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ORDER-PRESERVING AND ORDER-DECREASING
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Abstract. The full transformation semigroup Tn is defined to consist of
all functions from Xn = {1, . . . , n} to itself, under the operation of com-

position. In [9], for any α in Tn, Howie defined and denoted collapse by

c(α) =
⋃

t∈im(α)

{tα−1 : |tα−1| ≥ 2}. Let On be the semigroup of all order-

preserving transformations and Cn be the semigroup of all order-preserving

and decreasing transformations on Xn under its natural order, respectively.

Let E(On) be the set of all idempotent elements of On, E(Cn) and N(Cn)
be the sets of all idempotent and nilpotent elements of Cn, respectively. Let

U be one of {Cn, N(Cn), E(Cn),On, E(On)}. For α ∈ U , we consider the set

imc(α) = {t ∈ im(α) : |tα−1| ≥ 2}. For positive integers 2 ≤ k ≤ r ≤ n, we
define

U(k) = {α ∈ U : t ∈ imc(α) and |tα−1| = k},

U(k, r) = {α ∈ U(k) :
∣∣ ⋃
t∈imc(α)

tα−1| = r}.

The main objective of this paper is to determine |U(k, r)|, and so |U(k)| for
some values r and k.

1. Introduction

For any non-empty finite set X, the set TX of all transformations of X (i.e., all
maps X to itself) is a semigroup under composition, and is called the full trans-
formation semigroup on X. For any n ∈ N, if X = Xn = {1, . . . , n}, then TX
is denoted by Tn. A transformation α ∈ Tn is called order-preserving, if x ≤ y
implies xα ≤ yα for all x, y ∈ Xn and decreasing (increasing), if xα ≤ x (xα ≥ x)
for all x ∈ Xn. The subsemigroup of all order-preserving transformations in Tn is
denoted by On and the order-decreasing transformations in Tn is denoted by Dn.
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The subsemigroup of all order-preserving and decreasing (increasing) transforma-
tions in Tn is denoted by Cn (C+

n ) i.e., Cn = On ∩ Dn. Umar proved that Dn and
D+

n are isomorphic in [15, Corollary 2.7.]. Furthermore, Higgins proved that Cn and
C+
n are isomorphic semigroups in [8, Remarks, p. 290]. For any transformation

α in Tn, the collapse, the fix, the image and the kernel are denoted and definded,
respectively, by

c(α) =
⋃

t∈im(α)

{tα−1 : |tα−1| ≥ 2}, (α) = {x ∈ Xn : xα = x},

im(α) = {xα : x ∈ Xn}, and ker(α) = {(x, y) : xα = yα for allx, y ∈ Xn}.

Given transformation α in Tn is called collapsible, if there exists t ∈ im(α) such
that |tα−1| ≥ 2.

An element e of a semigroup S is called idempotent if e2 = e and the set of all
idempotents in S is denoted by E(S). An element a of a finite semigroup S with
a zero, denoted by 0, is called nilpotent if am = 0 for some positive integer m, and
furthermore, if am−1 ̸= 0, then a is called an m-nilpotent element of S. Note that
zero element is an 1-nilpotent element. The set of all nilpotent elements of S is
denoted by N(S). It was proven a finite semigroup S with zero is nilpotent when
exactly the unique idempotent of S is the zero element (see, [6, Proposition 8.1.2]).
The reader is referred to [5] and [11] for additional details in semigroup theory.

Recall that Fibonacci sequence {fn} is defined by the recurrence relation fn =
fn−1 + fn−2 for n ≥ 3, where f1 = f2 = 1 (see [10]). As proved in [13, Theorem
2.1], |Cn| = |C+

n | = Cn = 1
n+1

(
2n
n

)
, the n-th Catalan number for n ≥ 1 (see,

[7]). That is why Cn is also called the Catalan monoid. In [13, Proposition 2.3]
and [8, Theorem 3.19], it has been shown that |N(Cn)| = |N(C+

n )| = Cn−1 and
|E(Cn)| = |E(C+

n )| = 2n−1. Also, from [10, Theorem 2.1 and Theorem 2.3], we have
that |On| =

(
2n−1
n−1

)
and |E(On)| = f2n.

