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Abstract 
 
Artificial neural networks (ANNs) provide a modeling approach that can be used in the in vitro stages of probiotic 
studies. The aim of the study was to evaluate the ability of multilayer perceptron (MLP) and radial-basis function 
(RBF) ANNs to predict the inhibition level of indicator bacteria in co-culture experiments performed at various 
initial concentrations. In both types of networks, time, initial concentrations of L. lactis and Aeromonas spp. were 
the input variables and the inhibition concentration of Aeromonas spp. was the output value. In the construction 
of the models, different numbers of neurons in the hidden layer, and different activation functions were examined. 
The performance of the developed MLP and RBF models was tested with root mean square error (RMSE), 
coefficient of determination (R2) and relative error (e) statistical analysis. Both ANN models were showed a strong 
agreement between the predicted and experimental values. However, the developed MLP models showed higher 
accuracy and efficiency than the RBF models. The results indicated that ANNs developed in this study can 
successfully predict the inhibition concentration of Aeromonas spp. co-cultured with L. lactis in vitro and can be 
used to determine bacterial concentrations in the design of further experiments. 
 
Keywords: Artificial Neural Network, In Vitro, Probiotic  
 
1. Introduction 
 
Aeromonas spp. are Gram-negative opportunistic bacteria with global distribution in various 
aquatic environments [1-2]. They are divided into two groups as motile and non-motile. The 
only non-motile Aeromonas species is A. salmonicida and is one of the important fish 
pathogens. Motile Aeromonas species (MAS) especially A. hydrophila, A. veronii and A. sobria 
may infect humans and lower vertebrates, including amphibians, reptiles, and fish [3-4]. MAS 
are considered as agents of motile aeromonad infections in aquatic animals [5]. MAS infections 
are characterised with exophthalmia, haemorrhages, ulcerations, skin lesions, acidic fluid, liver 
and kidney lesions in fish [6]. Motile Aeromonas species, especially A. hydrophila, cause great 
economic losses as it initiates outbreaks that cause massive fish mortality worldwide [3]. 
Antibiotics have been widely used for many years to prevent and control bacterial diseases in 
aquaculture [7]. The continuous applications of antibiotics cause accumulation of antibiotics in 
organs, disruption of the normal microbiota of the gut [8], and the development of antibiotic-
resistant bacteria [9]. In the last decade, intensive use of antibiotic-based therapies against 
Aeromonas spp. has led to increased resistance of these bacteria to antibiotics such as 
oxytetracycline, tetracycline, and trimethoprim/sulfamethoxazole [10]. Therefore, 
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environmentally friendly biocontrol agents such as probiotics can be used as an alternative 
approach to reduce these risk factors [11-12]. 

The use of probiotics is considered as an alternative method to prevent bacterial infections in 
aquaculture [13-14]. Lactic acid bacteria (LAB) are widely preferred in aquaculture as they are 
effective in disease control, improve intestinal microbial balance [15] and promote growth by 
increasing immune response [16]. LAB are “generally recognized as safe” (GRAS) 
microorganisms [17] and they are permanent inhabitants of the fish intestinal flora [18]. LAB 
produce various antimicrobial compounds such as organic acid, ethanol, hydrogen peroxide, 
diacetyl, carbon dioxide and bacteriocin that inhibit the growth of pathogenic bacteria [19-21]. 
The use of bacteriocins against Aeromonas spp. is an alternative method of inhibiting their 
growth [22]. Bacteriocins such as bacteriocin ST151BR, bacteriocin HKT-9 and plantarisin 35d 
secreted by LAB are effective against Aeromonas spp. has been previously reported in several 
papers [23-24].  

