

A Comprehensive Review on Analytical Applications of Hydrazone Derivatives

Mussarat Jabeen
Department of Chemistry, Government Sadiq College Women University Bahawalpur, 63100 Pakistan

Abstract

This review covers a summary of analytical applications of hydrazone derivatives in a systematic manner (1961-2021), which will help researchers in the design and development of hydrazone derivatives as potential candidates in medicinal, pharmaceutical, catalytic, and analytical chemistry, especially in the separation, identification, and detection of several metal ions, anions, organic molecules, and water in various real and synthetic samples. In addition to these, hydrazone derivatives may be used as light emitting diodes, for synthesis of DSSC, nanoparticles and polymers, as corrosion inhibitors, as dyes, etc. This review does not include all papers in this field, but it does synthesize all significant works on the subject.

Keywords: Hydrazone, analytical applications, DSSC, detection of metals, non-linear optical devices
Submitted: November 21, 2021. Accepted: April 08, 2022.
Cite this: Jabeen M. A Comprehensive Review on Analytical Applications of Hydrazone Derivatives. JOTCSA. 2022;9(3):663-698.

DOI: https://doi.org/10.18596/jotcsa.1020357.
*Corresponding Author. E-mail: dr.mussaratjabeen@gmail.com.

INTRODUCTION

Hydrazones are a class of azomethine with a $-\mathrm{C}=\mathrm{N}-$ N - linkage, prepared by the reaction of hydrazide and aldehydes or ketones (1). In hydrazones, azomethine group gained much importance as compared to other organic compounds because carbon has both electrophilic and nucleophilic nature while both nitrogen atoms are in nucleophilic nature $(2,3)$. All the hydrazone derivatives exist in ketoenol tautomerism via intermolecular proton transfer (4) and cis-trans form depends on azomethine bond, solvent, pH, and concentration. Hydrazone derivatives are considered as both proton donor and proton acceptor species and show intermolecular and intermolecular hydrogen bonding (5). This unique characteristic of hydrazone derivatives makes a them very important class of compounds.

In the past few decades, hydrazone and their derivatives possessed many biological applications (6) (Figure 1,2) like antifungal ((E)-N'-[(5-Methyl-7-nitrobenzofuran-2-yl)methylene]-benzo-hydrazide,

1) (7), antibacterial (2,3,4 pentanetrione-3-[4-[[(5-nitro-2-furyl)methylene]-hydrazino]-carbonyl]phenyl]-hydrazone, 2) (8), intestinal antiseptic (4-hydroxybenzoic acid[(5-nitro-2-furyl)-methylene]-hydrazide, 3) (9), anticonvulsant (N'-(4-chloro-benzylidene)-nicotinohydrazide, 4) (10), analgesic (Decanoic acid (4-methoxy benzylidene)hydrazide, 5) (11), anti-cancer (1H-pyrazole-5-carbohydrazide hydrazone, 6) (12), antiinflammatory (Salicylaldehyde-2-(4-isobutyl-phenyl)-propionyl hydrazone, 7) (13), anti-platelet (Indole-3-carboxaldehyde 4-methoxyphenylhydrazone, 8) (14), anti-viral (N '-benzylidene-2-((4,4-dimethyl-6-oxocyclohex-1-en-1-yl)amino)acetohydrazide, 9) (15), anti-proliferative (2-(2-(2,4,6-trioxotetrahydro-pyrimidin-5(2H)-ylidene) hydrazinyl) benzoic acid, 10) (16), anti-malarial (4-((2-(benzo[d]thiazol-2-yl)hydrazineylidene)-methyl)benzene-1,2-diol, 11) (17), and antituberculosis (N -isopropylisonicotino-hydrazide,12) (18), they were also used as organic, inorganic, and analytical reagents.

(1)

(3)

(5)

(2)

(6)

Figure 1: Some biologically important hydrazone derivatives

(7)

(9)

(12)

Figure 2: Biologically active hydrazone derivatives

Hydrazones are also used as plant growth regulators (2-((2-(benzo[d]oxazol-2-yl)-2-methylhydrazineylidene)methyl)benzoic acid, 13) (19), insecticides (podophyllotoxin-based hydrazone, 14) (20), pesticides (substituted nalidixic acid based hydrazones, 15) (21), corrosion inhibitors (ethylacetoacetate-[N-(3-hydroxy-2-naphthoyl)]
hydrazone, 16) (22) etc. They are important an class of compounds for the synthesis of other heterocyclic compounds like Coumarin, Pyridine, Thiazole and Thiophene Derivatives (2-cyano-N'-(1-(pyridin-3-yl)ethyl-idene)acetohydrazide (17) (23), and polymer initiators (acetophenone t butylhydrazone, (18)(24).

(16)

(17)

(18)

Figure 3: Hydrazone derivatives as polymer initials, corrosion inhibitor, pesticidal, insecticidal

ANALYTICAL APPLICATIONS

Hydrazone is very important class of analytical reagents used for the spectroscopic determination of different metal ions in food, environmental, pharmaceutical, and biological samples. These are also used for organic compounds' determination like glucose, carbonyl compounds, estrogen, etc. in blood, urine, cell culture, and pharmaceutical samples. Hydrazone derivatives are also used as corrosion inhibitors for nickel, copper, and many others in acidic and basic media. They are widely used for dyeing purposes for cotton, nylon, etc., chemosensors, polymer initiators, sensitizers, pH sensors for detection of microbes, and waste water treatment.

Spectrophotometric Agents

Hydrazone derivatives are not only extensively used for the detection of metal ions in water, alloys, soil and pharmacological samples but are also used for determination of anions like cyanide ion, fluoride ions, etc. via spectrophometric method. Hydrazone containing different heteroatom like S, O, N or presence of $-\mathrm{OH},-\mathrm{C}=\mathrm{O},-\mathrm{N}-\mathrm{H},-\mathrm{COOH}$ groups form stable compounds with metal ions and anions as compared to others. Hydrazone derivatives form soluble metal complexes when worked on in very small amounts and are capable of detecting metal ions in micro or nanograms.

Figure 4: Hydrazone derivatives for spectrophotometric determination of metals.

Spectrophotometric determination of Cu (II) and Ni (II) in pharmaceutical samples was performed by 7-Hydroxy-8-aceto-coumarin hydrazone (19) at pH 4.5 and 5.5, respectively (25). 2-acetylfuran benzoyl-hydrazone (20) was prepared by Saleem Basha in 2017 and used for spectrophotometric Cu (II) determination in liver cells, vegetable oil, soil, cauliflower, and water samples as a greenish yellow colored complex at pH 6.5 with a detection limit ranging between 1.02 and $10.2 \mu \mathrm{~g} / \mathrm{ml}$ (26). (Figure 4)

All the hydrazone derivatives that were used as spectrophotometric agents and the established conditions like color of complex, pH range, $\lambda_{\max }$ and detection limit in ppm are presented in Table 1. In this table, hydrazone reagents used for the detection of metals or anions via spectroscopic methods from the period of 1971 to 2021 were described.