As indicated in [5] if α ∈ Cn, we use

α =

(
A1 · · · Ar

a1 · · · ar

)
(1)

to notifty that im(α) = {a1 = 1 < a2 < . . . < ar} and aiα
−1 = Ai for each

1 ≤ i ≤ r. Furthermore, A1, A2, . . . , Ar which are pairwise disjoint subsets of Xn

are called blocks of α. It is clear that such an α is an idempotent if and only if
ai ∈ Ai for all i. As defined in [4] a set K ⊆ Xn is called convex if K is in the
form [i, i + t] = {i, i + 1, . . . , i + t − 1, i + t}. A partition P = {A1, . . . , Ar} of Xn

for 1 ≤ r ≤ n is called an ordered partition, and written P = (A1 < · · · < Ar)
if x < y for all x ∈ Ai and y ∈ Ai+1 (1 ≤ i ≤ r − 1). For a given α ∈ Cn let
im(α) = {a1 = 1 < a2 < . . . < ar} and Ai = aiα

−1 for every 1 ≤ i ≤ r. Then,
the set of kernel clasess of α, Xn/ ker(α) = {A1, . . . , Ar}, is an ordered convex
partition of Xn. Since N(Cn) is a nilpotent subsemigroup of Cn, if α ∈ N(Cn), then
1α = 2α = 1, and that |1α−1| ≥ 2.
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Several authors studied certain problems concerning combinatorial aspects of
semigroup theory during the years. The vast majority of papers have been written
in this area such as [3, 9, 12, 13, 15, 16]. The rank (minimal size of a generating
set) and idempotent rank (minimal size of an idempotent generating set) of several
transformations semigroups have been studied in [9], [12] and [16] by using the
combinatorial methods. A mapping α : dom(α) ⊆ Xn → im(α) ⊆ Xn is called
a partial transformation, and the set of all partial transformations is a semigroup
under composition and denoted by Pn. In the articles [1] and [14] the numbers
|Tn(k, r)| and |Pn(k, r)| were calculated for r = k = 2, 3. Since then, Tn(k, r)
were determined for r = k for 2 ≤ k ≤ n in [2]. In the present paper, we cal-
culate |Cn(k, k)|, |Cn(k, 2k)|, |Cn(2, n)|, |N(Cn)(k, k)|, |N(Cn)(k, 2k)|, |N(Cn)(2, n)|,
|E(Cn)(k, r)|, |On(k, k)| and |E(On)(k, k)|. These invariants could be interesting
and useful in the study of structure of semigroups.

2. Collapsible elements in Cn
Let U(k, r) = Cn(k, r) for positive integers 2 ≤ k ≤ r ≤ n. Then, it is obvious

that |Cn(k, r)| = 0 if k does not divide r, and further |Cn(n, n)| = 1. Note that 1n
which denotes identity element of Cn and On is the only non-collapsible element of
Cn and On then, the number of collapsible elements in Cn and On are Cn − 1 and(
2n−1
n−1

)
− 1, respectively. The proof of the next combinatorial result is easy and is

omitted.

Lemma 1. For positive integers k and n where 1 ≤ k ≤ n,

n−k+1∑
i=1

(
n− i

n− k − i+ 1

)
=

(
n

k

)
.

□

Theorem 1. For positive integers k and n where 2 ≤ k ≤ n,

|Cn(k, k)| =
(
n

k

)
.

Proof. For a given α ∈ Cn(k, k) it is clear that there exists i ∈ im(α) such that
|iα−1| = k and min(iα−1) = i. So,

α =

(
{1} {2} · · · {i− 1} [i, k + i− 1] {k + i} · · · {n}
1 2 · · · i− 1 i (k + i)α · · · nα

)
,

where 1 ≤ i ≤ n − k + 1. As can be seen the above form, we choose elements of

im(α) from the set [i+1, n] for the set [k+i, n]. There are
(
n−(i+1)+1
n−(k+i)+1

)
=

(
n−i

n−k−i+1

)
ways to do that. This yields, there are

(
n−i

n−k−i+1

)
elements in Cn(k, k) for a fixed i.

Since 1 ≤ i ≤ n− k + 1, it follows directly from Lemma 1 that

|Cn(k, k)| =
n−k+1∑
i=1

(
n− i

n− k − i+ 1

)
=

(
n

k

)
.
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□
Our next result computes |Cn(k, 2k)|.

Proposition 1. For positive integers k and n where 2 ≤ k ≤ n,

|Cn(k, 2k)| =
n−2k+1∑

i=1

n−k+1∑
j=i+k

j∑
l=j−k+1

(
l − i− 1

j − k − i

)(
n− l

n− k − j + 1

)
.