There are many well-defined and commercially used probiotic strains worldwide, but the 
discovery of new strains still arouses the interest of scientists [25]. Many in vitro and in vivo 
methods are used in probiotic experiments. In vivo testing is expensive, time-consuming, and 
requires ethical committee approval. Therefore, reliable in vitro methods are required for the 
selection of potential probiotic strains [26]. In vitro tests are quite different from in vivo 
conditions, but they provide rapid and efficient screening for the search for new potential LAB 
strains [27-28]. Determination of bacterial growth or inactivation kinetics under ideal laboratory 
conditions are the methods applied in probiotic studies. Besides that, the mathematical 
modelling is preferred as a suitable tool for selecting beneficial strains, designing laboratory 
equipments, and determining growth parameters [29]. Predictive microbiology focuses on 
mathematical models that describe the effect of factors such as temperature, pH, concentration, 
and inactivation kinetics of microbial growth [30]. In statistical models, it is difficult to express 
relationships between categorical data such as bacterial names, bacterial behavior and 
environmental parameters. Because categorical data are qualitative values and arithmetic 
operations cannot be performed [31]. Therefore, an alternative approach is required that can 
process large noisy datasets, learn relationships directly from the result of experiments, and 
predict without prior knowledge. In recent years, artificial neural networks (ANNs), which can 
describe nonlinear and complex relationships between data without any assumptions, have 
become an alternative to traditional regression models [32-33]. These are used to predict the 
outcome of any problem or situation in different disciplines by using some input values and 
relations [34]. ANNs imitate the functioning of the human brain. They can learn, recognize, and 
overcome complex problems in engineering and science [35]. A general ANN system consists 
of layers. The input layer receives signals from the external environment. There is no 
transaction in this layer. The hidden layer processes the information from the input layer. It can 
contain more than one layer. The output layer takes the weighted sum of the outputs of all 
hidden layer neurons and produces the output of the model [36]. 

The aim of this work was to examine the ability of ANNs to predict the inhibition concentration 
of Aeromonas spp. co-cultured with Lactococcus lactis. Two computational models based on 
the ANN approach are presented for the prediction. These models are, multilayer perceptron 
(MLP) and radial basis function (RBF). The data set was obtained from co-culture experiments 
performed in a controlled laboratory condition. The accuracy and validity of the developed 
MLP and RBF models were compared with the actual experimental results. 

2. Materials and Methods 
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2.1. Microorganisms and experimental design 

 
Microorganisms used in this study included Lactococcus lactis (MG754705.1), Aeromonas 
veronii (MG322191.1), Aeromonas sobria (ATCC 43979) and Aeromonas hydrophila (ATCC 
7966). L. lactis and A. veronii were isolated from fish (Dicentrarchus labrax) and confirmed 
by sequencing of their 16S rRNA gene [37]. L. lactis was selected for its probiotic properties 
and Aeromonas species were used as indicator strains. Live L. lactis cells were selected because 
the inhibitory effect was better than the supernatants (unpublished data). 

Experiments were carried out at different initial concentrations. These are 1.0 × 104 cfu /mL, 
1.0 × 106 cfu /mL and 1.0 × 108 cfu /mL for indicator bacteria and 1.0 × 104 cfu/mL, 1.0 × 105 

cfu/mL, 1.0 × 106 cfu /mL, 1.0 × 107 cfu/mL and 1.0 × 108 cfu/mL for L. lactis. L. lactis was 
co-cultured with each of the indicator bacteria separately at the indicated initial concentrations 
in tryptic soy broth (TSB) at 30 °C, pH 7.2 for 120 h (150 rpm-1 in a shaker). Uncultivated TSB 
was used as a negative control. Samples (100 µl) withdrawn 0, 6, 24, 30, 48, 54, 72, 78, 96, 102 
and 120 h from the fermented cultures and colonies were counted using the standard agar plate 
method. deMan Rogosa Sharpe (MRS) agar plates were used to select Lactococcus, while 
thiosulfate citrate bile salts sucrose agar (TCBS) plates were used for Aeromonas. The number 
of bacteria from plate counts were calculated as log values, which is a transformation of the 
microbiological data stabilizing the variance [38-39]. 

2.2. Data sets used for modeling 

The input values in the networks represent the initial concentrations of L. lactis, Aeromonas 
spp. and the sampling times during fermentation. The estimated value of the developed 
networks is the concentration of Aeromonas spp. (cfu/mL) at the selected sampling points.	The 
database consisted of 495 experimental data. These experimental data were divided into two 
groups as training and validation data sets. The models were built with training data (270 data, 
3 indicator strains × 90 sampling points per strain) which are different combinations of the 
values in Table 1. The remaining data (225 data, 3 indicator strains × 75 sampling points per 
strain) obtained at 6, 30, 54, 78, and 102 h was not added to the training data set, it was used 
for the model validation. These sampling points were selected to cover the entire co-culture 
process [39].  

