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Abstract

For a natural number n > 2, the function ¢,z(z) = 1 +nz/(n + 1) + 2"/(n + 1) maps
the open unit disk onto a domain bounded by an epicycloid with (n — 1) cusps. A class
of starlike functions associated with ¢, is defined in the unit disk and its sharp bounds
on initial coefficients, various inclusion relations and radii problems related to the other
subclasses of starlike functions are investigated. As an application, the corresponding
results are determined in the limiting case for the class of normalized analytic functions f
satisfying |zf/(2)/f(z) — 1| < 1 in the unit disk.
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1. Introduction

An epicycloid [16] is a plane curve produced by tracing the path of a chosen point on
the circumference of a circle of radius r which rolls without slipping around a fixed circle
of radius s. The parametric equation of an epicycloid is

mt ) . (mt
x(t) =mcost —rcos | — ), wy(t)=msint—rsin|— |, —rT<t<m,
r r

where m = s + r. If m/r is an integer, then the curve has (m/r) — 1 cusps. Some of
the epicycloids have been given special names. For s = r, the curve obtained is called a
cardioid and has one cusp; for s = 2r, it is a nephroid with two cusps and for s = 5r, the
curve formed is called ranunculoid, a five-cusped epicycloid. Note that a parametric curve
(x(t),y(t)) has a cusp [8] at the point tg if 2/(tp) and y'(t9) are both zero but either z”(¢()
or y”(tp) is not equal to zero. Many curves have been widely studied in the literature
having no cusp, one cusp, two cusps and three cusps. For instance, the boundary of image
domains of the functions e*, 1 + sinz and 2/(1 + e™%) [4,6, 23], under the unit disk, has
no cusp. The right-half of lemniscate of Bernoulli, the left-half of the shifted lemniscate
of Bernoulli and cardioid shaped domains studied in [7,13,15,22,27,30] contain one cusp
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on the real axis. Nephroid [33] has two cusps on the real axis whereas lune [25] and a
petal-like domain studied in [14] contain two cusps at the angles 7/2 and 37/2. Gandhi
[5] studied the class of functions for which boundary of the image domain contains three
cusps, one on real axis and rest two at the angles /3 and 57/3. Taking into account this
geometrical notion of cusp, a more general domain is considered whose boundary has the
following parametric form:

n 1 . I

z(t) =1+ —— cost + ] cos(nt), y(t) = 1 sint + ] sin(nt), (1.1)
where n is a natural number with n > 2. For s = (n —1)/(n + 1) and r = 1/(n + 1), the
curve (1.1) represents a rotated and translated epicycloid [21] with (n — 1) cusps. It is
an algebraic curve of order 2n. It can be easily seen that z'(¢x) = 0 and y/(tx) = 0 for
tr = (2k + 1)7/(n — 1), where k € Z. Also, 2" (tx) and y”(t;) are not zero together. As a
result, the curve (1.1) has cusp at the points t;. If D := {z € C : |z| < 1} denotes the open
unit disk in the complex plane C, then the function ¢, : D — C defined by

nz z"

+
n+l1 n+1

Gnp(2) =1+ , (zeD) (1.2)
maps the unit disk onto a domain bounded by the curve (1.1).

Let A denotes the class of all analytic functions f defined in D with the normalization
f(0) = f(0)—1 = 0 and 8 be its subclass consisting of univalent functions. Ma and Minda
[17] studied the unified class of starlike functions 8*(¢) consisting of functions f € A such
that zf'(2)/f(z) < ¢(z) for all z € D, where ¢ is a univalent function having positive real
part, ¢(D) is symmetric about real axis and starlike with respect to ¢(0) = 1 and ¢'(0) > 0.
It is easy to see that the function ¢,,¢ given by (1.2) satisfies all these conditions and hence
we can define 8% . := 8%(¢,,c) to be the class of functions f : D — C that satisfies

zf'(z) nz Z"
f(Z) ¢n£(z) +n+1+n+17 (ZE )
The function f,; : D — C defined as
fuo(2) = zex oy ! A [ LR n’ 23+ (1.3)
nelE) = EEP n(n + 1) - n+1 2(n+1) ’ ’

belongs to the class 8} . and acts as an extremal function for most of the problems inves-
tigated for the class 8} . in the present manuscript.

The sharp bounds for the initial four coefficients of a function f € 8} . are computed
in Section 2. A preliminary lemma is proved in Section 3 to determine the largest radius
of the disk centered on the real axis to lie inside the domain ¢, (D). Several inclusion
relations between the class 8% . and various subclasses of starlike functions which depends
upon a parameter are established in Section 4. The cusp appearing in the boundary of the
domain ¢, (D) at the angle 7/(n—1) plays a vital role in computing various radii constants
concerning the class 8 .. Using the preliminary lemma proved in Section 3 and the notion
of cusp, sharp 8} .—radii are evaluated for well-known classes of analytic functions in
Section 5. The similar technique is employed to compute §*(¢)—radius for the class 87 .
for different choices of the function ¢ in the last section of the paper. Throughout the
paper (except Section 2), n is assumed to be an even natural number. A similar analysis
can be carried out for the odd case as well.

It is worth to note that the class 8% . reduces to the class 8*(1 + z) as n — . In other
words, the (n — 1) cusped domain transforms into the disk centered at (1,0) and radius 1
in the limiting case (see Figure 1).
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(a) n =10 (b) n = 50 (c) n = 100 (d) n = 1000

Figure 1. Limiting case

2. Coeflicient bounds

In this section, sharp bounds for the first four initial coefficients of functions in the class
8%, (n = 2) are computed. For 0 < a < 1, let P(a) be the class of analytic functions
p(2) = 1+c12+c22? + -+ with Rep(z) > a for all z € D and let P := P(0). The following
estimates (see [11,24,26]) for the class P will be needed in our investigation.

Lemma 2.1. If p(2) = 1 + c12 + coz® + -+ € P, then
(i) |e2 — ved| < 2max{1, [2v — 1|},
(ii) |es — 2Bcrez +6c3| <2 if0< B <1 and B(2B —1) < § < B,
(iii) |ye} + ack + 2acics — (3/2)Bclca —ca| < 2, when 0 < a < 1,0 < a < 1 and
8a(1—a)((aB—27)*+ (a(a+a)—B)?) +a(l—a)(B—2aa)? < 40*(1 —a)?a(l—a).
Theorem 2.2. Ifn > 2 and f(2) = 2+azz?+azz®+--- € 8%, then |as| < n/(n+1), |ag| <
n/(2(n+ 1)), las] < n/(3(n+ 1)) and |as| < n/(4(n + 1)) All the bounds are best possible.

