to predict the development of values for 
which historical data are available, e.g. demand figures for certain products or 
services. In such cases, statistical methods can be applied in order to generate the 
forecasts in a systematic way. Since the future events upon which the actual 
outcomes are based have not yet been observed, forecasts are always afflicted with 
an error. Nevertheless, forecasts are inevitable to understand the factors that 
contribute to future events, to set goals for future achievements and to develop 
business plans in the short, medium and long term.  

In container shipping regional ports face high seasonality in trade volume and, in 
addition, high demand fluctuations in the short-run (Polat and Uslu 2010; Schulze and 
Prinz 2009). Therefore, reliable and accurate forecasting is needed to support 
decision makers in designing their service network, especially, since container 
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shipping involves considerable capital investments and huge daily operating costs. In 
literature, the proposed models for service network design are typically based on the 
assumption of stable container demand at ports, which is not realistic in most real 
applications. Therefore, in this study, a simulation and artificial neural network based 
forecasting framework is proposed in order to analyze the impact of seasonal demand 
fluctuation on the design of feeder service networks for containerised freight 
transportation. 

The proposed forecasting framework consists of three modules (see Figure 3). In the 
first module time series decomposition is applied to convert yearly maritime demand 
statistics into monthly container throughput figures. The second module consists of 
an artificial neural network (ANN) based forecasting procedure which is used to 
analyze trend and seasonality in monthly container throughput. Finally, a simulation 
module is used to reflect the impact of daily demand fluctuations in container 
shipping. 

Forecasting Framework

Weekly expected 
export and import 

throughputs 

Yearly 
statistical 

total 
container 

throughputs

Decomposition

Monthly 
decomposed export 

and import 
throughputs

Forecasting

Monthly forecasted 
export and import 

throughputs

Simulation

Daily simulated 
export and import 

throughputs

 
Figure 3. Forecasting framework 

Unfortunately, reliable statistics on seasonal container throughput at ports are not 
freely available (Schulze and Prinz 2009) because shipping lines and container ports 
usually just provide yearly market shares and total handling amounts. Therefore, the 
decomposition module in the first step of the forecasting framework decomposes 
yearly throughput figures into monthly supply and demand quantities. (A detailed 
explanation of this procedure using empirical data is given in Section 4.2). 

The main component of the forecasting framework consists of the ANN based 
forecasting procedure. ANNs are computational models inspired by the brain and how 
it processes information. Instead of requiring detailed information about the nature 
of a system, ANNs try to learn the relationship between the variables and parameters 
by analyzing data. ANNs can also handle very complex and large systems with many 
interrelated parameters. The effectiveness of biological neural systems originates 
from the parallel-distributed processing nature of the biological neurons. An ANN 
simulates this system by distributing computations to small and simple processing 
nodes (artificial neurons) in a network. ANNs have been used in many fields. One 
major application area is forecasting. Due to the characteristic features, ANNs are an 
attractive and appreciated alternative tool for both research and industrial 
applications. For comprehensive reviews on the application of ANNs on forecasting, 
see Zhang et al. (1998) and Kline and Zhang (2004). In conclusion, ANNs are 
considered an appropriate tool in forecasting container throughput of terminals. In 
the proposed framework, multi-layer feed-forward networks are trained using back-
propagation in order estimate each port’s monthly demand and supply throughput.  

Figure 4 shows a typical multi-layer feed-forward ANN architecture which contains 
three layers: an input layer, an output layer and, between them, the hidden layers. 
Each artificial neuron (node) is linked to nodes of the previous layer with weights. A 
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set of these weights creates the knowledge from the system. In order to produce the 
desired output for a presented input, the network is trained with a learning method 
through adaptation of the weights. After the training operation, the weights contain 
meaningful information about the data. The network uses the corresponding input 
data to produce output data, which are then compared with the desired output. When 
there is a difference between desired and produced outputs, the weights continue to 
adapt in order to decrease the difference (error). Until the total error reaches the 
required limit, the network continues to run in all the input patterns. After reaching 
the acceptable level, the ANN stops and uses the trained network to make forecasts. 
For details of the algorithm, see Zurada (1992) and Bose and Liang (1996). 