Table 1: Important Hydrazone derivatives worked as Spectrophotometric Agents.

Spectrophotometric reagent	Sample	Metal ion	pH	Color of complex	Detection range (ppm)	$\lambda_{\text {max }}$ (nm)	Ref
3,5-Dimethoxy-4hydroxybenzaldehyde isonicotinoyl-hydrazone	Alloy	$\mathrm{Ni}(\mathrm{II})$	$\begin{aligned} & 8.5- \\ & 9.5 \end{aligned}$	Yellow		386	(27)
	Alloy samples, hydrogenat ion catalyst samples and real water samples	Pd(II)	5.5	Bright yellow	$\begin{aligned} & 0.1064- \\ & 2.1284 \end{aligned}$	382	(28)
	Monazite sand	Th(IV)	3.0	Yellow	0.580-5.80	390	(29)
	Synthetic mixtures, certified reference materials, water samples and pharmaceu tical samples	Au(III)	4.0	Orange	0.197-1.97	386	(30)
	Beer, wine, vegetables and milk	$\mathrm{Cu}(\mathrm{II})$	$\begin{aligned} & 8.0- \\ & 9.5 \end{aligned}$	Bright yellow	0.317-3.17	494	(31)
Diacetylmonoxime-4- hydroxybenzoyl- hydrazone 2-pyridinecarb-aldehyde 2-(5-nitro)pyridyl- hydrazone 2,4-dihydroxy- benzaldehyde isonicotinoyl hydrazone	Synthetic alloy	Pb (II)	10.0	Bright yellow	$\begin{aligned} & 0.414- \\ & 10.360 \end{aligned}$	440	(32)
	Steel	$\mathrm{Ni}(\mathrm{II})$	6.0	Red	0.05	$\begin{aligned} & 475 ~ \& ~ \\ & 507 \end{aligned}$	(33)
	--	Fe (III)	7.0	Yellow	0.20-1.45	420	(34)
	Alloy sample, zirconium sand and micro granite rock sample	Zr (IV)	1.5	Golden yellow	0.4-4.0	410	(35)
	Alloys and steel samples	Ti (IV)	$\begin{aligned} & 1.0- \\ & 7.0 \end{aligned}$	Reddish brown	0.09-2.15	430	(36)
	Synthetic samples and ores	Os (VIII)	5.0	yellow	0.95-11.41	393	(37)
	Water and pharmaceu tical samples	Zn(II)	$\begin{aligned} & 6.0- \\ & 8.0 \end{aligned}$	greenish yellow	0.06-1.6	390	(38)
	Monazite sand	Th(IV)	$\begin{aligned} & 2.0- \\ & 8.0 \end{aligned}$	yellowish orange	0.3-7.0	415	(39)
	Portable water samples	$\mathrm{Fe}(\mathrm{II})$	7.0	Yellow	0.1-1.5	395	(40)
	Steel	Ti (IV)	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	Red	$0.36-3.8$	560	(41)
	samples	Mo (VI)	1.5	Golden		445	

Spectrophotometric reagent	Sample	Metal ion	pH	Color of complex	Detection range (ppm)	$\lambda_{\text {max }}$ (nm)	Ref
	Alloys, steel, synthetic mixtures	Co(II)	8.4		1-10		(60)
2,5- Dihydroxyacetophenone benzoic hydrazone	Alloy and plant leaves	$\mathrm{Cu}(\mathrm{II})$	Acidi c	Yellow	0.3-6.0	400	(61)
1-((1E,4E)-4-((2aminoethyl)imino)naphth alen-1(4H)-ylidene)-2(2,4 -dinitro- $1 \lambda^{5}$ -phenyl)hydrazin-1-ium	Soil, water, urine, human hair, goat liver, plant material, steel and alloy samples	V (V)	Basic	Red	0.02-3.5	495	(62)
2-hydroxy-1-naphthaldehyde-phydroxybenzoichydrazon e	Water (river, tap, and rain), soil, pharmaceu tical samples, wheat, orange, rice, tomato, banana, blood and urine	$\mathrm{Fe}(\mathrm{II})$ $\mathrm{Co}(\mathrm{II})$	5.0 6.0	Reddish brown Yellow	$0.055-1.373$ $0.118-3.534$	405 425	(63)
	Environme ntal, Leafy vegetable, and Biological Samples	V (V)	4.0	Deep yellow	0.101-1.121	430	(64)
	Water, ore,	Th(IV)	6.0	Yellow	0.464-6.961	415	(65)
	fertilizer, and gas mantle samples	U(IV)	6.0	Reddish brown	0.476-7.14	410	
	Nickel based alloy samples and geological samples	Y(III)	8.5	Yellow	0.044-2.222	410	(66)
	Plant, pharmaceu	V (V)	4.0	Deep yellow	0.050-1.935	430	(67)
	tical, water and alloy samples.	Pd(II)	4.0	Greenish yellow	0.022-2.021	430	
Diacetyl monoxime isonicotinoyl hydrazone	Rock, in pitchblende ore samples and synthetic samples	U (VI)	3.25	Yellow	1.19-14.28	364	(68)

Spectrophotometric reagent	Sample	Metal ion	pH	Color of complex	Detection range (ppm)	$\lambda_{\text {max }}$ (nm)	Ref
	samples Plant sample, edible oil and in alloys	$\mathrm{Ni}(\mathrm{II})$	$\begin{aligned} & 8.0- \\ & 9.0 \end{aligned}$	Yellow	0.146-1.46	400	(89)
	Tannery effluent, synthetic water and chrome liquor samples	Cr (VI)	4.0	Brown	0.078-0.780	440	(94)
	Food stuffs, pharmaceu tical samples and alloys	Mo (VI)	$\begin{aligned} & 3.0- \\ & 4.0 \end{aligned}$	Green	0.047-0.479	404	(95)
	Hydrogenat ion catalyst samples, synthetic alloy samples and in water samples.	Pd (II)	$\begin{aligned} & 4.0- \\ & 5.0 \end{aligned}$	Brown	0.106-1.064	375	(90)
benzil-a-monoxime isonicotinoyl hydrazone	Pipe water, bore water and municipal water samples	Pb (II)	$\begin{aligned} & 10.0- \\ & 11.0 \end{aligned}$	Yellow	0.41-13.26	405	(96)
dipyridylglyoxal mono(2-pyridyl)-hydrazone	Pharmaceu tical samples, multivitami ns, hormones and Hidropolivit mineral	Cobalt (II)	$\begin{aligned} & 3.0- \\ & 7.0 \end{aligned}$	Orange red	0.15-2.0	510	$(97,98$
salicylaldehyde benzoyl hydrazone	Steel, alloys, water, human blood, urine, apple, egg, soil and synthetic mixtures	$\mathrm{Cu}(\mathrm{II})$	$\begin{aligned} & 1.21- \\ & 2.58 \end{aligned}$	Greenish yellow	0.001-10	404	(99)
benzil mono-(2-pyridyl) hydrazone	Steel and alloy samples	Co (II)	Basic	Red	$\begin{aligned} & 0.0061- \\ & 0.061 \end{aligned}$	535	(100)
Benzil mono(2quinolyl)hydrazone	---	$\mathrm{Cu}(\mathrm{II})$	6.0	Red	0.3-3.0	520	$\begin{aligned} & (101,1 \\ & 02) \end{aligned}$