Proof. The function p(z) = zf'(2)/f(2) = 1 + b1z + byz? + - -+ is analytic in D and a
simple calculation gives
m—1
(m—1)a Z brGy—k, for m = 2. (2.1)
k=1
Since ¢, given by (1.2) is univalent in ]D) and p < ¢ng, the function pi(z) = (1 +
o e(p(2)))/(1 — (p( ))) = 1+ c1z + cpz? + - -+ belongs to the class P and it may be
rewritten as p(z ) One((p1(2) = 1)/(p1(2) +1)). This relation together with (2.1) yields

ar=b = —" ¢
2T T o+ )
n 2
as = m@(n +1)cg —¢f)
n
1= s 20~ 20 4 D+ res #5801
% = STy (800 + 1 = 1200+ 2+ 17 = 16(n+ 3)(n + Dl

+4(n® + Tn + 9)(n + 1)cfer — (n + 2)(2n + 3)ci) .
As |e1] < 2, it follows that |a2| < n/(n + 1). Using Lemma 2.1(i) with v = 1/(2(n + 1)),

we obtain
i< s - () ] sy
4(n+1) 2(n+1) 2(n+1)
To compute the bound on a4, observe that
n n+4 (n+2) 4
ol = 5D T I A T S 1)
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Let us take 3 = (n +4)/(8(n + 1)) and § = (n + 2)/(8(n + 1)?). For n > 2, it can be
easily seen that 0 < 8 < 1 and 8 — 6 = (n? +4n +2)/(8(n + 1)?) > 0. Also, (28 — 1) =
—3n(n+4)/(32(n+1)2) < 0 < § < . Thus, by Lemma 2.1(ii), |a4| < n/(3(n+1)). Finally,
note that

n (n+2)2n+3) 4 n+2 , n+3

5l =T | Brr 1 AT i )2 T 3m O
n? +Tn + 902 .
c
12(n+1)2 12 ™
To complete the proof of the theorem, it suffices to show that the parameters
(n +2)(2n + 3) n+2 Lo n*3 5 n?+Tn+9
= Q= — - - - @ @@
T T RMm 13 Aln + 1) 6(n+1) 18(n + 1)2

satisfy the hypothesis of Lemma 2.1(iii). For n > 2, it is clear that 0 < a,a < 1. Also, the
quantity 8a(1—a)((aB—27)* + (a(a+a) — B8)?) + a(l —a) (B8 —2aa)? — 4a? (1 — a)%a(l — a)
reduces to the expression — (130118 +15816n"+778061°+203428n5+310942n" +28653673 +
156564n? + 466561 + 5832)/(93312(n + 1)8) < 0 for all n € N. In view of Lemma 2.1(iii),
it follows that |as| < n/(4(n + 1)). For sharpness, the functions

fi(z) = zexp <f02 Wdt) , 1=2,3,4,5

are extremal for the coefficients a; (i = 2,3,4,5) respectively. ]

For n = 4, Theorem 2.2 reduces to [5, Theorem 2.11, p. 179]. Also, in the limiting case
n — o0, the bounds for the first four initial coefficients coincide with that of the result by
Singh [29, Theorem 3, p. 79] for the class 8*(1 + z).

3. Preliminary Lemma

From this section onwards, n is assumed to be an even natural number. For 2/(n+1) <
a < 2, the following lemma gives the radius of the largest disk centered at (a,0) that can
be inscribed inside the domain ¢, (D), where ¢, is given by (1.2). This lemma will be
useful in investigating inclusion relations and various radii problems discussed in the next
two sections of the paper.

Lemma 3.1. For2/(n+ 1) <a <2, let rq be given by

2 2 ca<1
a— a<l,
n+1 n+1
Ta = \/6(17 I <a<ay,
2—a, ag < a <2,
where
2(n? +1) n—1 ™
2
= a%—2 +2(1 -
Pa:=a (n+1)2 ( )(n+1>cos<n—1>
and
(n? — 1) cos (ni) —(n?+4n+1)
ag =
s

Then {w : |w —a| <71y} S dpe (D).

Proof. Any point on the boundary of ¢, (D) is of the form ¢, (e"), 0 <t < 27. Since
the curve w = ¢, ¢ (e") is symmetric with respect to real axis, so it is sufficient to consider
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the interval 0 < ¢ < m. The square of the distance from the point (a,0) to the points on
the curve ¢,z (e) is given by:

(t) 1+ i t+ L (nt) 2+ i int+ L '(1t)2
g = COS COS(Nn —a Sin Sini(n .
n+1 n+1 n+1 n+1

It can be easily seen that

0 (52) e (252 (252

and
(1) = 2n((n — 1)2cos((n — 1)t) — (a — 1)(n + 1) cost — (a — 1)n(n + 1) cos(nt))
- (n+1)? :
A calculation shows that o’(t) = 0 for
T 37 (n—3)m
t_O’n—l’n—l’”.’ —

By the geometry of the curve ¢,z (), it is evident that the cusps are the most probable
choices for the minimum of the function o. As a result, the other roots of the equation
o'(t) = 0 are not taken into consideration. For n = 2, it can be easily seen that min{o(¢) :
t € [0,7]} equals o(n) if 2/3 < a < 4/3 and 0(0) if 4/3 < a < 2. Let n > 4 be an even
natural number. Observe that

P 2(n? +1) , 2(n? +1)
o (O)2n<a—(n+1)2> > 0, 1fa>m>1,
" 2n(n —1)(a(n + 1) — 2) , 2
0'(71'): (n+1)2 >01fa>m,
and o”(w/(n — 1)) > 0 for a < a; where
(n—1)?
a;:=1-— .
(n+1) (cos (%) + ncos (%))
14 (n—1)

(n+ 1) cos <ﬁ) .

Note that a; > 2(n? +1)/(n + 1)?> > 1. Keeping in mind these observations, consider the
following three cases:
Case 1: 2/(n+1) < a < 1. A straightforward calculation shows that

0 (nkj1> o(m) = 2(1—a) (ZID (Hcos(nk_”l)) -0

for k=1,3,5,...,n — 3. Therefore the minimum of ¢ is attained at ¢t = .
Case 2: a = 1. In this case, the function o assumes the same value at k7/(n — 1), for
k=1,3,5,...,n— 1. Thus the minimum value is o (7).

Case 3: 1 < a < 2. For this case, o(7) > o(kn/(n — 1)) for k = 1,3,5,...,n — 3 using
the similar argument given in Case 1. Similarly, a simple calculation shows that

(571) o () =20 () (o ()~ (57)) =

for k = 3,5,...,n—3, since cosine is a decreasing function in [0, 7]. Consequently, it follows
that o attains its minimum either at ¢t = 7/(n—1) ort = 0. For 1 < a < 2(n?+1)/(n+1)2,
it is clear that min{o(t) : t € [0,7]} = o(7/(n — 1)) = B4. Let a > 2(n? + 1)/(n + 1)2.