...

Hidden layers Output layer

Neuron (node) Weights

Input layer
 

Figure 4. Typical ANN architecture 

Back-propagation (BP) is a gradient-descent based effective learning algorithm for 
ANNs (Rumelhart et al. 1986). By adapting the weights with the gradient, BP tries to 
reduce the total error. The error is calculated as root-mean-squared (E) value in 
Equation (1), where t is the produced and o is the desired output over all patterns p 
and nodes i. 

1/2

21

2
ip ip

p i

E t o
 

  
 


 

(1) 

The BP algorithm first assigns random values to all weights for all nodes. Then, the 

activation 
pi

  value is calculated for each pattern and for each node by using the 

activation function given in Equation (2), where j refers to all nodes of the previous 
layer, i refers to all node positions of the current layer, and xj and wij are input and 
weight terms.  

pi j ij

j

f x w
 

  
 


 

(2) 

After calculating the output of the layer, the error term 
pi

  for each node is also 

calculated back through the network. The error term measures the changes in the 
network by using changes in the weight values. It is calculated for the output nodes 
and for the sigmoid activation function as given in Equation (3). For hidden layer 
nodes, the error term is calculated as given in Equation (4), where k indicates nodes 
in the downstream layer and j is the position of the weight in each node. 
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   1pi pi pi pi pit     
 

(3) 

 1pi pi pi pi kj

k

w     
 

(4) 

In conclusion, incremental change to each weight for each node is calculated as given 
in Equation (5), where ε is the learning rate used for weight adaptation in each 
training iteration and m is the momentum used to change the weight in the previous 
training iteration w . Stopping conditions, maximum iteration number, learning rate 
and momentum are speed and stability constants defined at the beginning of the 
training. 

   ij pi pi ijw m w     
 

(5) 

Finally, the Monte Carlo simulation module uses the monthly throughput figures 
estimated by the ANNs module as input in order to generate daily demand and supply 
expectations of container terminals. By analyzing these expectations, shipping lines 
can obtain realistic data for deciding on vessel capacities, network design, routes, 
ship deployment and schedules. The simulation model is run a number of times using 
throughput forecasts from the ANNs. That way, different random samples of future 
demand and throughput figures of ports are obtained. (See Section 4.2 for an 
illustration of the simulation mechanism.) 

Exact methods for solving the service network design problem are not practical for 
large-scale problem instances because of the problem complexity (Polat et al. 2012a; 
Polat et al. 2014). In this study, we therefore use an efficient heuristic solution 
approach called perturbation based neighbourhood search (PVNS) to determine a 
near-optimal design of the feeder service network. The PVNS approach applies the 
Savings Algorithm in order to gain a fast and effective initial solution. An enhanced 
variable neighbourhood search is used to improve the initial solution by searching 
neighbourhoods. An adaptive perturbation mechanism is applied to escape from local 
optima. For details of the algorithm see (Polat et al. 2014; Polat et al. 2015; Polat et 
al. 2012b). Main output of the heuristic solution algorithm is the composition of the 
fleet of vehicles and the service routes and their frequency. 

4. NUMERICAL INVESTIGATION 

4.1. Case study 

The countries located in the East Mediterranean and Black Sea region including the 
Aegean Sea, Marmara Sea and the Sea of Azov (see Figure 5) have faced a substantial 
increase in total container traffic in recent years. This is mainly caused by the positive 
economic development of the countries in the entire region. In parallel to the general 
growth of maritime container traffic an increase in port throughput has also been 
observed in the regional feeder ports. Hence, the outlook for the maritime 
transportation market is very promising (Kulak et al. 2013; Varbanova 2011). Several 
ports in the Mediterranean Sea are directly connected to the trunk shipping lines 
between Far East and Europe. With these ports as hubs several regional short-sea 
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shipping lines have built up feeder service networks which link the hinterland of this 
region to the global trunk shipping lines.  