Spectrophotometric reagent	Sample	Metal ion	pH	Color of complex	Detection range (ppm)	$\boldsymbol{\lambda}_{\text {max }}$ (nm)	Ref
2,4-dimethoxy benzaldehyde-4-hydroxy benzoylhydrazone	Pharmaceu tical samples (Zingisol, Insulin Zinc Suspension and in Biocosules Z)	Zn (II)	$\begin{aligned} & \hline 10.0- \\ & 11.0 \end{aligned}$	Yellow	0.163-1.96	466	(103)
2,4-dihydroxy benzophenone benzoic hydrazone	Simulated rock samples	Ce (IV)	10.0	Orange red	0.7-7.0	400	(104)
5-Bromo-2-hydroxy-3-methoxybenzaldehyde-phydroxybenzoic hydrazone	Alloy samples, industrial water, drinking water, plant samples and in vegetable oil	$\mathrm{Ni}(\mathrm{II})$	$\begin{aligned} & 5.5- \\ & 7.5 \end{aligned}$	Green	0.117-2.64	440	(105)
	In alloys, steel and in water	Ti (II)	$\begin{aligned} & 2.0- \\ & 7.0 \end{aligned}$	Orange	0.241-2.87	390	(106)
```2-(3'-sulfobenzoyl)- pyridine benzoyl- hydrazone```	Natural water	$\mathrm{Fe}(\mathrm{II})$	$\begin{aligned} & 7.0- \\ & 9.0 \end{aligned}$	Blue	0-4	646	(107)
$\mathrm{N}, \mathrm{N}$ '-Oxalylbis(salicylaldehyde Hydrazone)	Water	Al(III)	4.7	Yellow	0-0.2	390	(108)
N -cyanoacylacetaldehyde hydrazone	Water	Au(III)	$\begin{aligned} & 3.0- \\ & 7.0 \end{aligned}$	Blue	1-30	550	(109)
p-dimethylaminoben-   zaldehyde isonicotinoyl   hydrazone	--	$\begin{aligned} & \mathrm{Hg}(\mathrm{I}) \\ & \mathrm{Hg}(\mathrm{II}) \end{aligned}$	3.5	Orange yellow	---	---	(110)
4-Hydroxy benzaldehyde-4bromophenyl hydrazone	Water and alloy sample	$\mathrm{Ni}(\mathrm{II})$	4.0	Red	0.01-1.0	497	(111)
3-methylbenzothiazolin-2-one hydrazone	Drugs	$\mathrm{Ce}(\mathrm{IV})$	4.2	Orange	4.0-80.0	450	(112)
2-(4-biphenyl)-imidazo[1,2-]pyrimidine-3-hydrazone	---	$\mathrm{Cu}(\mathrm{II})$	4	Green	---	430	(113)
Glutaraldehyde phenyl hydrazone	Water, soil, biological samples	$\mathrm{Pb}, \mathrm{Cr}$, $\mathrm{Cd}, \mathrm{As}$	$\begin{aligned} & 5.6- \\ & 7.5 \end{aligned}$	---	---	$\begin{aligned} & 387 \\ & (\mathrm{Cd}) \\ & 395 \\ & (\mathrm{As}) \\ & 395 \\ & (\mathrm{~Pb}) \\ & 360 \\ & (\mathrm{Cr}) \\ & \hline \end{aligned}$	(114)

## Chemosensors

Chemosensors are non-toxic nano-sized organic molecules or receptors that produced a detectable change for sensoring analyte (usually metal ions or small molecules) using fluorescence spectroscopy
(115). These chemosensors not only detect toxic and dangerous chemicals in the external and internal environment of the human body but also transmit that information to the nervous system to expel these toxins from body. For this purpose, a

## REVIEW ARTICLE

large number of organic molecules can be used but hydrazone derivatives containing thiol, carboxylic group gained more importance. Some important hydrazone derivatives used as chemosensors are presented below in Table 2.

## Organic compound detector

Hydrazone derivatives are efficiently used for detection of organic compounds (Figure 5) like glucose, aromatic amines, hetero-atomic
compounds, azo dyes, active methylene compounds, etc., in blood, urine, and pharmaceutical samples via spectroscopic and chromatographic methods.

Alzweiri and coworkers established a unique method for the spectrophotometric determination of glucose in biological samples by derivatization of glucose with 2,4-dintrophenyl hydrazine (21) (154).



Figure 5: Hydrazone derivatives as organic compounds detector.

3-Methylbenzthiazolinone-2-hydrazone (22) was used as an analytical reagent for determination of phenols (155), azo dyes, Schiff bases, stilbenes (156), aliphatic aldehydes from fumes and polluted air (157), carbazole in air (156), aromatic amines (158), imino heteroaromatic compounds (158), heterocyclic bases, heteroaromatic compounds, compounds with active methylene groups (159), Rutin (160), glyoxal (161), phenolphthalein in pharmaceutical products (162), metaxalone (163), dabigatran etexilate mesylate (163), total estrogens in urine (164), determination of formaldehyde and acetaldehyde in methanol and ethanol (165), oxcarbazepine in pharmaceuticals, sulpha drugs in blood and urine samples $(166,167)$, cannabinoids on thin-layer chromatography plates (168), free salicylic acid in aspirin (169), dobutamine hydrochloride (170) and carbonyl compounds in pharmaceutical samples (159) via different spectroscopic and chromatographic techniques.

By this method, $99.93 \%$ of phenol from waste water was removed by polystyrene hydrazone (23) by
solid-phase extraction method prepared by acetylation of waste polystyrene with phenyl hydrazine (171).
For the determination of atmospheric ozone in very low concentrations up to 0.02 ppm and carbonyl compounds from mixtures, 2-Diphenylacety-1,3-indandione-1-hydrazone (24) was used as a spectrofluorometric reagent $(172,173)$.


Figure 6: Fluorescence detecting hydrazone derivatives

Naphthalimide-based glyoxal hydrazone (25) is used for biological imaging of cysteine and homocysteine inside living cells via fluoresce spectroscopy with a color change from dark to green (174).

Table 2: Some Important Hydrazone reagents used as chemosensors

Chemosensor Name	Sample	Analyte	LOD   (M)	Color change	Fluoresc ence color	Tested media	$\begin{aligned} & \text { Em/ex } \\ & \text { (nm) } \end{aligned}$	Ref
1-phenyl-3-methyl-5-hydroxy-pyrazole-4 benzoyl(fluorescein)-hydrazone	---	$\mathrm{Cu}^{2+}$	$2.0 \times 10^{-3}$	Colorless   $\rightarrow$ Yellow		$\begin{aligned} & \hline \text { DMSO/ } \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	337/287	(116)
Benzil mono(2-phen-yl)hydrazone	Biomedic al \& environm ental	$\mathrm{Cu}^{2+}$	$\begin{aligned} & 8.25 \\ & \times 10^{-8} \end{aligned}$	Colorless $\rightarrow$ Pink		THF/ $\mathrm{H}_{2} \mathrm{O}$	490	(117)
Salicylaldehyde hydrazone derivatives	Living cells (MCF-7 calls)	$\mathrm{Al}^{3+}$	$1.5 \times 10^{-7}$	Colorless $\rightarrow$ blue		DMF/ $\mathrm{H}_{2} \mathrm{O}$	450/390	(118)
2-((E)-(((E)-2-hydr-oxybenzylidene)hydrazineylidene)methyl)-6-methoxy-4-nitrophenol	Liver cells	$\mathrm{Cu}^{2+}$	$18 \times 10^{-8}$	Colorless $\rightarrow \quad$ light yellow	Green	$\mathrm{H}_{2} \mathrm{O}$	570/400	(119)
	Biological system	$\mathrm{Al}^{3+}$	$7.45 \times 10^{-8}$	Yellow $\rightarrow$ colorless	Green	$\mathrm{CH}_{3} \mathrm{OH}$	545/400	
ethyl (E)-5-((2-(2-(2-hydroxyethyl)-1,3-dioxo-2,3-dihydro-1H3a1 $\lambda 5$-benzo-[de]isoquinolin-6-yl)hydrazineylidene)methyl)-2,4-dimethyl-1I2-pyrrole-3-carboxylate	HeLa cells	$\mathrm{Cu}^{2+}$	$3 \times 10^{-6}$	Yellow $\rightarrow$ red		$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN} / \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	620/480	(120)
```(3a1S)-2-butyl-7-(2-((Z)-1-(4-hydroxy-6-methyl-2-oxo-2H- pyran-3-yl)ethylidene)-hydrazineyl)-3a,3a}\mp@subsup{}{}{1}\mathrm{ -dihydro-1H- benzo[de]isoquinoline-1,3(2H)-dione```	Real sample	$\mathrm{Cu}^{2+}$	1.58	Yellow $\rightarrow$ Colorless		THF/ $\mathrm{H}_{2} \mathrm{O}$	520/412	(121)
4-methyl-N'-(ferrocene-2-ylidene)benzenesulfonohydrazide		Cu^{2+}	${ }_{5}^{2.66 \times 10^{-}}$	Pale yellow \rightarrow yellow green		$\mathrm{CH}_{3} \mathrm{CN}$		(122)
		Hg^{2+}	7.60×10^{-6}	Pale yellow \rightarrow Red		$\mathrm{CH}_{3} \mathrm{CN}$		
(E)-3-(1-(2-(benzo[d]thiazol-2-yl)hydrazineylidene)ethyl)-7-(diethylamino)-2H-chromen-2-one	HeLa tumor cells (Cervical cancer cells)	Cu^{2+}	4×10^{-8}	Yellow \rightarrow wine red		1\%DMSO	572/420	(123)
7-(diethylamino)-3-((E)-(((E)-(2-hydroxynaphthalen-1- yl)methylene)hydrazineylidene)methyl)-2H-chromen-2-one	human breast adenocar cinoma	Cu^{2+}	2×10^{-4}		Green	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{OH} / \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	574/487	(124)