Note that .
™ n— 7r
0<n—1) —J(O)=2<1—n+lcos (n_1>)(a—ao).
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Further, it is easy to deduce that 2(n? + 1)/(n + 1)? < ag < aj. Thus, if a < ag, then
o(r/(n—1)) < o(0) so that o attains its minimum at ¢t = 7/(n — 1). If ap < a < 2, then
o(r/(n—1)) = 0(0) and min{o(¢t) : t € [0, 7]} = o(0). O

4. Inclusion relations

This section deals with inclusion relation between the class 8} . and various classes of
starlike functions which depends on a parameter. For instance, 88*(/3) (0 < 8 < 1) is the
class characterized by |arg(zf'(2)/f(2))| < p7/2, 8*[A, B] := 8*(1 + Az)/(1 + Bz) is the
class of Janowski starlike functions for —1 < B < A < 1 and 8*(a) := 8*[1 — 2a, —1]
is the class of starlike functions of order o (0 < av < 1). Sokét [31] introduced the class
8*(4/1 + cz) which is associated with right loop of the Cassinian ovals given by (u?+v2)2 —
2(u?—v?) = ¢>—1, for 0 < ¢ < 1. For ¢ = 1, this class reduces to the class 8% = 8*(y/1 + 2).
Also, for 0 < a < 1, the generalized class 87 (o) = 8*(a + (1 — a)+/1 + z) was introduced
by Khatter et al. [12] and this class also reduces to 87 for o = 0. The following theorem
gives various inclusion relations of the class 8% . with the above mentioned classes, where
n is an even natural number. For a,r € R with r > 0, let D(a,r) denotes the open disk
with centre (a,0) and radius r. By Lemma 3.1, D(1, (n — 1)/(n + 1)) lies inside ¢, (D) for
each even natural number n.

Theorem 4.1. For the class 87 ., the following relations holds:
(a) 8, < 8%(a) for 0 < o < 1—cos(m/(n+1)).

)
(c) 8, < 8*[1,—(M —1)/M] for M > 1.
(d) 87(a) = 8f, fora=2/(n+1).
(e) 8* (V1+cz) ©8f, forO<c<1—4/(n+1)2%
) 8*[A,B] < 8%, (-1 < B < A<1) if one of the following holds:
(i) 20-B)<(n+1)(1-AB)<(n+1)(1—B?% and (n+1)A < 2B +n — 1,
(i) 1 — B> <1— AB < ag(1 — B?) and A < \/B,(1 — B?) + B,
(iii) ap(1—B?)<1—- AB <2(1 — B?) and A <2B +1,
where ag and B, are same as defined in Lemma 3.1, with a = (1 — AB)/(1 — B?).

Proof. Let f € 8% .. Then zf'/f < ¢, where ¢, is given by (1.2). For part (a), note
that

2f'(2) :

t

For z = ", we have

ncost  cos(nt)
+ = h(t),
n+1 n+1 ®)

Re (qﬁng(eit)) =1+

where t € [0,27]. Since the curve w = ¢, (") is symmetric with respect to real axis, so
in order to compute the minimum value of h(t), we shall obtain all the critical points of
the function A in the interval [0, 7]. Note that

() = ——2" gin ((” * Dt) cos (@-1)15) .

n+1 2 2

Therefore, the critical points are the roots of the equation h'(t) = 0. This gives t; =
2km/(n+ 1) or wy = (21 + 1)w/(n — 1), for k,l € Z. Since t,u; € [0, 7], therefore k =
0,1,...,n/2 and [ = 0,1,2...,(n — 2)/2. A close inspection shows that h attains its
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minimum at t; corresponding to k = n/2. Hence

min Re (¢nz (2)) = hltn) = 1+ — COS( - ) * o COS< o )

|z|=1 n+1 n+1 n+1 n+1

(1)

on simplification. Thus f € 8*(«), for 0 < a < 1 — cos(w/(n + 1)). For part (b), we have

arg (i{;g)‘ < maxarg (Pne(z)) = Jnax arg (dncle™))

nsint + sin(nt
= max tan_1< (nt) ) =tan_1< max g(t)),

te(—m,m] n+ 1+ ncost + cos(nt) te(—m,m

where ¢(t) = (nsint + sin(nt))/(n + 1 + ncost + cos(nt)). As pointed out earlier, it is
sufficient to compute the maximum value of ¢g(t) for 0 < ¢ < 7. Indeed, we have
(n—1

)t>'

The possible critical points of g are tp = (2k + 1)n/n, w; = (2l + 1)7 and v, = (2m +
1)w/(n — 1), for k,l,m € Z. For t, u; and v, to lie in the interval [0, 7], we must have
k=0,1,2...,(n—2)/2,l =0and m = 0,1,2,...,(n — 2)/2. A simple analysis of these
critical points shows that the maximum of the function g is attained at the point ¢; for
k = (n —2)/2. Hence

arg (Z}C(g)ﬂ < tan™! (g <(n _nl)ﬂ>> = tan~! (cot (%)) = L ;nl)ﬂ
So, 8%, < 88*(3), where 3 > (n — 1)/n. For proving the part (c), note that

L)y 2L
f(z) n + 1" n+1
Thus, for M > 1, |2f'(2)/f(z) — M| < M. The curves 71 : Rew = 1 — cos(7/9), 72 :
argw = 7r/16 and ~y3 : [w — 1| = 1 for the case n = 8 in Figure 2(a)-(c) depict that the
results are best possible.

For (d), let f € 87 («). Then the quantity zf’(z)/f(z) lies inside the domain L, = {w :
|((w—a)/(1 —a))? — 1| < 1} and [12, Lemma 2.1, p. 236] gives

/
a < Re (Z;(S)> <a+(1-a)2.
The condition o + (1 — a)+/2 < 2 is always satisfied. Therefore, for the function f to lie in
the class 87 ., it is necessary that o > 2/(n +1). To prove that this condition is sufficient,
note that if oy > ao, then Lo, < L,,. Consequently, it follows that if o > 2/(n + 1),
then Lo S Lojm41)- Now, it suffices to show that Lo/,41) S ¢ne(ID). To verify this,
we shall invoke [12, Lemma 2.3, p. 238] to prove that L, /(n+1) 18 contained in the disk
D(1,(n—1)/(n + 1)). Consider the following two cases:

Case 1: n = 2. By taking a = 2/3 and a = 1, the condition a < a < v2a + (1 —a)/+/2
is satisfied. As a result, Ly/5 < (1, (v/2 — 1)/3) which is obviously contained in the disk

D(1,1/3).

Case 2: n > 4. If we take a = 2/(n+1) and @ = 1, then the condition v2a+(1—a)/v/2 <
a < a+ (1 — a)y/2 holds which implies that LQ/(n+1) cD(,(n—1)/(n+1)).

Combining these two cases, we conclude that L, S ¢, (D) for a = 2/(n + 1). The case
n = 8 illustrated in Figure 2(d) by curve 4 : 0Ly shows that the bound is best possible.

4n(n + 1) cos (%) cos () cos

g'(t) = (n+1+ncost+ cos( t))?