MersinAntalya

Candarli

Izmir

Gebze

Ambarli Haydarpasa

Gemlik

Thessaloniki

Piraeus

Limassol

Lattakia

Beirut

Haifa

Ashdod

Port Said

Alexandria

Burgas

Varna

Ilyichevsk
Odessa

Novorossiysk

Poti

Trabzon

Aliaga

Aegean Sea

Mediterranean Sea

Black Sea

Sea of Azov

Constantza

TURKEY

Damietta

Batumi

Sea of Marmara

 
Figure 5. Regional ports in the East Mediterranean and Black Sea region 

In our numerical experimentation, we consider the case of a particular container 
feeder line which intends to re-design its feeder service network with a new hub port 
at Candarli near Izmir, Turkey. Since liner shipping is directly affected by financial, 
political and seasonal conditions, the company regards seasonal demand fluctuations 
as a major factor to be included in the design of the service network. In the considered 
region, the concerned feeder line has 36 contracted container terminals at 26 feeder 
ports in 12 countries. Table A.1 in the Appendix shows details about the terminals, 
including country and sub-region information, market share of the shipping lines in 
the various terminals, and yearly total container throughput between 2005 and 2011. 
These data are used in our numerical investigation as input to generate weekly 
throughput figures by use of the forecasting framework proposed in the previous 
section. Based on these weekly throughput figures the feeder network design is 
determined from the perspective of the considered feeder shipping line assuming a 
four-week service time deadline and seven-day service frequency conditions for a 52-
week sailing season.  

4.2. Demand estimation 

For the East Mediterranean and Black Sea region, databases providing information on 
container throughput of the ports are scarce and it is merely impossible to obtain 
seasonal throughput figures from the port authorities. For that reason, yearly 
throughput of regional container terminals is decomposed into monthly supply and 
demand quantities by using monthly import and export foreign trade rates of the 
related port countries. Table 3 shows the results of this decomposition procedure 
taking the Odessa container terminal in 2011 as an example. First, the percentages 
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of monthly export and import trade rates of the yearly foreign trade volumes are 
calculated. Next, these percentages are applied to determine the monthly container 
export and import figures for the considered port. 

Table 3. An example of monthly throughput decomposition 
 1 2 3 4 5 6 7 8 9 10 11 12 Total 
Trade Export 
($ Million)*  

4621 5379 5382 5603 5969 5889 5365 5769 5974 5716 6283 6459 68409 

Trade Import 
($ Million)* 

5037 6463 7016 6298 6766 6772 6522 7208 7412 7545 7675 7892 82606 

%-Export in 
foreign trade 

3.06 3.56 3.56 3.71 3.95 3.90 3.55 3.82 3.96 3.79 4.16 4.28 45.3 

%-Import in 
foreign trade 

3.34 4.28 4.65 4.17 4.48 4.48 4.32 4.77 4.91 5.00 5.08 5.23 54.7 

Container export 
(TEU) 

13883 16160 16169 16833 17933 17693 16118 17332 17948 17173 18876 19405 205523 

Container import 
(TEU) 

15133 19417 21078 18921 20327 20345 19594 21656 22269 22669 23058 23710 248177 

*Basis: Ukraine’s monthly foreign trade in goods (2011), Total throughput of the Odessa container terminal is 453700 TEU in 2011. 

In the subsequent step, the decomposed monthly figures are used in the proposed 
ANNs approach in order to forecast monthly freight demand and container 
throughput of the terminals. Figure 6 shows the monthly decomposed demand and 
throughput figures of the Odessa container terminal between 2005 and 2011 as well 
as monthly forecasted throughput for 2012.  

 
Figure 6. An example of monthly throughputs estimation 

In order to reflect fluctuations in daily freight demand, a Monte Carlo simulation 
model is applied. In the simulation model, the final daily demand figures are randomly 
generated in a two-step procedure using pre-defined distribution coefficients. The 
values of these coefficients were defined based on interviews with experts from port 
authorities and terminal operators. Table 4 shows the coefficients for the variation of 
demand for days in a week. Three levels of transportation demand are considered: 
low, medium and high. Taking medium demand as a reference level, low and high 
demand deviate by +/- 20% from the medium value. The entries in Table 4 indicate 
respective distribution coefficients for the workload levels and the days of a week. 
For instance, for Monday a low workload level will be chosen in the random generation 
of demand values with 20% probability, a low and a high demand level with 40% 
probability each. 