Chemosensor Name	Sample	Analyte	$\begin{aligned} & \text { LOD } \\ & \text { (M) } \end{aligned}$	Color change	Fluoresc ence color	Tested media	```Em/ ex (nm)```	Ref
3',6'-bis(diethylamino)-2-((2-hydroxy-5-(1,2,2-triphen-ylvinyl)benzylidene)amino)spiro[isoindoline-1,9'-xanthen]-3-one	cinoma (HeLa) cells - - -	Cu^{2+}	10^{-6}	Colorless \rightarrow purple		$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$	550/-	(135)
2-(((3H,4'H-1I3,1'I3-[2,2'-bithiophen]-5-yl)methylene)-amino)- 3',6'-bis(diethyl-amino)spiro[isoindoline-1,9'-xanthene]-3-thione	Human epithelial adenocar cinoma (HeLa) cells	Hg^{2+}	3.10×10^{-9}	Colorless \rightarrow purple	Pink	EtOH	593/390	(136)
3',6'-bis(diethylamino)-2-((piperidin-2-ylmethyl)-amino)spiro[isoindoline-1,9'-xanthen]-3-one	Caco-2 cells	Cu^{2+}	0.137	Colorless \rightarrow red	Orange	$\mathrm{CH}_{3} \mathrm{CN}$	573/520	(137)
```N-(3',6'bis(diethylamino)- 3-oxospiro[isoindoline-1,9' -xanthen]-2-yl)-3-oxo-3-ferrocenylpropanamide```	HeLa cells	$\mathrm{Cu}^{2+}$	$1.0 \times 10^{-6}$	Colorless   $\rightarrow$ purple	Orange red	$\begin{aligned} & \text { ethanol/ } \\ & \text { H2O } \end{aligned}$	595/550	(138)
2-(hydrazineylidenem-ethyl)pyren-1-ol	HeCaT cells	Z $\mathrm{n}^{2+}$	$3 \times 10^{-4}$	Colorless $\rightarrow$ yellow	Green	$\mathrm{CH}_{3} \mathrm{CN}$	527/450	(139)
```3',6'-bis(diethylamino)-2-((2- mercaptobenzylidene)amino)spiro[isoindoline-1,9'-xanthen]-3- one```	Nematod e Caenorha bditis elegans	$\mathrm{Hg}^{2+}$	$1 \times 10^{-9}$	Colorless $\rightarrow$ pink	Red	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN} / \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	580/510	(140)
1-phenyl-3-methyl-5-hydroxypyrazole-4-carbaldehyde(benzoyl)hydrazone		Cu^{2+}	1.0×10^{-6}			$\mathrm{CH}_{3} \mathrm{CN}$	305/406	(141)
3',6'-bis(diethylamino)-2-((furan-2-ylmethylene)-amino)spiro[isoindoline-1,9'-xanthene]-3-thione	Rat Schwann cells	Hg^{2+}	5×10^{-4}	Colorless \rightarrow pink	Orange	$\mathrm{H}_{2} \mathrm{O}-$ DMF	564/500	(142)
4-nitro-2-[(phenylhydra-zoimino)methyl]phenol		F^{-}	$\begin{aligned} & 0.02-0.2 \\ & \times 10^{-4} \end{aligned}$	Colorless \rightarrow yellow	Yellow	$\mathrm{CH}_{3} \mathrm{CN}$		(143)
4-nitro-2-[(4-nitrophenylhydrazoimino)methyl]phenol		F^{-}	$\begin{aligned} & 0.02-0.2 \\ & \times 10^{-4} \end{aligned}$	Colorless \rightarrow orange	Yellow	$\mathrm{CH}_{3} \mathrm{CN}$		