Table 1. Test parameters 
Time (h) L. lactis (cfu/mL)* Aeromonas spp. (cfu /mL)* 

0 1.0 × 108 1.0 × 108 

24 1.0 × 107 1.0 × 106 
48 1.0 × 106 1.0 × 104 

72 1.0 × 105  
96 1.0 × 104  
120   

* initial concentrations 

 
2.3. Development of MLP and RBF models 
 
Multilayer perceptron and radial basis function are the most preferred algorithms of neural 
networks and are used to solve many problems. These algorithms belong to a general class of 
neural networks called feed-forward neural networks. In this network type, the information 
processing follows one direction from input neurons to output neurons [40]. In MLP and RBF, 
each neuron is independent in its layer but is connected to all neurons in the next layer with 
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certain weights [41]. While there is no transaction in the input layer, the hidden layer and output 
layers process the data using the activation function. There are some differences between MLP 
and RBF neural networks [42]. The first and the most important difference between MLP and 
RBF networks is that they generate different learning strategies against problems [39]. RBFs 
generate local solutions and network outputs are obtained by specified hidden neurons in certain 
local accessible areas, while MLPs act globally, and network outputs are decided by all neurons 
[42, 43].	In MLP networks, input signal activates many neurons, and these activated neurons 
participate in the calculation of the network output. In RBF networks, input signal activates a 
single neuron of the hidden layer and the weight between the activated hidden and output 
neurons participates in the calculation of the network output [44]. Second, MLP networks are 
structured one or several hidden layers, while RBF networks always have single hidden layer. 
Third, in MLP networks, neurons of the hidden layer usually contain a sigmoidal activation 
function (i.e., a logistic or hyperbolic tangent function), while in RBF networks, a radial-based 
activation function (usually a gaussian function). 

The input and output values of each pattern were normalized in the range of 0.1–0.9. The 
number of neurons in the hidden layer ranged from 2-20 for MLP networks and 2-30 for RBF 
networks. Weights are initialized into random values between 0.0001 and 0.001. The 
appropriateness values of the error functions (sum of squares and entropy) were tested. After 
the network type is determined, the activation functions that transfer the signals from the 
previous layer to the next layer using a mathematical function are selected. In MLP networks, 
identity, logistic sigmoid, hyperbolic tangent, exponential, softmax, and gaussian activation 
functions were examined, and in RBP networks gaussian was tested. The architecture of MLP 
and RBF neural networks are illustrated in Fig 1. In this study, BFGS (Broyden-Fletcher-
Goldfarb-Shanno) for MLP networks and RBFT (Reputation-based Byzantine Fault Tolerance) 
training algorithms for RBF networks were examined. 5000 networks were developed for MLP 
structures and 10000 networks for RBF-based structures. An artificial neural network model 
was performed in Statistica software 12 using the neural network module. The program code 
was written in C++ language. 
 

 
Fig. 1. The architecture of MLP and RBF neural networks 

 
 
2.4. Model performance 
 
In the study, the performance and accuracy of proposed MLP and RBF neural network models 
were tested with statistical parameters. The coefficient of determination (R2), root mean square 
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error (RMSE) and relative error (e) were used to conclude about the accuracy of both neural 
network models. These parameters calculated as follows: 
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Where Rexpi and EANNi are the experimental and calculated (with MLP and RBF) concentrations 
of the A. veronii, A. hydrophila and A. sobria. n denotes the total number of sampling points 
and 𝑅"#$ refers to average experimental value.  
 
3. Result and Discussion 
 
Co-culture experiments are the preferred method for evaluating the inhibition activity of L. 
lactis [45]. In this study, co-culture experiments of L. lactis with A. veronii, A. hydrophila and 
A. sobria were performed. The highest inhibition rate was detected after 120 h of incubation 
with Aeromonas spp. with an initial level of 1.0 × 104 cfu/mL and L. lactis with an initial level 
of 1.0 × 108 cfu/mL. The inhibition rates were determined 54.4% for A. veronii, 48.3% for A. 
hydrophila and  38.8% for A. sobria. In agreement with previous studies, co-culture 
experiments showed that the inhibitory activity of L. lactis increased when the concentration of 
probiotic bacteria and the incubation time increased [46]. 