In the second step, randomized day-to-day fluctuations in the course of a month are 
generated. Table 5 show the respective distribution coefficients used in the 
simulation procedure. Low and high demand levels deviate by +/- 30% from the 
medium demand level. It is assumed that transportation demand is distributed over 
the days of a month according to the distribution coefficients indicated in Table 5. 
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Table 4. Distribution coefficients for demand of days in a week 
Days Low (0.8) Medium (1) High (1.2) 

Monday 20% 40% 40% 

Tuesday 30% 60% 10% 

Wednesday 40% 40% 20% 

Thursday 40% 50% 10% 

Friday 10% 30% 60% 

Saturday 10% 50% 40% 

Sunday 50% 40% 10% 

 
Table 5. Distribution coefficients for demand of days of the month 

Days Low (0.7) Medium (1) High (1.3) 

First 5 days 10% 50% 40% 

Mid of the month days 40% 40% 20% 

Last 5 days 10% 20% 70% 

Table 6 shows a sample calculation of the daily randomized demand generation. For 
instance, for Oct 05, 2011 (Wednesday) the random number of 0.00543 is drawn from 
the standard uniform distribution which, according to Table 4, leads to a week-day 
demand coefficient of 0.80. Next, the second random number of 0.85504 is drawn 
which according to the cumulative distribution function derived from Table 5 (for the 
first 5 days of the month) gives a month-day demand coefficient of 1.30. Multiplying 
these two obtained demand coefficients yields 1.04 and, taking 6405 as the reference 
demand value for the particular month, results in a randomly generated demand value 
of 6661. In this way, based on the Monte Carlo simulation principle random demand 
fluctuations to be used as input for the design of the feeder network are simulated. 

Table 6. An example of randomized daily demand generation 
Date Day Random 

number 
Week-day 
coefficient 

Random 
number 

Month-day 
coefficient 

Combined 
coefficient 

Reference 
demand 

Generated 
demand 

05 Oct. 2011 Wed. 0.00543 0.80 0.85504 1.30 1.04 6405 6661 

06 Oct. 2011 Thu. 0.66611 1.00 0.93674 1.30 1.30 6405 8327 

In the numerical experimentation, simulation runs are repeated 100 times for each 
day of each month using forecasted throughput figures. Figure 7 shows the average 
generated daily demand for export and import of containers for the Odessa container 
terminal for a 364-day sailing season in 2012. The respective values are assumed as 
demand forecasts for 2012 derived from historical demand figures. Since the feeder 
network design problem is solved under the assumption of a seven-day service 
frequency, daily throughputs are finally aggregated into weekly figures. 

 
Figure 7. An example of daily transportation demand simulation 
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Figure 8 shows weekly forecasted demand for export and import of containers for the 
Odessa container terminal and respective total figures of the region for a 52-week 
sailing season in 2012. In the next section, these weekly demand forecasts are used 
in the case study investigation of the feeder service design problem considering 
seasonally fluctuating transportation demand. 

 
Figure 8. Examples of weekly demand forecasts for the Odessa container terminal (right) and the whole region (left) 

4.3. The impact of seasonal demand fluctuations on service network 
design 

Since transportation demand greatly varies during the sailing season, it has a major 
impact on the service network design for container feeder lines. In particular, the 
number of ships of different type and the number of service routes will be affected 
by seasonal demand fluctuations. In this section, we investigate these relationships 
through a number of numerical experiments using the forecasting framework 
outlined in Section 3 in order to predict future transportation demand. As an example 
of application we consider the East Mediterranean and Black Sea region and the 
network design problem faced by a Turkish feeder shipping line (see Section 4.1). 
Though shipping lines in practice adapt their feeder service design not until a couple 
of months, it is assumed in our study that the feeder services are revised at the 
beginning of every period (week) in response to changes in seasonal demand 
forecasts. This allows us to better evaluate the impact of demand fluctuations. The 
revised service network may include introducing new routes and adjusted schedules 
as well as chartering in new ships or chartering out unnecessary ships.  