’ n

<|1-—M|+1
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2 G . s

(d) 7a (e) s

Figure 2. Inclusion Relations for the class 8%,

For proving (e), if f € 8*(v/1 + cz), then zf'(2)/f(z) < v/1 + ¢z and

/
\/1—C<Re<2f (Z)) <+1l+e.
f(z)
Note that /1 + ¢ < /2 < 2and v/1—¢ > 2/(n+1) provided ¢ < 1 —4/(n + 1)2. To prove
that this condition is sufficient as well, observe that if Q. = {w € C : |[w? — 1| < ¢}, then
Q. < D(a,R,) where 0 <c < 1,41 —c<a<+/1+cand R, is given by

po_ | Vite—a Vi-c<a<(V1—ct+VIt0)/2
“ )l a—+1—c¢, (\/1_C+\/1+C)/2<a<\/17+c,

This can be proved on similar lines as that of [1, Lemma 2.2, p. 6559]. Since Q., € Q,
for ¢; < co, therefore it follows that if ¢ < 1 —4/(n + 1)2, then Q. < Qi—4/(ns1)2- 1f we
take a = 1 and ¢ = 1 —4/(n+ 1), then the condition (v/1—c++/1+¢)/2 <a<+/1+cis
satisfied. Consequently, Q1_4/(n+1)2 € D(1, (n —1)/(n + 1)) which is contained in ¢y¢ (D).
The sharpness is depicted for n = 8 by considering the curve v5 : 0Q77/5; in Figure 2(e).
For the last part, let f € 8*[A, B]. Then the quantity zf'(z)/f(z) lies inside the disk
lw — a| < 74 with centre a := (1 — AB)/(1 — B?) and radius r, := (A — B)/(1 — B?). It
is a simple exercise to show that this disk lies inside the domain ¢, (D) under the given
three conditions in view of Lemma 3.1. g

Let us give an application of Theorem 4.1(f). By taking A =1—a (0 < a < 1) and
B = 0, the conditions 2(1 — B?) < (n + 1)(1 — AB) < (n + 1)(1 — B?) and (n + 1)A <
2B 4+ n — 1, are satisfied for « > 2/(n 4+ 1). Thus 8*[1 —,0] = 8%, for 2/(n+1) < a < 1.

« .
5. & .—radius

In this section, the 87 . —radius for various well-known subclasses of analytic functions is
investigated, where n € N is an even natural number. By the notation Ry, (Mz), we mean
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the largest radius for which the functions f € My satisfy the property of the functions of
the set My in each subdisk D, = {z € C: |z| < r} for r < Ry, (Ma).

MacGregor [18-20] studied (i) the class W of functions f € A such that f(z)/z € P; (ii)
the class F of functions f € A such that f/g € P for some g € A with g(z)/z € P; and (iii)
the class Fa of functions f € A such that g/f € P(1/2) for some g € A with g(z)/z € P.
For a function p € P(a) (0 < @ < 1) and z € D with |z| = r, the estimate

2p/(2) _ 2r(1 — «)
p(z) [~ A=)+ 1 —-2a)r)

is used to prove the following theorem, which evaluates the 8 . —radius for the classes W,
F1 and Fs.

(5.1)

Theorem 5.1. If n € N is an even natural number, then the 8} . —radius for the classes
W, F1 and Fy is given by

(a) ‘{'RSZL(W> _ V2(n?2+1)—(n+1)

n—1
Von? +6n+5—2(n+1)
(b) Rgx, (F1) = "
V1Tn2 +10n+9 — 3(n + 1)
(c) Rz (F2) = o .

Proof. (a) Let f € W. Then the function p(z) = f(z)/z belongs to P and zf'(2)/f(z) =
1+ 2p'(2)/p(2) so that
2f'(z) 2r
f(2) 12
by using (5.1). In view of Lemma 3.1, the function f € 8%, if 2r/(1—7%) <1—2/(n+1).
This simplifies to r < (1/2(n? + 1) — (n+1))/(n — 1). The result is sharp for the function
fi(z) = 2(1 4+ 2)/(1 — z) € W. For this function, zf](2)/f1(z) = 2/(n + 1) = ¢n(—1), for
z=—(/2(1+n?) —(n+1))/(n—1).

(b) For f e 1, the functions k1(z) = f(2)/9(z) and ka2(z) = g(z)/z belong to P and
f(2) = zk1(2)ka(2) so that

) K | k()
@ T ke T he)

Using (5.1), we obtain

zf'(z) 1‘ < 4r '

f(2) 1—r?

By Lemma 3.1, 4r/(1 — 7?) < 1 — 2/(n + 1) which yields » < (v5n2 +6n +5 — 2(n +

1))/(n — 1). For sharpness, consider the functions fa(z) = z((1 + 2)/(1 — 2))? and g2(2) =

z(1+2)/(1 —2). For z= —(v/bn?2+6n+5—2(n+1))/(n—1), 2f5(2)/f2(2) = 2/(n + 1).
(c) Let f € Fy. Then the functions k3(z) = g(z)/f(z) and k4(z) = g(z)/z belong to

P(1/2) and P respectively and f(z) = zk4(z)/ks(z). A simple computation shows that

) LK) ()
f(2) ka(z)  ks(z)
so that (5.1) gives
2f'(2) 3r + 12
f(2) ol

This disk lies inside ¢,z (D) provided (3r +r?)/(1 —r?) <1 —2/(n + 1), by Lemma 3.1,
which holds for r < (v/17n2 + 10n + 9—3(n+1))/(4n). The bound is sharp for the function
f3(2) = 2(1 + 2)2/(1 — 2) with g3(2) = 2(1 + 2)/(1 — 2). For z = —(v/1Tn2 + 10n + 9 —
3(n +1))/(4n), the quantity zf5(2)/f3(z) equals 2/(n + 1).
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(c) T2

Figure 3. 8% . —radius for classes W, J; and F>

The sharpness in all the three parts is illustrated in Figure 3 by depicting the image
domains of the functions zf/(z)/fi(z) (i = 1,2,3) under the specified subdisks |z| <
(V74 —="7)/5, |z| < (v/221 —14)/5 and |z| < (/681 — 21)/24 respectively for n = 6. O

Apart from the classes discussed in Section 4, several other subclasses of starlike func-
tions are studied by various authors for an appropriate choice of the function ¢ to define
the class 8*(¢) (as investigated by Ma and Minda [17]). The classes needed in our in-
vestigation are 8%; = 8*(v/2 — (v2 — 1)((1 — 2)/(1 + 2(v/2 — 1)2))"/2), 8% := §*(e?),
8& = 8*(1 + 42/3 + 22%/3), 8¢ = 8*(z + V1+22), 8% = 8*((k* + 22)/(k* — k2))
(k=+2+1), 8%, :=8*(1 +sinz), 8 = 8*(1 + 2z + 22/2), 8%, 1= 8*(2/(1 + 7)),
8he = 8*(1+2—2%/3), 8% := 8*(1+ze?), 8%, := 8*(cosh 2), 8% := 8*(1 +sinh™!(2)) and
8k ., = 8*(1+2z+22/2). These classes are studied in [2-7,9,13-15,22,23,27,28,33,34]. The
8 . —radius for the classes 8%, and 87 , is 1 as the functions 2/(1 4+ e~*) and cosh z map
D inside the domain ¢, (D). By making use of Lemma 3.1, the next theorem determines
8 . —radius for three subclasses of starlike functions.

Theorem 5.2. For an even natural number n, the sharp 8 . —radii are given by

(n—1)((n+3) —2a(n+1))

(a) Rgx_(Si(a)) = DR a)? << —
. n*+2n—3 4
(b) Rgx (8*(VI+cz)) = RN 1— CENLR 1.