Proof. Given α ∈ Cn(k, 2k), let Ai = [i, k+ i− 1] and Aj = [j, k+ j− 1] be any two
blocks of α each of which contain k elements. So,

α =

(
{1} {2} · · · {i− 1} Ai {k + i} · · · Aj · · · {n}
1 2 · · · i− 1 i (k + i)α · · · jα · · · nα

)
,

where 1 ≤ i ≤ n−2k+1 and i+k ≤ j ≤ n−k+1. Let jα = l where j−k+1 ≤ l ≤ j.
As can be seen above form, we choose elements of im(α) from the set [i+1, l−1] for
the set [k+ i, j−1] and from the set [l+1, n] for the set [k+j, n]. However, this can

be done
(
l−i−1
j−k−i

)(
n−l

n−k−j+1

)
ways. This yields, there are

(
l−i−1
j−k−i

)(
n−l

n−k−j+1

)
elements

in Cn(k, 2k) for fixed i, j and l. Since 1 ≤ i ≤ n− 2k+1, i+ k ≤ j ≤ n− k+1 and
j − k + 1 ≤ l ≤ j, it follows quickly that

|Cn(k, 2k)| =
n−2k+1∑

i=1

n−k+1∑
j=i+k

j∑
l=j−k+1

(
l − i− 1

j − k − i

)(
n− l

n− k − j + 1

)
.

□

Theorem 2. For positive even integer n ≥ 2,

|Cn(2, n)| =
2

(n+ 2)

(
n
n
2

)
.

Proof. For any α ∈ Cn(2, n), it is clear that n must be even, and so |Cn(n, 2)| = 0 if
2 does not divide n. Then, the result will clearly follow if we establish a bijection
between Cn(2, n) and Cn

2
. Define a map θ : Cn(2, n) → Cn

2
by (α)θ = α′ where{

(2i− 1)α = iα′ + i− 1, i = 1, 2, . . . , n
2 ;

(2i)α = iα′ + i− 1, i = 1, 2, . . . , n
2 ,

that is, {
jα = ( j+1

2 )α′ + j−1
2 , j = 1, 3, . . . , n− 1;

jα = j
2α

′ + j−2
2 , j = 2, 4, . . . , n.

This yields, θ is a well-defined bijection. Since |Cn
2
| = Cn

2
, the proof is completed.

□
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Example 1. The function θ : C6(2, 6) → C 6
2
defined as in above is a bijection.

Certainly,

C6(2, 6) =

{(
{1, 2} {3, 4} {5, 6}
1 2 3

)
,

(
{1, 2} {3, 4} {5, 6}
1 2 4

)
,(

{1, 2} {3, 4} {5, 6}
1 2 5

)
,

(
{1, 2} {3, 4} {5, 6}
1 3 4

)
,(

{1, 2} {3, 4} {5, 6}
1 3 5

)}
and

C3 =

{(
1 2 3
1 1 1

)
,

(
1 2 3
1 1 2

)
,

(
1 2 3
1 1 3

)
,(

1 2 3
1 2 2

)
,

(
1 2 3
1 2 3

)}
,

as wanted. □

Let U(k, r) = N(Cn)(k, r) for positive integers 2 ≤ k ≤ r ≤ n. Clearly,
|N(Cn)(k, r)| = 0 if k does not divide r, and also |N(Cn)(n, n)| = 1 and |N(Cn(n−
1, n − 1)| = n − 2. Note that α ∈ N(Cn), 1α = 2α = 1 and iα ≤ i − 1 for all
3 ≤ i ≤ n, and so the number of collapsible emenets in N(Cn) is |N(Cn)| = Cn−1.

Lemma 2. For positive integers k and n where 2 ≤ k ≤ n,

|N(Cn)(k, k)| =
(
n− 2

n− k

)
.

Proof. Given α ∈ N(Cn)(k, k), since 1α = 2α = 1 and |1α−1| = k, we have

α =

(
[1, k] {k + 1} {k + 2} · · · {n}
1 (k + 1)α (k + 2)α · · · nα

)
.