Chemosensor Name	Sample	Analyte	LOD (M)	Color change	Fluoresc ence color	Tested media	```Em/ ex (nm)```	Ref
N',N"'-((1E,1'E)-(((4-((E)-(2-(1-hydroxy-2-naphthoyl)-hydrazineylidene)methyl)phenyl)azanediyl)bis(4,1-phenylene))bis(methaneylylidene))bis(3-hydroxy-2naphthohydrazide)	Human cervical cancer (HeLa) cancer cell lines	Cu^{2+}	---	---	---	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{CH}_{3} \mathrm{CN} \end{aligned}$	470/450	(144)
```3,3'-((1E,1'E)-(((1E,1'E)-(((4-((E)-(((E)-(1-hydroxy-naphthalen- 2-yl)methylene)- hydrazineylidene)methyl)phenyl)azanediyl)bis(4,1- phenylene))bis(methaneylylidene))bis(hydrazine-2,1- diylidene))bis(methaneylylidene))bis(naphthalen-2-ol)```	Human cervical cancer (HeLa) cancer cell lines	$\mathrm{Cu}^{2+}$	---	---	---	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{CH}_{3} \mathrm{CN} \end{aligned}$	430/405	(144)
2-(((1E,2E)-but-2-en-1-ylidene)amino)-3',6'-bis-(ethylamino)spiro[isoindoline-1,9'-xanthen]-3-one	Water, soil	Pd ${ }^{+}$	$1.80 \times 10^{-7}$	Colorless $\rightarrow$ pink	Yellow	$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$	555/505	(145)
2-hydroxy-benzaldehyde benzoyl-hydrazone	biological and environm ental sample	$\mathrm{Cu}^{2+}$	$5.6 \times 10^{-6}$	---	--	$\begin{aligned} & \mathrm{MeOH} / \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	490/424	(146)
Methyl Pyrazinylketone Benzoyl Hydrazone	---	$\mathrm{Al}^{3+}$	$10^{-7}$		Green	Ethanol	506/390	(147)
3',6'-bis(diethylamino)-2-((2-   hydroxybenzylidene)amino)spiro[isoindoline-1,9'-xanthen]-3one	---	$\mathrm{Cu}^{2+}$	---	Colorless   $\rightarrow$ pink		$\mathrm{CH}_{3} \mathrm{CN}$	576/520	(148)
$\begin{aligned} & \text { (E)-(2-((2-(2,4- } \\ & \text { dinitrophenyl)hydrazineylidene)methyl)phenyl)diphenylphosphin } \\ & \text { e oxide } \end{aligned}$	--	$\mathrm{F}^{-}$	$2 \times 10^{-5}$	Yellow $\rightarrow$ pink		$\mathrm{CH}_{3} \mathrm{CN}$	514/379	(149)
N-(2-(-(2-(-3,4-dihydroxy-6-   (hydroxymethyl)-5-(-3,4,5-trihydroxy-6-(hydroxymethyl)   tetrahydro-2H-pyran-2-yloxy) tetrahydro-2H-pyran-2-yl)	Water	$\mathrm{CN}^{-}$	$1.29 \times 10^{-6}$	Colorless $\rightarrow$ purple		$\begin{aligned} & \mathrm{MeOH} / \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	---	(150)
hydrazono) methyl)-4-(-phenyldiazenyl) phenyl) acetamide (E)-2-(2-(2,4-dinitrophenyl)hydrazineylidene)-1,2-diphenylethan-1-one	Real   water and   simulated   urine   samples	$\mathrm{CN}^{-}$	$10^{-7}$	Yellow $\rightarrow$ Red		$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN} / \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$		(151)
1-((Anthracene-9-yl)-methylene)-2-(4-nitrophenyl)hydrazine		$\mathrm{F}^{-}$	$4 \times 10^{-5}$	Yellow $\rightarrow$ green		DMSO	571/493	(152)
N, N-diethylamino-3-acetyl coumarin with 2- hydrazinobenzothiazole	HeLa cells	$\mathrm{Cu}^{2+}$		Yellow $\rightarrow$ orange	Green	DMF	536/420	(123)


Chemosensor Name	Sample	Analyte	$\begin{aligned} & \text { LOD } \\ & (M) \end{aligned}$	Color change	Fluoresc ence color	Tested media	$\begin{aligned} & \text { Em/ ex } \\ & \text { (nm) } \end{aligned}$	Ref
$N$-(3-methoxy-2-hydroxybenzylidene)-3-hydroxy-2naphthahydrazone	Water	$\begin{aligned} & \mathrm{Zn}^{2+} \\ & \mathrm{Cd}^{2+} \end{aligned}$	$\begin{aligned} & \text { Zn } \quad\left(9.85^{-}\right. \\ & \times \\ & 10^{-9} \\ & \mathrm{M}) \\ & \mathrm{Cd} \quad(1.27 \\ & \times \\ & 10^{-7} \\ & \hline \end{aligned}$	---	Yellow (Zn) Red (Cd)	THF/ $\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \hline 365 / 440 \\ & 645 / 430 \end{aligned}$	(153)

$\overline{\mathrm{OD}}=$ limit of detection; Em= emission; Ex= excitation;

## Water detectors

Hydrazone - acetate derivatives (26) derived from 9-anthracenealdehyde and 7-hydroxy-coumarin-8carboxaldehyde were used as for Chromogenic signaling (detection) of water contents in water miscible organic solvents like THF and acetonitrile by Y.H. Kim et al in 2012 (175). Anthracene-based hydrazone (27) was found to be more sensitive to water content as compared to 7-hydroxycoumarin hydrazone and showed a visible color change from red to yellow with a detection limit of 0.037 and $0.071 \%$ in both solvents (175).


(26)

(27)

Figure 7: Water-monitoring hydrazone derivatives.

## Microbes detectors

Most of the hydrazone derivatives have different colors in acidic and basic media as well as in neutral ones. This property of hydrazones is very useful for microbe detection in food and pharmaceutical samples (Figure 8).

Recently, Khattab and coworkers introduced Tricyanofuran hydrazone derivatives (28) as pH sensors for detection of microbes which alkalize the environment, like S. aureus, B. subtilis, E. coli, and $P$. aeuroginosa. The color change from yellow to blue to red indicates the pH change from acidic to neutral to basic. These pH sensors were also used to detect microbes in food packages and pharmaceutical samples (176-178).


Figure 8: Microbe detecting hydrazone derivatives.

## Sorbents

Some modified hydrazone derivatives are widely used as sorbents in ion exchange chromatography or in Sol-gel process for separation of ions in synthetic mixtures, natural water, ash coal, petroleum products, and pharmaceutical samples. Such hydrazones work as low cost resins with high productivity, are highly stable and can be used many times with the same sorption capacity listed in Table 3.