™2 — 44/2n — 2n — 5 + 44/2
n2 — 244/2n + 30n + 47 — 324/2°

(¢) Res (S%1) =

Proof. (a) For 2/(n + 1) < a < 1, the 8}, —radius for the class 87 (a) is 1 by Theorem
4.1(d). Let 0 < @ < 2/(n+1) and f € 8} (). Then zf'(z)/f(2) < a4+ (1 —a)y/1 + z and

for |z| = r, we have

2f'(2)
) 1‘ <(l-a)(l-v1-7).
This disk lies inside the domain ¢, (D) provided (1 — a)(1 — /1—7r) < 1—2/(n +
1) by Lemma 3.1, which yields 7 < (n — 1) (n +3 —2a(n + 1)) /((n + 1)2(1 — a)?) :=
r1. The result is sharp for the function g; with z¢}(2)/g1(2) = a + (1 — a)v/1 + z as
—r1g1(=r1)/g1(=r1) = 2/(n + 1) = ¢pe(—1). For « = 0 and n = 6, the sharpness is
illustrated in Figure 4(a).
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(b) For 0 < ¢ < 1—4/(n+1)?, the 8* . —radius for the class 8*(y/1 + cz) is 1 by Theorem
4.1(e). Assume that 1 —4/(n+1)? <c <1 and f € 8*(y/1 + cz). Then
2f'(2)
f(2)
By using Lemma 3.1, we get 1 — /1T —cr < 1 —2/(n + 1) which simplifies to r < (n? +
2n — 3)/(c(n + 1)?) := ry. The result is sharp for the function go defined as

4zexp(24/1 + cz — 2)
92(2) = Vit t1)2

and zgh(2)/g2(z) = 2/(n+ 1) for z = —ry (see Figure 4(b) for n = 6 and ¢ = 45/49).

—1‘<1— 1—cr, |z|=r

(a) ST (b) $*(y/1+ (45/49)2) (¢) Shr

Figure 4. 8* —radius of the classes 87, 8*(1/1 + cz) and 8%,
(c) Let f e 8%, Then it is easy to see that

2f'(z) B sy | 1T
f(z) 1‘<1 <\F (v2 1)\/1—2(ﬁ—1)r>’

where |z| = 7. In view of Lemma 3.1, the above disk lies inside the domain ¢, (D)

provided
1+ 2
1- <\f—(\/§—1)\/1_2(\/§_1)r> <1-—

This holds true for r < (Tn% —4v/2n—2n—5+4+/2)/(Tn? —24+/2n+30n+47—32+/2) := r3.
The result is sharp for the function g3 defined by

Zgé(z):ﬁ_(ﬁ_l)\/ -z

93(2) 1+2(+v/2-1)z
which assumes the value 2/(n + 1) at z = —r3 as illustrated in Figure 4(c) for n = 6. O

As pointed out in Section 1, the cusp at the angle 7/(n — 1) will play a pivotal role in
finding the radii constants for some of the classes. This technique will be employed in the
following theorem.

Theorem 5.3. For an even natural number n and ~ = ™=V the sharp 8 . —radius
for various Ma-Minda type subclasses of starlike functions is given by

(a) Rgx, (8%) = \/ 2(2 + 37’;1 (12 + 37)n)

—1].

(b) Rgs (87) = ]

log (1 +
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(¢) Rgs (8%) =

V2" 4 20y 40242 1 2(n 4+ 1)y + 2n(n + 1)y
2+ D)1+ +n(l+17))

1, n=2
(d) st/; (8%) = {m, n> 4’ where
1
Ty = CTCE) ’\/(3 +2v2) (27 + 2yt 4 292 4+ 6(n + 1)y + 6n(n + 1)y + (n + 1)2

~(1+ V)" + T ()

\/1+n(1+v)+7"_1

n+1

(6) Rz, (Sk) = V2

(1) Rex (S

ca'r) =

1].

\/1+n(1—|—2’y)—|—2fy" B
n+1

r7, n= 2,
Rgx (87) =
(&) Ry, (83) {717’ -
where r7 and 77 are the solutions of the equations re” = 1 and re” = (ny+~")/(n+

1), respectively.

Proof. (a) Let f € 8%. Then 2f'(2)/f(2) < ¢c(z) where ¢pc(z) = 1 + 42/3 + 222/3. We
need to find the value of r such that the function ¢ maps the subdisk D, into the domain
¢ns (D). Since the epicycloid curve d¢, (D) has a cusp at 7/(n — 1), therefore for the
cardioid domain ¢¢(D,.) to lie inside ¢, (D), it is necessary that r < ry, where ry is the
absolute value of the solution of the equation ¢c(2) = ¢z (y) or

2 n
4 22wy o
3 3 n+l n+1
for z, which is given by 71 = [\/(2(2 + 3y + (2 + 3y)n))/(n + 1) — 1|.
In order to prove that the condition r < ry is sufficient as well, it suffices to show that
the image of D,, under the function ¢¢ lies inside ¢, (D). To prove this, we consider the
difference of the square of the distances of points on the boundary curves ¢,z (e) and

$c(r1e) with the point (1,0), which is denoted by d(¢,n) and defined as

d(t,n) = |¢ne(e) =11 = |pc(rie’) — 1)

n? +1+2ncos((n—1)t)  4rf(4 +rf + 4ry cost)
(n+1)2 9 ’

Using the technique of calculus, it can be shown that d(¢,n) = 0 for all ¢ € [0, 7] and n > 2

(its graph for n = 6 in plotted in Figure 5(a)). This implies that ¢c(Dy,) S ¢ (D). The

result is sharp for the function fi(z) = zexp(4z/3 + 22/3), the case n = 6 being depicted

in Figure 6(a).

(b) If f € 8%, then zf'(2)/f(2) < ¢e(2) := €*. Proceeding as in part (a), the 8% .-radius
for the class 8% is at most r = |log(1 + (ny +~+")/(n + 1))| which is the absolute value of
the solution of the equation ¢¢(z) = ¢ne(y) for z. It remains to show that the 8% .-radius
for the class 8 is at least 72, that is, ¢e(Dy,) S ¢y (D). The difference between the square
of the distances of the points on the boundary curves ¢, (") and ¢.(r2e®) from the point
(1,0) is given by

d(t,n) = [pnc(e”) = 117 = |e(rae™) — 1]

2n(cos((n — 1)t) — 1) + (n + 1)2e™ 5! (2 cos(rg sint) — e2ost)
(n+1)2 '

t e [0,7] and n = 2.
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a) 8F b) 8* c) 8%
c q

05 1.0 15 20 25 30 05 10 15 20 25 30 05 1.0 15 20 25 30

(d) Sk (©) Siim (f) 8%ar

Figure 5. Graph of distance function d(t,6)

A computation shows that d(¢,n) is non-negative for ¢ € [0, 7] and n > 2 (see the graph
of d(t,6) in Figure 5(b)). The result is sharp for the function

f2(2) = exp (f ‘ - 1dt>

and the case n = 6 is illustrated in Figure 6(b).