In order to analyze how seasonal demand fluctuations affect the service network of 
feeder shipping lines, the developed PVNS approach is run ten times with different 
random seeds for each week during a 52-week sailing season based on forecasted 
transportation demand. Figure 9 shows weekly minimum costs for the whole region, 
including chartering costs, operating costs, administration costs, on-sea bunker 
costs, on-port bunker cost and port charges for a 52-week sailing season. In other 
words, the figure shows how seasonal fluctuations of transportation demand affect 
the total feeder service costs of the region. Total costs vary between $4.6 million and 
$6.17 million indicating a 34.13% cost difference between the 1st and 38th week of 
the sailing season. 
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Figure 9. Minimum total cost of the region for a 52-week sailing season 

Since the geographic dimensions of feeder networks are far smaller than those of 
trunk line networks, total network costs contain a higher degree of ship-based fixed 
costs, such as chartering, operating and administration. Therefore, the cost 
difference from week to week mainly results from the number of service routes, the 
number of necessary ships and the types of these ships.  

As can be seen from Figure 10 the optimal number of routes in the network varies 
between 13 and 17. Since the hub port in Candarli is located close to the feeder ports, 
a large portion of small and mid-sized containerships is employed in the low demand 
seasons, while mid-sized containerships dominate in regular demand seasons, and 
big ships are only employed in order to cover peak demand. As a result, 34.70% of the 
routes are serviced by small ships, 64.78% by mid-sized ships, and 0.53% by big ships. 
Of the total slot capacity of the fleet 19.61% attribute to small ships, 79.32% to mid-
sized ships, and 1.07% to big ships. The necessary slot capacity varies between 
25,400 TEU (28.35% for small and 71.65% for mid-sized ships) and 37,500 TEU 
(19.20% for small, 69.33% for mid-sized and 11.47% for big ships), which 
corresponds to a 47.64% difference between the low demand (week 1) and the high 
demand season (week 37) of the sailing season.  

 
Figure 10. Necessary number of routes with ship types and slot capacity 

Figure 11 shows how the composition of the fleet varies during the sailing season. It 
appears that the fleet size of the service network varies between 23 ships (39.13% 
small and 60.87% mid-sized) and 30 ships (30.00% small, 63.33% mid-sized and 
6.67% big ships). These figures represent the minimum number of ships required for 
a seven-day frequency based on weekly forecasts of transportation demand for a 52-
week sailing season.  
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Figure 11. Necessary minimum number of ships of various types and capacity utilization 

5. CONCLUSIONS 

Decisions on feeder network design, e.g. on fleet size and mix, fleet deployment, ship 
routing and scheduling, are usually based on estimates of the container 
transportation volume in the considered region. However, transportation volume is 
highly affected by unstable economic and political conditions as well as seasonal 
demand fluctuations. In this study, we propose a Monte Carlo simulation and artificial 
neural network based forecasting framework to analyze the impact of these 
conditions on service network design of container feeder lines. Therefore, the service 
network design is updated repeatedly in the course of the year. As a methodology to 
solve the underlying combinatorial optimization problem, a perturbation based 
variable neighbourhood search approach is employed. 

The proposed model implementation has been tested for the liner shipping feeder 
service in the East Mediterranean and Black Sea region taking the design problem of 
a Turkish short-sea shipping company in view of the opening of the new Candarli port 
near Izmir, Turkey as an example. The optimal service network is determined based 
on the forecasted container throughput of the terminals in the region for each week 
during a 52-week sailing season. The results show that total costs of the service 
network as well as the necessary total slot capacity greatly vary over the sailing 
season. Moreover, the size and mix of the fleet of ships is highly affected by unstable 
demand conditions. These figures show the importance of dynamic and flexible 
service network design for container feeder lines. This study could be extended by 
developing a modelling approach for robust multi-period service network design and 
to investigate contractual relationships with customers as well as collaboration 
schemes between different shipping lines in the region. 
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Appendix 
 