Gathering sufficient and valid data is one of the most important steps in the mathematical model 
development process [40]. In this study, a total of 495 experimental data obtained from in vitro 
co-culture assays of A. veronii, A. sobria, A. hydrophila with L.lactis were used in order to 
develop MLP and RBF models. 270 of these data were used to build the model while 225 of 
them were used to validation. Each set of data includes sampling points during co-culture assay 
and amounts of L. lactis and Aeromonas spp. 

In this study, the comparison of the empirical correlations of the proposed models was evaluated 
by considering the root mean square error (RMSE), coefficient of determination (R2) and 
relative error (e) statistical parameters. A lower RMSE value exhibits better efficiency [40]. 
The fact that the RMSE value is close to zero indicates that the predictive ability of the model 
has increased [47]. Although the RMSE values of the two networks are close to each other, the 
RMSE values of MLP are lower than RBF models. R2 is a statistical definition that reveals the 
numerical relationship between the data obtained from the experiment results and the network 
model predictions [43]. This value is defined as the square of the correlation coefficient and 
ranges from 0 to 1. R2 > 0.80 means that there is a strong correlation between experimental 
values and model predictions [48]. R2 values of MLP were slightly higher than RBF models. A 
relative error is a type of error that shows how close the obtained values are to the real values. 
It was determined that MLP models had lower relative error rates than RBF models. Figures 2, 
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4 and 6 indicate that both models exhibited high correlation coefficients. The high accuracy of 
the proposed models shows that these models have been successfully trained [40]. Although 
there are small differences between the RMSE, R2 and relative error values of both methods, it 
is seen that the MLP model has a better estimation capacity than the RBF model. 

Figures 3, 5 and 7 show a comparison of the experimental results with the predictions of the 
MLP and RBF models as a function of time. It was determined that there is a high match 
between MLP models and experimental results. In the RBF models, it was determined that the 
predictions converged less with the data of the experimental results.  

The RMSE of A. veronii was calculated as RMSEMLP=0.072111 and RMSERBF=0.084063. The 
R2 of A. veronii was calculated as R2

MLP=0.998224 and R2
RBF=0.997195 (Fig. 2). 

 

  
(a) (b) 

Fig. 2. Correlation between neural network model predictions and experimental outputs for 
A. veronii 

 
Figure 3 shows the amount of A. veronii co-cultured with L. lactis. As shown in the figure, the 
average relative errors of A. veronii were calculated as eMLP=0.85% and eRBF=1.19%. 
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(a) 

 

  
(b) 
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(c) 

  
(d) 
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(e) 

Fig. 3. The comparison of neural network model predictions and experimental outputs for the 
concentrations of A. veronii co-cultured with L. lactis. The initial concentrations of A. veronii 
were 1.0 × 104 cfu/mL, 1.0 × 106 cfu/mL and 1.0 × 108 cfu/mL and initial concentrations of L. 

lactis were (a) 1.0 × 108 cfu/mL (b) 1.0 × 107 cfu/mL (c) 1.0 × 106 cfu/mL (d) 1.0 × 105 

cfu/mL (e) 1.0 × 104 cfu/mL 

 
The RMSE of A. hydrophila  was calculated as RMSEMLP=0.073937 and RMSERBF =0.084853. 
The R2 of A. hydrophila was calculated as R2

MLP=0.996797 and R2
RBF=0.995645 (Fig. 4). 

 

 
 

(a) (b) 
Fig. 4. Correlation between neural network model predictions and experimental outputs for A. 

hydrophila 
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Figure 5 shows the concentrations of A. hydrophila co-cultured with L. lactis. As shown in the 
figure, the average relative errors of A. hydrophila were calculated as eMLP=0.82% and 
eRBF=1.15%. 

 

  
(a) 

  
(b) 
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(d) 
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(e) 

Fig. 5. The comparison of neural network model predictions and experimental outputs for the 
concentrations of A. hydrophila co-cultured with L. lactis. The initial concentrations of A. 

hydrophila were 1.0 × 104 cfu/mL, 1.0 × 106 cfu/mL and 1.0 × 108 cfu/mL and initial 
concentrations of L. lactis were (a) 1.0 × 108 cfu/mL (b) 1.0 × 107 cfu/mL (c) 1.0 × 106 cfu/mL 

(d) 1.0 × 105 cfu/mL (e) 1.0 × 104 cfu/mL 

 
The RMSE of A. sobria  was calculated as RMSEMLP=0.071181 and RMSERBF=0.084063. The 
R2 of A. sobria was calculated as R2

MLP=0.996865 and R2
RBF=0.995571 (Fig. 6). 