## Organic Collectors in Flotation

Flotation is the separation process of toxic metal ions in trace amounts, for this purpose many hydrazone derivatives worked as organic collectors. These form hydrophobic aggregates with metal ions that float with the help of air bubbles produced on the surface of solution by slight shaking of floatation cell. Many important hydrazones used as organic collectors are summarized in Table 4.

## Sewage Water Treatment

Sewage water is commonly known as wastewater, which contains a large amount of contamination mainly coming from household and industrial waste. This wastewater contains several heavy metals like mercury, arsenic, cadmium, chromium, lead, thallium, and nitrogen compounds like ammonia, nitrite, and nitrates. Many physical, chemical, and biological processes are now used for sewage water treatment, but most of these are very costly and time consuming.

Cellulose hydrazone derivatives were obtained by the reaction of dialdehyde cellulose and 2-hydrazino- 3,5,6,7 tetrahydrocyclopentanethieno[2,3-d]-pyrimidin$4(4 \mathrm{H})$-one (29) used as a polymer for sewage water treatment and the removal of several heavy metal ions. The synthesized derivatives were used for production of clean water with less side effects. These derivatives not only had ability to remove iron and chromium up to $73.91 \%$ but also chlorine up to 50 \% (192).


Figure 9: Hydrazone for sewage water treatment.

Sorbent	Separated Ion	Sample	pH	$\begin{aligned} & \hline \text { LOD } \\ & \text { (ppb) } \end{aligned}$	Eluent	Recovery \%	Ref
1-(3,4-Dihydroxy-benzylidine)-2-acetylpyridinium chloride hydrazone	$\mathrm{Fe}^{3+}$	Waste water, sea water, lake water, food oil, petroleum products, pharmaceu tical sample	3.0	1.0	0.5 M HCl	100	(179)
	$\mathrm{Cr}^{3+}$	Waste water	6.0	13.3	0.1 M HCl	${ }^{-100}$	(180)
	$\mathrm{Cr}^{6+}$	Waste water	2.0	10.0	3.0 M HCl	${ }^{-100}$	(180)
	$\mathrm{Ga}^{3+}$	Synthetic	2.5-3.0	20	0.5 M HCl	98	(181)
	$\mathrm{In}^{3+}$	mixture of	2.5-3.0	13	5.0 M HCl	98	(181)
	T ${ }^{3+}$	mercury, aluminum, cobalt, copper, zinc \& lead	2.0	20	2.0 M HCl	95	(181)
acenaphthenequinone-[N-[(2,4-dinitrophenyl)]-hydrazone	La ${ }^{3+}$	Lake water, rain water, river water	4.0	---	$\begin{array}{ll} 0.1 & M \\ \mathrm{HNO}_{3} & \end{array}$	97	(182)
1-[(bromomethyl)-(phenyl)methyl]-2-(2,4-dinitrophenyl) hydrazine	$\mathrm{Ag}^{+}$	Tap water, drain water	5.0			99	(183)
4-hydroxy-N'-[(E)-(2-   hydroxyphenyl)methylidene]benzohydrazide	Biogenic amines	Orange juice, ketchup, budu, soy sauce.	9.0	20-60	---	99.7	(184)

LOD= limit of detection in ppb

## Polymer initiators

Polymer synthesis is the process in which small molecules (monomers) covalently combined to form giant molecules that are more stable as compared to initiators. Many organic molecules are used for this purpose, but hydrazone derivatives gave the highest yields and the best results among them (Figure 10).

Nakanishi et al. and Masuda et al. used pyridine hydrazone derivatives (30) as a suitable and useful initiator or starting material for the synthesis of synthetic polymers or hydrazone polymers $(193,194)$.

Hydrazone derivatives (31) were used as initiators for high yield polymerization of acrylamide, acrylic acid or styrene at a temperature $-10-98^{\circ} \mathrm{C}$ with yield

A series of six hydrazone derivatives (32) were prepared by Singh and coworkers and used for the synthesis of hydrazone functionalized epoxy polymers by the conversion of hydrazone derivatives into epoxide to form hydrazone polymer (Figure 11). These polymers showed high nonlinear optical properties (196).

## Indicators

Salicylaldehyde phenylhydrazone (33) prepared by Love and Jones from simple and cheap starting


Figure 10: Polymer initiating hydrazone derivatives


Figure 11: Hydrazone as epoxy polymer up to $77 \%$ (24). Similarly, acylhydrazone derivatives were also used as starting materials for acylhydrazone polymers (195).
material was used as an indicator for the titration of organometallics, including Grignard reagent, providing a clear and accurate end point from yellow to golden orange or red (Figure 12) (197).

(33)

Figure 12: Hydrazone as indicator.

Table 4: Hydrazones used as organic collectors in flotation.

Organic collector	Surfactan t	Metal ion	Tested Sample	pH	Recovery \%age	HOL	Ref
1-acetylpyridinium chloride-4-phenylthio-semicarbazide	Oleic acid	$\mathrm{Hg}^{2+}$	Natural water samples of Mansoura city	6.8	-100	$1 \times 10^{-3}$	(185)
4-acetylpyridine-[N-(3-hydroxy-2-naphthoyl)]hydrazone	Oleic acid	$\mathrm{Ni}^{2+}$	Water	7.0	-100	$4 \times 10^{-4}$	(186)
1-(amino-N-(pyridine-3-yl)methanethio)-4-(pyridine-2-yl)thiosemi-carbazide	Oleic acid	$\mathrm{Hg}^{2+}$	Sea water, lake water, Nile water, distilled water	5.0	100	$1 \times 10^{-3}$	(187)
thiophene-2-carboxaldehyde-[N-(3-hydroxy-2-naphthoyl)]-hydrazone	Oleic acid	$\mathrm{Ni}^{2+}$	Water	7.0	-100	$4 \times 10^{-4}$	(186)
salicylaldehyde-[N-(3-hydroxy-2-naphthoyl)]-hydrazone	Oleic acid	$\mathrm{Ni}^{2+}$	Water	7.0	-100	$4 \times 10^{-4}$	(186)
p-anisaldehyde-[N-(3-hydroxy-2-naphthoyl)]hydrazone	Oleic acid	$\mathrm{Ni}^{2+}$	Water	7.0	-100	$4 \times 10^{-4}$	
ethylacetoacetate-[N-(3-hydroxy-2naphthoyl)]-hydrazone	Oleic acid	$\mathrm{Ni}^{2+}$	Water	7.0	-100	$4 \times 10^{-4}$	
(E)-2-(2-(dimethylamino) $-1 \lambda^{3}, 3 \lambda^{2}$-thiazol-4-yl)-N'-(2hydroxybenzylidene)acetohydrazide	Oleic acid	Z $\mathrm{n}^{2+}$	Water	7.0	96	$1 \times 10^{-3}$	(188)
4-(2-pyridyl-azo) resorcinol mono sodium mono hydrate	Oleic acid	$\mathrm{Cu}^{2+}$	Water, drug	3-5	95	$2 \times 10^{-5}$	(189)