Table A.1. Figures of contracted container terminals* 

 Terminal Country Share** 2005*** 2006 2007 2008 2009 2010 2011 

1 Burgas Bulgaria 31.0% 25000 26400 30600 45900 23800 23500 25000 
2 Varna Bulgaria 21.0% 84000 94000 99700 155300 112600 118700 122844 
3 Constanta 1 Romania 19.0% 476600 737100 1111400 1080900 294300 256500 350000 
4 Constanta 2 Romania 24.0% 300000 300000 300000 300000 300000 300000 300000 
5 Illiychevsk Ukraine 20.0% 291100 312100 532800 670600 256800 301500 280000 
6 Odessa Ukraine 22.0% 288400 395600 523500 572100 255500 354500 453700 
7 Novorossiysk 1 Russia 29.0% - 60000 90100 182000 84000 188652 335847 
8 Novorossiysk 2 Russia 29.0% - 99100 141400 124500 111000 124626 200153 
9 Poti Georgia 20.0% 105900 126900 184800 209600 172800 209800 254022 
10 Batumi Georgia 20.0% - - - 44200 8800 16300 45439 
11 Trabzon Turkey 35.0% 300 5400 22300 22100 21100 34072 40251 
12 Haydarpasa Turkey 15.0% 340600 400100 369600 356300 191400 176500 206082 
13 Ambarli 1 Turkey 10.0% 790300 962900 1296800 1541200 1263600 1663600 1548485 
14 Ambarli 2 Turkey 15.0% 439000 531000 666000 649000 476000 621000 844000 
15 Ambarli 3  Turkey 15.0% 161500 198500 276300 359700 200200 376400 449400 
16 Gebze 1 Turkey 15.0% 33800 35800 68800 135500 133400 184500 230884 
17 Gebze 2 Turkey 15.0% 14000 33000 78000 118000 156300 248200 283903 
18 Gemlik 1 Turkey 15.0% 90500 94800 114500 141000 152300 200500 195021 
19 Gemlik 2 Turkey 15.0% 240500 274600 341300 336300 214100 269300 462987 
20 Gemlik 3 Turkey 15.0% - - - 21800 84700 108100 107322 
21 Aliaga 1 Turkey 15.0% - - - - - 139918 256598 
22 Aliaga 2 Turkey 15.0% - - - - - 99414 127961 
23 İzmir Turkey 14.0% 784400 847900 898200 884900 826600 726700 672486 
24 Thessaloniki Greece 13.0% 366000 344000 447000 239000 270200 273300 295870 
25 Piraeus 1 Greece 13.0% 1394500 1403400 1373100 433600 498838 178919 490904 
26 Piraeus 2 Greece 12.0% - - - - 166062 684881 1188100 
27 Antalya Turkey 15.0% 11800 40200 63400 67100 59500 125700 165474 
28 Mersin Turkey 9.0% 594243 632905 799532 869596 845117 1015567 1126866 
29 Limassol Cyprus 10.0% 320100 358100 377000 417000 353700 348400 345614 
30 Lattakia Syria 9.0% 390800 472000 546600 568200 621377 586283 524614 
31 Beirut Lebanon 8.0% 463700 594200 947200 945134 994601 949155 1034249 
32 Haifa Israel 9.0% 1123000 1070000 1170000 1396000 1140000 1263552 1235000 
33 Ashdod Israel 11.0% 587000 693000 809000 828000 893000 1015000 1176000 
34 Alexandria 1 Egypt 7.0% 733900 762000 977000 632250 638700 666500 757572 
35 Alexandria 2 Egypt 5.0% - - - 632250 638700 666500 700000 
36 Damietta Egypt 8.0% 1129600 830100 894200 1125000 1139000 1060100 800000 

*Source: Dynamar (2009), Ocean Shipping Consultants (2011) and web pages of container terminals. ** Market share of the considered 
feeder shipping line at the container terminal *** Total throughput of container terminal in TEU 
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