(c) If f e 8%, then z2f(2)/f(2) < ¢c(2) := 2+ V1 + z2. A necessary condition on r for
the inclusion relation ¢¢ (D) S ¢nc(D) to hold is r < r3, where rg := |(72" + 2ny" ! +
n2y2 +2(n+ 1)y" + 2n(n + 1)7)/(2(n + 1)(1 + 4™ + n(1 +v))| is the absolute value of the
solution of the equation ¢¢(z) = ¢pe () for z. The sufficiency of the condition r < r3 can
be proved if we show that ¢¢(Dys) S ¢pne (D). To see this, define a function d(t,n) as the
difference between the square of the distances from the point (1,0) to the points on the
boundary curves ¢,¢(e) and ¢¢(r3e’). Then

d(t7n) = |¢n£(eit) - 1|2 - |¢((r3eit) - 1|2
n? + 1+ 2ncos((n — 1)t)

- (n 1 1) —(r3 + 1+ p(t) — 2rzcost

—V2(rzcost + 1)A/v(t) + p(t) + V2r3/u(t) — v(t)sint),

where p(t) = 4/1+ 715 +2rcos2t and v(t) = 1 + rfcos2t. A calculation shows that
d(t,n) = 0 for each t € [0,7] and n > 2 (see Figure 5(c) for n = 6). This shows that
r3 is the required 8} . —radius with sharpness holding for the function f3 which satisfies
2f5(2)/f3(2) = 2z + V1 + 22. The sharpness is illustrated in Figure 6(c) for n = 6.

(d) Let ¢r(z) := (k* + 22)/(k* — k2), k = v/2 + 1. For n = 2, the 8}, —radius for the
class 8% is 1 as ¢pgr(D) < ¢ac (D). Suppose that n > 4. Geometrical considerations show
that r < rq for ¢pr(ID,) to lie inside ¢, (D), where 74 is the absolute value of the solution
of the equation ¢r(z) = ¢ne(7y) for z. In fact, pr(Dy,) lie inside ¢, (D). To see this, we
define the function d(¢,n) as

d(t,n) = pnc(e) = 11 = |pr(rae’) — 12
n? + 1+ 2ncos((n — 1)t) B r2(3 4+ 2v/2 + (3 — 2¢/2)r] — 2r3 cos(2t))
(n+1)2 (34 2v2 + 13 —2(1 +/2)r4 cost)?
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(d) Sk (e) 8fim (f) SZar

Figure 6. 8% —radius for various classes 8*(¢)

which is the difference between the square of the distances from the point (1,0) to the
points on the boundary curves ¢,z (e) and ¢r(rse®). Fort € [0, 7] and n > 4, the function
d(t,n) is non-negative (which is depicted in Figure 5(d) for n = 6). Thus, ¢r(D;) S ¢y (D)
for r < r4. The result is sharp for the function fy(z) = k*ze=*/¥/(k — 2)? with the case
n = 6 being plotted in Figure 6(d).

(e) Note that fR5:L (85,) < 15 =2/ 1 +n(l+7v)+79")/(n+1) — 1| which is the
absolute value of the solution of the equation ¢y, (2) = ¢ne(y) for z, where ¢y, (2) =
1 4+ /22 + 22/2. Now, let d(t,n) be the difference of the square of the distance of the
boundary points ¢,z (e?) and ¢y (rse’) from the point (1,0). Then

d(t,n) = pnc () = 17 — |guim(rse™) — 12
n? + 1+ 2ncos((n — 1)t) B 72(8 4+ 72 + 4+/2r5 cost)
(n+1)2 4 '

A calculation gives d(t,n) = 0 for t € [0, 7] and n > 2 (the graph for n = 6 is illustrated in
Figure 5(e)). Thus, image of the subdisk D,, under the function ¢, lies inside ¢,z (D).
This shows that fRS*L (8f,,) = r5. The sharpness for n = 6 is depicted in Figure 6(e) for

the function f5(z) = zexp(v2z + 22/4).

(f) To compute the 8*,—radius for the class 8%, let ¢ear(2) 1= 1+ 2 + 22/2. As
proceeded in the earlier parts, we will solve the equation ¢eqr(2) = ¢ns(y) for z and take
its absolute value which turns out to be r¢ := [v/(1+n(1+27) +29")/(n +1) — 1|. It
remains to show that ¢c. maps Dy, inside ¢,,c (D). For this, we consider the difference

between the squares of distances from the point on the boundary curves ¢,(e*) and
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bear (r6e’t) with the point (1,0) as

d(t7n) = |¢n£ (eit) - 1|2 - |¢car(r6eit) - 1|2

2 2
- +(721nf018)(2(n DY) _ 7116(4 + 12 + 4rg cost).
Since d(t,n) is non-negative for ¢ € [0, 7] and n > 2, it follows that r¢ is the 8} . —radius
for the class 8%,,, which is attained by the function fg(z) = z exp(z + 22/4). The graph of
d(t,n) and sharpness are illustrated in Figure 5(f) and Figure 6(f) respectively for n = 6.
(g) If d(t,n,r) denotes the difference between the squares of the distances of the bound-
ary points of the curves ¢,z (e”) and ¢, (re) from the point (1,0), where ¢y, (2) = 1+ z¢7,

then

d(t,n,r) = |¢nﬁ(eit) - 1|2 - |¢p(reit) - ]'|2 =

n? + 1+ 2ncos((n — 1)t)
(n+1)2

_ 627" cos t’l°2 )

b 05 1.0 15 20 25 30 05 1.0 15 20

(a) d(t,2,77) (b) d(t,6,77)
Figure 7. Distance function corresponding to the class SZ

For n = 2, a necessary condition for the subordination ¢, < ¢, to hold in D, is

14+re” = (ﬁp(T’) < (252[,(7“) < (ﬁg@(l) = 2.
This simplifies to r < r7, where r7 is the root of the equation re” = 1 in (0,1). Also, note
that d(t,2,77) = 0 for all ¢t € [0, 7] (see Figure 7(a)). Hence 335;2 (85) = 7.
If n > 4, then the condition r < 77 is necessary for the inclusion relation ¢,(D,) <
¢nc (D), where 77 is the absolute value of the solution of the equation ¢ (2) = ¢pc(7y) for
z. Since the function d(t,n,77) is non-negative for ¢ € [0, 7] (see Figure 7(b)), it follows

that 77 is the 8} . —radius for the class S;.

Figure 8. Sharpness of 8* . —radius for the class 8%

For both the cases, the result is sharp for the function f7(z) = e¢” and is illustrated in

Figure 8. g



1652 S. Gandhi, P. Gupta, S. Nagpal, V. Ravichandran

The last theorem of this section tackles the radius problem by considering different
cusps depending upon the geometry of the associated classes.