Oxalyl-bis(3,4-di-hydroxy-benzylidene) hydrazone	Oleic acid	ZrO ${ }^{\text {+ }}$	Sea water, undergrou nd water, lake water, tap water, Nile water	3.0	99.7	$1 \times 10^{-5}$	(190)
2-(2-(4-hydroxy-3-methoxybenzylidene) hydrazinyl)-2-oxo-Nphenylacetamide	Oleic acid	$\mathrm{Cu}^{2+}$	---	7.0	98	$1 \times 10^{-3}$	(191)
2-(2-(2-hydroxy-3-methoxybenzylidene) hydrazinyl)-2-oxo-Nphenylacetamide	Oleic acid	$\mathrm{Cu}^{2+}$	---	7.0	99	$1 \times 10^{-3}$	(191)

## Catalyst

2-Carboxybenzaldehyde-p-Toluenesulfonyl Hydrazone (34) was used as an efficient catalyst in coupling reaction (Figure 13) of benzaldehyde, piperidine, and phenylacetylene with 1,4 dioxane as a solvent for the preparation of $1-(1,3-$ diphenylprop-2-yn-1-yl)piperidine at $120^{\circ} \mathrm{C}(198)$.

(34)

Figure 13: Hydrazone as catalyst for organic coupling reaction.

## Corrosion Inhibitors

Corrosion is the degradation process of metals to form oxides, sulfides, or hydroxides. Many organic compounds like pyrimidine, imidazole, oxazole, triazole, amino acids and hydrazone are common organic corrosion inhibitors used to prevent or delay corrosion process of metals like copper, nickel, iron, and tin. Among all the organic compounds hydrazone gained much importance due to heteroatom nitrogen and oxygen. Some important hydrazone derivatives that worked as good corrosion inhibitors are presented in Table 5.

## Ionophores

Ionophores are ion carriers and have tendency to bind, shield, and facilitate transportation of metal ions across the membrane (Figure 14). Ganjali and coworkers used pyridine-2-carbaldehyde-2-(4-methyl-1,3-benzothiazol-2-yl) hydrazone (35) and thiophene-2-carbaldehyde-(7-methyl-1,3-
benzothiazol-2-yl)hydrazone (36) as suitable neutral ionophore for the preparation of Er (III) and Tm (III) membrane sensor at pH 2.5-12.0 and 3.012.0, respectively, with lower detection limits 5.0 $\times 10^{-6} \mathrm{M}$ and $8.0 \times 10^{-6} \mathrm{M}$. $(218,219)$.

## Dyes and Pigments

Nowadays, various hydrazones are used as stable dyes and pigments with a visible color change at different pH levels due to $\mathrm{C}=\mathrm{N}-\mathrm{N}$ linkage or presence of carbonyl group. Such dyes are not only used for dying polyester, silk, cotton, or nylon but are also used as sensitizers or for dying purposes in dye sensitized solar cells due to their broad absorption band.



Figure 14: Hydrazone derivatives as ionophore for inner transition metals

Tricyanofuran hydrazone derivatives (37) were tested as pigments on polyester fibers to give orange-red, yellow and orange shades with $\lambda_{\max } 485$ $\mathrm{nm}, 478 \mathrm{~nm}$, and 463 nm , respectively, by Khattab and coworkers (220).

A series of heterocyclic hydrazone dyes (38-44) (Figure 15) were prepared from 2-amino-3-cyano-4-chloro-5 formyl-thiophene and five pyridine-2,6dione based coupling components by Qian and coworkers. These hydrazone derivatives display distinct colors: yellow, purple, pink, and grey on five common fibers like Polyester, Nylon, Silk, Wool, and Cotton at pH 7.0 and 8.5 (221).

Al-Sehemi and coworkers synthesized different hydrazone dyes (45) (Figure 16) by the reaction of aromatic aldehydes with phenyl hydrazine. These hydrazones were further reacted with tetracyanoethylene to obtain violet colored dyes and supposed to be low-cost, efficient, and stable DSSC due to their smaller HOMO-LUMO energy gaps $(222,223)$. Percentage efficiency for 45 was increased by $3.12 \%$ at incident power $50 \mathrm{~mW} / \mathrm{cm}^{2}$. Due to high EA, it had high tendency to generate free electrons and holes (222,224-226).


Figure 16: Hydrazone derivatives as dyes in DSSC
Ping Shen at el synthesized and used a series of N , N -diphenyl-hydrazone dye as efficient sensitizers (Figure 17) for production of DSSC with maximum conversion efficiency of up to $5.83 \%$ (227). A series of metal free hydrazone based dyes (46) were synthesized from cheap materials without any expensive catalyst and used as DSSC by Urnikaite at el. The highest solid-state device conversion efficiency for these hydrazone dyes was 3.8-4.5 \% with $\mathrm{FF} \% 64-72 \%$ under $100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$, AM 1.5 G (228-230). In 2020, Al-Sehemi et al. synthesized some promising dyes CHMA, CDBA, and AMCH (47) for DSSC (231).


Figure 15: Hydrazone derivatives as dyes.

(46)

$\mathrm{R}=1,1$-dimethyl- 1 H -indene, heptane $Z=$ pentane, phenyl

(CHMA)


(CDBA)

(47)

Figure 17: Hydrazone based dye sensitizers.

## Nanoparticle synthesizer

3-thiopropionylhydrazones (48) of mono and disaccharides were prepared by Vasileva et al. and used for the synthesis of silver glycol-nanoparticles
in ultrasonic bath with average particle size of 1540 nm while hydrazine hydrate was used as reductant (232).


Figure 18: Hydrazone derivatives as nanoparticle synthesizer.

Table 5: Some important hydrazones that worked as good corrosion inhibitors


## Nonlinear optical devices

Nonlinear optical materials are those materials or organic compounds that describe the behavior of light in nonlinear medium (Figure 19). Such materials play a major role in modern technology in telecommunication, optical switching, data processing, ultra-short pulsed lasers, laser

Shing Wong et al. synthesized various hydrazone derivatives (49) from aromatic aldehydes and 4-methoxy-phenylhydrazine or 4-tolylhydrazine or 4nitrophenylhydrazine and used them with powder test for second or third order nonlinear optical devices (233). amplifiers, sensors, and many more.