 

 
 

Fig. 6. Correlation between neural network model predictions and experimental outputs for 
A.sobria 

Figure 7 shows the concentrations of A. sobria co-cultured with L. lactis. As shown in the 
figure, the average relative errors of A. sobria were calculated as eMLP=0.79% and eRBF=1.10%. 
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(e) 

 
Fig. 7. The comparison of neural network model predictions and experimental outputs for the 
concentrations of A. sobria co-cultured with L. lactis. The initial concentrations of A. sobria 

were 1.0 × 104 cfu/mL, 1.0 × 106 cfu/mL and 1.0 × 108 cfu/mL and initial concentrations of L. 
lactis were (a) 1.0 × 108 cfu/mL (b) 1.0 × 107 cfu/mL (c) 1.0 × 106 cfu/mL (d) 1.0 × 105 

cfu/mL (e) 1.0 × 104 cfu/mL 

 
The optimization processes were performed on different parameters of MLP and RBF models 
to determine the network architecture with the highest accuracy and efficiency in estimating the 
concentration of Aeromonas spp. in co-culture with L. lactis. The number of neurons in the 
input and output layers can be determined according to the requirements in the problem, but 
there is no rule in determining the number of process elements in the hidden layers. A network 
model with an insufficient or excessive number of neurons in the hidden layer can cause poor 
generalization and overfitting [49]. The best generalization performance is achieved by trial 
and error versus network complexity [50]. In the current study, the best MLP and RBF network 
structures were determined by testing multiple architectures and considering the error rates of 
the networks. In MLP models the most appropriate network configuration was 3 units for each 
hidden layer with logistic activation function in hidden and output layer. The number of neurons 
in the hidden layer was different in the RBF models, but in all models the activation function 
was gaussian in the hidden layer and identity in the output layer. Both network types, with the 
error term sum of squares (sos) produced superior networks. The best of the neural networks 
recognized are shown in Table 2. 
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Table 2. Characteristics of artificial networks that recognize output elements 

Network 

ANN 
network 
model 

Learning 
error 

Testing 
error 

Validation 
error 

Learning 
algorithm 

Error 
function 

Activation 
function in 

hidden 
layer 

Activation 
function 
in output 

layer 

N1 

MLP 3-14-

1 

0.96 0.73 5.44 BFGS 105 SOS Logistic Logistic 

RBF 3-28-

1 

1.26 1.26 2.11 RBFT SOS Gaussian Identity 

N2 

MLP 3-3-1 2.31 4.13 2.13 BFGS 0 SOS Exponential Logistic 

RBF 3-26-

1 

1.0 6.21 2.49 RBFT SOS Gaussian Identity 

N3 

MLP 3-3-1 0.85 0.76 0.88 BFGS 37 SOS Logistic Logistic 

RBF 3-27-

1 

0.41 1.83 1.85 RBFT SOS Gaussian Identity 

N1 A. veronii network, N2 A. hydophila network, N3 A. sobria network, BFGS Broyden Fletcher 
Goldfarb-Shanno, RBFT Reputation-based Byzantine Fault Tolerance, SOS sum of squares 

 

4. Conclusion 

In this study, two different ANN algorithms, multilayer perceptron (MLP) and radial basis 
function (RBF) were developed for the prediction of the concentrations of Aeromonas spp. co-
cultured with L.lactis. The performance and accuracy of proposed MLP and RBF models were 
tested with the coefficient of determination (R2), root mean square error (RMSE) and relative 
error (e). Both ANN models were showed a strong agreement between the predicted and 
experimental values. However, the developed MLP models showed higher accuracy and 
efficiency compared to the RBF models. The results showed that MLP-based models were 
successful in estimating the concentrations of Aeromonas spp. co-cultured with L. lactis in vitro 
at different initial concentrations over time. Therefore, this model can be used to determine the 
bacterial concentrations in the designing of further experiments.	 Since the network was 
developed from experimental results under controlled laboratory conditions with environmental 
parameters kept constant, further research should be conducted to test the applicability of the 
ANN approach in the variability of these parameters.  
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