Theorem 5.4. Let n = 2k, ke N and v = €™/ (=1 Then
(a) The S*L radius for the class 8%, is |sin = ((v"* + ny*)/(n + 1))| if k is odd; and
|sin= (7" =D 4 nab=1) /(n + 1))| if k is even.
(b) The 8% . —radius for the class 8}, is the absolute value of the solution of the equation
for z in the interval (0,1): z — 23/3 = (v"* + ny¥)/(n + 1) if k is odd; and
z—23/3 = (7" 4 nyk N /(n 4+ 1) if k is even.

Proof. (a) Let f € 8%,. Then zf'(2)/f(2) < ¢sin(z) := 1 +sinz. If k is odd, then the
cusp to be considered is at the angle km/(n — 1). For the image of the function 1 + sin z
under D, to lie inside the domain ¢, (D), it is necessary that r < |z1|, where z; is the
solution of the equation ¢gn(2) = ¢ne(7F), for z. Similarly, if k is even, then the cusp at
the angle (kK — 1)m/(n — 1) will be considered and the necessary condition in this case is
r < |29|, where 2 is the solution of the equation ¢gn(2) = ¢ne(y*1), for 2.

V\\

n =

AWAVAR

(b) n —‘8 o (c) n =’10 | : (d) n =H12

Figure 9. Distance function d(t,n) for n = 6,8,10, 12

In order to prove that these conditions are sufficient as well, we will consider the dif-
ference of the square of the distances of the points on the boundary curves ¢z (e*) and
Gsin(Re) from the point (1,0) as

d(t,n) = |¢n£ (eit) - 1|2 - |¢sin(Reit) - 1|2
24142 — 1)t
_mrs neos((n = ) —sin?(Rcost) — sinh?(Rsint).
(n+1)2
where R = |z1] if k£ is odd and R = |z if k is even. A calculation shows that d(t,n) is
non-negative for t € [0, 7]. The graphs of d(¢,n) are plotted in Figure 9 for n = 6,8, 10, 12.
Hence, the 8% . —radius for the class 87;, is R and this result is sharp for the function g;
given by

t
g1(2) = zexp ( Smdt>

and is depicted in Figure 10 for some choices of n.

(b) Let f € 8%, and ¢pe(2) := 1+ z — 23/3. Proceeding in the similar fashion as in part
(a), the cusps at the angle km/(n — 1) if k is odd; and (k — 1)m/(n — 1) if k is even, need
to be taken into consideration. Consequently, iRS* (8%,) < R, where R = |z3| if k is odd

and R = |z4| if k is even, where z3 and z4 are solutlons of the equations ¢, (2) = ¢ns(YF)
and Gpe(2) = ¢ne (1) respectively, for 2. )
Now, in order to show that :RS*/; (8%.) = R, let us define the difference of the squares of

the distances on the boundary points ¢, ¢ (e) and ¢y.(re') from the point (1,0) as
d(t,n) = ’¢nﬁ(eit) - 1‘2 - ‘(bne(Reit) - 1‘2
n?+1+2ncos((n—1)t) R?

) -
= - — — 2t+9).
(n+ 172 9 (R* —6R"cos2t +9)
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Cusp at Cusp at
angle angle
3

3

Figure 10. Image domain of 1 + sin z lying in ¢, ¢ (D) for various choices of n

(a) n==06 (b)n=238 (¢) n=10 (d) n=12

Figure 11. Distance function d(¢,n) for n = 6,8, 10, 12

It can be deduced that d(t,n) = 0 for ¢ € [0, 7] (See Figure 11).
The sharpness is attained by the function §2(z) = z exp(z — 23/9) and is illustrated for
some choices of n in Figure 12. O

The numerical values of various radii computed in Theorems 5.2, 5.3 and 5.4 are enlisted
in Table 1 for n = 2,4,6,8.

Apart from the classes discussed in this section, two subclasses of analytic functions,
namely BS(a), 0 < a < 1 [10] and M(B), B > 1 [32] are also widely studied, consisting
of functions f € A such that zf'(2)/f(z) < 1+ z/(1 — az?) and Re(zf'(2)/f(2)) < B
respectively, for all z € . Using the similar technique employed in Theorem 5.1, it
can be shown that joﬁ M(B)) = (n—1)/((268 — 1)n + (28 — 3)) and CRS:L (BS(ar)) =
(+/(1 +4a)(n? + 1) + 2(1 — 4a)n—(n+1))/(2c(n—1)). Since its proof is similar, therefore
the details are omitted. We close this section with the following important remark.

Remark 5.5. The class 8} . reduces to the class §*(1 + z) in the limiting case. Thus,
8*(1+ z)—radius for various classes has been summarized in Table 2 which can be obtained
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10 Cuspat
angle
3

Figure 12. Nephroid domain lying in various ¢, . (D) domain

Class n=2 n=4 mn=6 n=2~8
8T 0.55556 0.84000 0.91837 0.95062
8k 0.61031 0.83720 0.89838 0.92632
8& 0.29289 0.39718 0.44719 0.47635
8 0.40547 0.50775 0.55498 0.58419
8¢ 0.41667 0.50528 0.57129 0.61045
S8k 1.00000 0.83372 0.86637 0.89273
8t 0.25951  0.39041 0.44440 0.47533
8k 0.42265 0.50906 0.56901 0.60441
85 0.56714 0.43608 0.46731 0.48812
o 0.33983 0.58075 0.67047 0.71887

8. 0.34729 0.56131 0.63763 0.67907

Table 1. §* . —radii for n = 2,4,6,8

by taking the limit n — oo in the results proved in this section, except for the classes 8% (),
0 <a<1and 8*(v/1+cz), 0 < c <1, whose radius turns out to be 1 by parts (d) and
(e) of Theorem 4.1.
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Class 8*(1 + z)—radius
W V2-1

F V5 -2

T, (V17 —3)/4
St(a), (V1T c2), Shy 1

8% \/5/2 -1

8k log 2
Sk 3/4
8% —1— 2+ (6 +4v/2)"?
Sk 2—4/2
S* 0.732051
8t 0.567143
. 0.881374
8*. 0.817732
BS(a) (V1 +4a—1)/(2a)
M(B) 1/(28 1)

Table 2. Radii in the limiting case

6. Radius constants for §; .

In this section, the 8*(¢)—radii are determined for the class 8% . for various choices of ¢.
The notations introduced in Sections 4 and 5 will have the same meaning for the following
theorem as well.

Theorem 6.1. The sharp radii constants for the class 8} . are as follows:

(a) The 8% (a)—radius (0 < o < 1) is the smallest positive real root of the equation
4 —(vV2-1)(1—-a)(n+1)=0in(0,1).

(b) The 8% —radius is the smallest positive real oot of the equation ™ + rn — (n +
D7 — 2 =0 in (0,1), where v = 2/2 — 2.

(c) The 8%—radius is the smallest positive real root of the equation ™ —rn — (n +
1)(2v2 +3) =0 in (0,1).

(d) The 8%, —radius is the smallest positive real root of the equation r™ + rn — (n +
1)sinl =0 4n (0,1).

(e) The 8¢s—radius is the smallest positive real root of the equation r™ + rn — (n +
1)(e—1)/(e+1)=01n (0,1).