As can be seen above form, we choose elements of im(α) from the set [2, n] for the
set [k + 1, n− 1]. However, there are

|N(Cn)(k, k)| =
(
n− 2

n− k

)
ways to do that, as required. □

Proposition 2. For positive integers k and n where 2 ≤ k ≤ n,

|N(Cn)(k, 2k)| =
n−k+1∑
j=k+1

j∑
l=2

(
l − 2

j − k − 1

)(
n− l

n− k − j + 1

)
.
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Proof. Given α ∈ N(Cn)(k, 2k), let A1 = [1, k] and Aj = [j, k + j − 1] be any two
blocks of α which contain k elements. This yields,

α =

(
A1 {k + 1} · · · Aj {n}
1 (k + 1)α · · · jα nα

)
,

where k+1 ≤ j ≤ n−k+1. Let jα = l where 2 ≤ l ≤ j. As can be seen above form,
we choose element of im(α) from the set [2, l− 1] for the set [k+1, j − 1] and from

the set [l+1, n] for the set [k+ j, n]. However, this can be done
(

l−2
j−k−1

)(
n−l

n−k−j−1

)
ways. This yields, there are

(
l−2

j−k−1

)(
n−l

n−k−j−1

)
elements in N(Cn)(k, 2k) for fixed j

and l. Since k + 1 ≤ j ≤ n− k + 1 and 2 ≤ l ≤ j, it follows quickly that

|N(Cn)(k, 2k)| =
n−k+1∑
j=k+1

j∑
l=2

(
l − 2

j − k − 1

)(
n− l

n− k − j + 1

)
.

□

Theorem 3. For positive even integer n ≥ 2,

|N(Cn)(2, n)| =
2

n

(
n− 2
n−2
2

)
.

Proof. Let α be any element of N(Cn)(n, 2). Then, it is clear that n must be
even, and so |N(Cn)(2, n)| = 0 if 2 does not divide n. If we construct a bijection
between N(Cn

2
) and |N(Cn)(2, n)|, then this completes the proof. Define a map

θ : N(Cn)(2, n) → N(Cn
2
) by (α)θ = α′ where{

(2i− 1)α = iα′ + i− 1, i = 1, 2, . . . , n
2 ;

(2i)α = iα′ + i− 1, i = 1, 2, . . . , n
2 ,

that is, {
jα = ( j+1

2 )α′ + j−1
2 , j = 1, 3, . . . , n− 1;

jα = j
2α

′ + j−2
2 , j = 2, 4, . . . , n.

Now it is easy to check that θ is a well-defined bijection. Since |N(Cn
2
)| = Cn

2 −1,
the proof is complete. □

Example 2. The function θ : N(C8)(2, 8) → N(C 8
2
) defined as in above is a bijec-

tion. Indeed, = N(C8)(2, 8) ={(
{1, 2} {3, 4} {5, 6} {7, 8}
1 2 3 4

)
,

(
{1, 2} {3, 4} {5, 6} {7, 8}
1 2 3 5

)
,(

{1, 2} {3, 4} {5, 6} {7, 8}
1 2 3 6

)
,

(
{1, 2} {3, 4} {5, 6} {7, 8}
1 2 4 5

)
,(

{1, 2} {3, 4} {5, 6} {7, 8}
1 2 4 6

)}
and



COMBINATORIAL RESULTS OF COLLAPSE 775

N(C4) =

{(
1 2 3 4
1 1 1 1

)
,

(
1 2 3 4
1 1 1 2

)
,

(
1 2 3 4
1 1 1 3

)
,(

1 2 3 4
1 1 2 2

)
,

(
1 2 3 4
1 1 2 3

)}
,

as required. □

Let U(k, r) = E(Cn)(k, r) for positive integers 2 ≤ k ≤ r ≤ n. Clearly,
|E(Cn)(k, r)| = 0 if k does not divide r, and also |E(Cn)(n, n)| = 1. Note that
the number of collapsible elements in E(Cn) is 2n−1 − 1.

Theorem 4. For positive integers k, r and n where 2 ≤ k ≤ r ≤ n and r = kt,

|E(Cn)(k, r)| =
(
n+ t− r

t

)
.

Proof. If α ∈ E(Cn)(k, r) and r = kt, then α =

(
A1 A2 · · · An+t−r

1 a2 · · · an+t−r

)
, where

ai ∈ Ai for all 1 ≤ i ≤ n+t−r. Since r = kt, ordered partition of α contains n+t−r
blocks such that t blocks contain k elements and n−kt blocks contain one element.
Without loss of generality assume that each of the sets A1, A2, . . . , At contains k
elements and each of the sets At+1, At+2, . . . , An+t−r contains one element. Since
α is an idempotent, it is clear that α is the only element in E(Cn)(k, r) with this
ordered partition. Hence, all elements of E(Cn)(k, r) are entirely determined by
choosing t blocks which contain k elements. Since we choose t blocks

(
n+t−r

t

)
ways,

this completes the proof. □
The next result is clear from the definition of U(k) and U(k, r):

|U(k)| =
t∑

i=1

|U(k, ik)|,

where t = n
k .