(f) The 8%.—radius is the smallest positive real root of the equation r™ + rn — 2(n +
1)/3 =0 in (0,1).

(8) The 8f—radius is the smallest positive real root of the equation r""—rn+(n+1)/e = 0
n (0,1), forn =4 and RS;(S;‘L) =1.

(h) The 8}—radius is the smallest positive real root of the equation r™ + rn — (n +
1)sinh™1(1) = 0 4n (0,1).
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Proof. Let f € 8%.. Then zf’( )/ f(2) < dpe(2) and
zf’

,rn

n—i—l’

|z| =r. (6.1)

Suppose that f,c € 87 . is given by (1.3).
(a) By using [12, Lemma 2.3, p. 6], it can be easily seen that the disk (6.1) lies inside
the lemniscate of Bernoulli |((w — a)/(1 —a))? — 1| = 1 if

nr r’

n+1 * n+1

This gives r < s1, where s is the smallest positive real root of the equation "™ + rn —

(v2-1)(1—a)(n+1) =0in (0,1). For sharpness, the value of z2f/ . (2)/fnc(2) equals
a+ (1—a)y2 for z = s1.

(b) The disk (6.1) lies inside the left-half of shifted lemniscate of Bernoulli |(w —+/2)% —

1 =1if
n
L) <\/«/2xf22\/§+2,
n+1 n+1

by [22, Lemma 3.2, p. 10]. This simplifies to r < s2, where sy is the smallest positive real
root of the equation 7" +rn — (n + 1)(\/7 — y)Y2 =0 in (0,1), where v = 24/2 — 2. The
result is sharp for the function f,, .

(¢) A necessary condition for the subordination ¢, < ¢r to hold in D, is

nr r
2(\/5—1)=¢R(—1)<¢nﬁ(_r):1_n+1+n+1'

This gives r < s3, where s3 is the smallest positive real root of the equation ™ — rn —
(n+1)(2v/2—3) = 01in (0,1). To show that the condition r < s3 is sufficient as well for
the subordination ¢, < ¢r to hold in D, we will prove that the image domain ¢,,;(Ds,)
is contained in ¢r(D). To see this, we define a function d(t,n) as the difference of the
squares of the boundary points on the curves ¢r(e) and ¢, ¢ (s3e’) from the point (1,0)
which takes the form

d(t,n) = [¢r(e") — 1 — |pnc (s3e™) — 1
2442+ (14 V/2)cost B n?s3 + 3" + 2nsit cos((n — 1)t)
104+ 7v/2 — (7 + 5v/2) cost (n+1)2 '

Since d(t,n) is a decreasing function of ¢ € [0, 7] (see Figure 14(a)), it follows that d(¢,n)
is non-negative if and only if d(7,n) > 0. But

<(V2-1(1-a).

n

n 2
— (3 9v9)2 — (s§ — s3n)
d(m,n) = (3 —2v2) CESIE
Hence ¢nc(Dy) € ¢r(D) for r < s3. This bound is best possible as s3f! . (s3)/fnc(s3) =
2(vV2—1) = ¢r(-1).
(d) In view of [4, Lemma 3.3, p. 7], the disk (6.1) lies in the image domain ¢, (D) if

n

=0.

nr
n+l n+1
This is true for r < s4, where s4 is the smallest positive real root of the equation "+ rn —
(n+1)sinl = 0 in (0,1). The result is best possible as seen by the function f,; which
satisfies sqf), - (54)/fnc(sa) =1 +sinl = ¢ggin(1).
(e) By [6, Lemma 2.2, p. 5], the disk (6.1) lies in the modified sigmoid |log(w/(2—w))| = 1
if

< sinl.

nr r e—1
+ < .
n+1 n+1 e+1
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(a) 8T (b) 8%p (c) 8%

(d) 8%, (e) 8e (f) 85

(8) S5 (h) 8%

Figure 13. Sharpness of various radii for class 87 .

This simplifies to 7 < s5, where s5 is the smallest positive real root of the equation
™m+m—(n+1)(e—1)/(e+1) =01in (0,1). The bound cannot be improved further as
for z = s5, 2f] - (2)/fnc(2) assumes the value 2e/(e + 1).
(f) By [33, Lemma 2.2, p. 8], the following condition implies that the disk (6.1) lie inside
the nephroid domain ¢,.(D):
nr r" 2
+ < -
n+l n+1 3
This gives r < sg, where sg is the smallest positive real root of the equation r"™ + rn —
2(n+1)/3=01n (0,1). For z = s¢, 2f) . (2)/ fnc(2) = 5/3 = ¢ne(1).
(g) Since ¢o5(D) S ¢y (D), the Sf—radius for 85, is 1. Suppose that n > 4. A necessary
condition for the subordination ¢, < ¢, to hold on D, is

1 nr r’

1_g:¢p(—1)<¢nL(_T):1_n+1 n+1
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0.5 1.0 15 20 25 3.0 0.5 1.0 15 2.0 25 3.0

(a) 8% (b) 8%

Figure 14. Graph of distance function d(¢,8)

This simplifies to 7 < s7, where s7 is the smallest positive real root of the equation
™ —rn+(n+1)/e =01in (0,1). Proceeding as in part (c), let d(¢,n) denote the difference
of the squares of the distances from the point (1,0) to the points on the boundary curves
po(e™) and ¢,z (s7e). Then

d(t,n) = [pp(e”) = 11 — [dpe(s7e) — 1
_ eost _ n?s? + 52" 4 2ns2 cos((n — 1)t)
(1+n)?
A computation yields that the function d(¢,n) is a decreasing function (see Figure 14(b)).
As a result, the function d(t,n) is non-negative if and only if d(7,n) = 0. Since

1 (s? —nsy)?
d S Gl A
(mn) =2~
the 8§ —radius is s7. The result is sharp for the function f,.c as 2] ¢ (2)/fnc(2) = 1= 1/e =
$p(—1), for z = —s7.
(h) By using [14, Lemma 2.1, p. 4], the disk (6.1) lie inside the image domain of the
function 1 + sinh~!(z) if

T,TL

n+1 * n+1

which simplifies to r < sg, where sg is the smallest positive real root of the equation

™ +rn — (n + 1)sinh~*(1) = 0 in (0,1). The function f,; shows that the bound is best
possible as zf’ . (2)/fuc(2) = 1+ sinh (1), for z = ss.

The sharpness of the results proved in this theorem is illustrated by Figure 13 for n = 8

and the numerical value of the computed radii are tabulated for some choices of n in Table

3.

< sinh ™1 (1),

0
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Class n =2 n=4 n==~6 n=238
8T 0.497545 0.501903 0.48118 0.465714
S8k 0.363001 0.353501 0.333349 0.32165
Sk 0.303379 0.213942 0.200158 0.193019
rn 0.877342 0.892917 0.895669 0.895131
8&o  0.544782 0.554083 0.535219 0.519222
8¢, 0.732051 0.752971 0.748475 0.738894
8, 1 0.472288 0.43025 0.413972

S: 0.908958 0.921471 0.924325 0.924715

Table 3. Radii constants for n = 4,6 and 8
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