Example 3. We obtain |E(C6)(2, 4)| =
(
6+2−4

2

)
= 6 by Theorem 4. Since n =

6, r = 4, k = 2, t = 2, each element in E(C6)(2, 4) have 6 + 2− 4 blocks such that 2
blocks contain 2 elements and 2 blocks are singletons. Indeed, E(C6)(2, 4) ={(

{1, 2} {3, 4} {5} {6}
1 3 5 6

)
,

(
{1, 2} {3} {4, 5} {6}
1 3 4 6

)
,(

{1, 2} {3} {4} {5, 6}
1 3 4 5

)
,

(
{1} {2, 3} {4, 5} {6}
1 2 4 6

)
,(

{1} {2, 3} {4} {5, 6}
1 2 4 5

)
,

(
{1} {2} {3, 4} {5, 6}
1 2 3 5

)}
.
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Furthermore, |E(C6)(2)| =
3∑

i=1

|E(C6)(2, i2)| = |E(C6)(2, 2)| + |E(C6)(2, 4)| +

|E(C6)(2, 6)| =
(
6+1−2

1

)
+
(
6+2−4

2

)
+

(
6+3−6

3

)
= 12. □

3. Collapsible elements in On

Let U(k, r) = On(k, r) for positive integers 2 ≤ k ≤ r ≤ n. Then, it is clear that
|(On)(r, k)| = 0 if k does not divide r, and also |(On)(n, n)| = n. By convention,
we take

(
0
0

)
= 1 in the following theorem.

Theorem 5. For positive integers k and n where 2 ≤ k ≤ n,

|On(k, k)| =
n−k+1∑
i=1

k+i−1∑
j=i

(
j − 1

i− 1

)(
n− j

n− k − i+ 1

)
.

Proof. For any α ∈ On(k, k), let

α =

(
{1} {2} · · · {i− 1} [i, k + i− 1] {k + i} · · · {n}
1α 2α · · · (i− 1)α iα (k + i)α · · · nα

)
,

where 1 ≤ i ≤ n − k + 1. As can be seen above form, the set of all value of iα is
the set [i, k + i − 1] and for all distinct m, r ∈ Xn \ [i, k + i − 1], it is clear that
mα ̸= rα. Let iα = j where i ≤ j ≤ k + i− 1. Then, we choose elements of im(α)
for the left and right sides of iα = j. For the left side, we choose elements from
the set [1, j − 1] for the set [1, i − 1]. There are

(
j−1
i−1

)
ways to do that. For the

right side, we choose the elements from the set [j+1, n] for the set [k+ i, n]. There

are
(

n−j
n−k−i+1

)
ways to do that. This yields, there are

(
j−1
i−1

)(
n−j

n−k−i+1

)
elements in

On(k, k) for fixed i and j. Since 1 ≤ i ≤ n− k + 1 and i ≤ j ≤ k + i− 1, it follows
that

|On(k, k)| =
n−k+1∑
i=1

k+i−1∑
j=i

(
j − 1

i− 1

)(
n− j

n− k − i+ 1

)
.

□
Let U(k, r) = E(On)(k, r) for positive integers 2 ≤ k ≤ r ≤ n. Clearly,

|E(On)(k, r)| = 0 if k does not divide r. Notice that the number of collapsible
elements in E(On) is f2n − 1.

Lemma 3. For positive integers k and n where 2 ≤ k ≤ n,

|E(On)(k, k)| = k(n− k + 1).

Proof. For any α ∈ On(k, k), let

α =

(
{1} {2} · · · {i− 1} [i, k + i− 1] {k + i} · · · {n}
1α 2α · · · (i− 1)α iα (k + i)α · · · nα

)
,

where 1 ≤ i ≤ n − k + 1. As can be seen above form, the set of all value of
iα is the set [i, k + i − 1]. Moreover, since α is an idempotent, mα = m for all
m ∈ Xn \ [i, k + i− 1]. Let iα = j where i ≤ j ≤ k + i− 1. Then, it is easy to see
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that α is the only element in E(On)(k, k) for fixed i and j. Since i ≤ j ≤ k+ i− 1,
there are k elements in E(On)(k, k) for fixed i. Since 1 ≤ i ≤ n− k + 1, it follows
that

|E(On)(k, k)| = k(n− k + 1).

□
Declaration of Competing Interests The author has no competing interests to
declare.
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