$X=O, S$
R= $\mathrm{CH}_{3}, \mathrm{H}_{3} \mathrm{CO}, \mathrm{H}_{3} \mathrm{CS}$
(49)

$\mathbf{R}_{\mathbf{1}}=$ pyrene, anthracene
$\mathbf{R}_{\mathbf{2}}=4$-flurobenzene, 2,4-difluorobenzene,

## 2,3,5,5-terafluorobenzene, 2,3,4,5,6-pentafluorobenzene

(50)

Figure 19: Hydrazone compounds used in nonlinear optical devices.

A series of eight anthracene hydrazone derivatives (50) were prepared and their third-order NLO performance was studied using the standard picosecond Z-scan technique in the open aperture mode by Wenjuan Xu at el. in 2018 (234). Similarly, 4-dimethylaminobenzaldehyde-4-
nitrophenylhydrazone had promising non-liner optical properties (235).

## Light emitting diodes

6-Alkyl-3-chromonealdehyde (2,2-dialkyl)hydrazone derivatives (51) were synthesized from 6-alkyl-3chromonealdehydes and 2,2-dialkylhydrazones by Chung and Chang and were used as light-emitting diodes due to their green light emission (236).

$\mathbf{R}=\mathrm{CH}_{3}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
$\mathbf{R}=\mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}$
Figure 20: Hydrazone based light emitting diodes.

## CONCLUSION

This review summarizes the analytical applications of hydrazone derivatives. These hydrazone derivatives are widely used as spectrophotometric agents not only for detection of metals in sand, soil, water, pharmaceutical samples, alloys, wine, beer, bread, oil, fruits, and vegetables, but also for the detection of organic compounds like carbazoles, aldehydes, ketones, carboxylic acids, salicylic acid, aspirin, aromatic amines, heterocyclic bases, and many more in drugs, food, air, blood, and urine samples. These are also used as organic collectors in flotation for collecting different metals from water, where oleic acid is used as surfactant.

Nowadays, they are used as dyes in DSSC due to their broad absorption band, as chemosensors, especially in tumor cells due to their florescence property, as indicators and as microbe detectors due to their pH sensoring properties. Hydrazone derivatives are also used as corrosion inhibitors for nickel, iron, steel, copper, etc. Hydrazone derivatives have many binding sites due to which they have ability to bind metals via coordinate covalent bond and anions via covalent bond. This property makes them a unique class of compounds among all organic compounds. These types of compounds are used in light emitting diodes and due to nonlinear optical properties, are also used in lasers, telecommunication devices, and optical switching. Hydrazone derivatives produce stable colors that can't fade after long washing and are used as dying reagents for the dying of nylon, cotton, polyester, and silk. This review covers approximately 61 years of work on hydrazone's analytical applications with 236 references.

## ACKNOWLEDGEMENT

Authors gratefully acknowledge the support from Higher Education Commission of Pakistan, the Islamia University of Bahawalpur and Govt. Sadiq College Women University of Bahawalpur.

## REFERENCES

1. Abd El-Wahab H, Abd El-Fattah M, Ahmed AH, Elhenawy AA, Alian NA. Synthesis and characterization of some arylhydrazone ligand and its metal complexes and their potential application as flame retardant and antimicrobial additives in polyurethane for surface coating. Journal of Organometallic Chemistry. 2015 Aug;791:99-106. <DOI $>$.
2. Xavier A, Thakur M, Marie JM. Synthesis and spectral characterisation of hydrazone based 14membered octaaza macrocyclic Ni (II) complexes. J Chem Pharm Res. 2012;4(2):986-90.
3. Belskaya NP, Dehaen W, Bakulev VA. Synthesis and properties of hydrazones bearing amide, thioamide and amidine functions. Zhdankin VV, editor. Arkivoc. 2010 Jul 30;2010(1):275-332. <DOI>.
4. Ray A, Banerjee S, Sen S, Butcher RJ, Rosair GM, Garland MT, et al. Two Zn (II) and one Mn(II) complexes using two different hydrazone ligands: spectroscopic studies and structural aspects. Struct Chem. 2008 Apr;19(2):209-17. <DOI>.
5. Balakrishnan KP, Krishnan V. Studies on B-arylhydrazone-imine nickel(II) complexesExamples of metal template syntheses. Journal of Inorganic and Nuclear Chemistry. 1979 Jan;41(1):37-40. $\leq$ DOI $>$.
6. Mermer A, Demirbas N, Uslu H, Demirbas A, Ceylan S, Sirin Y. Synthesis of novel Schiff bases using green chemistry techniques; antimicrobial, antioxidant, antiurease activity screening and molecular docking studies. Journal of Molecular Structure. 2019 Apr;1181:412-22. <DOI $>$.
7. Subhashini NJP, Janaki P, Bhadraiah B. Synthesis of hydrazone derivatives of benzofuran and their antibacterial and antifungal activity. Russ J Gen Chem. 2017 Sep;87(9):2021-6. <DOI>
8. Küçükgüzel ŞG, Rollas S, Küçükgüzel I, Kiraz M. Synthesis and antimycobacterial activity of some coupling products from 4-aminobenzoic acid hydrazones. European Journal of Medicinal Chemistry. 1999 Dec;34(12):1093-100. <DOI $>$.
9. Bouree P. Effet du nifuroxazide sur Giardia intestinalis. Médecine et Maladies Infectieuses. 1991 Jul;21(7):424-6. <DOI $>$.
10. Sinha R, Sara UVS, Khosa RL, Stables J, Jain J. Nicotinic acid hydrazones: a novel anticonvulsant pharmacophore. Med Chem Res. 2011 Dec;20(9):1499-504. <DOI>.
11. Sharma A, Kumar V, Jain S, Sharma PC. Thiazolidin-4-one and hydrazone derivatives of capric acid as possible anti-inflammatory, analgesic and hydrogen peroxide-scavenging agents. Journal of Enzyme Inhibition and Medicinal Chemistry. 2011 Aug 1;26(4):546-52. <DOI>.
12. Zheng LW, Wu LL, Zhao BX, Dong WL, Miao JY. Synthesis of novel substituted pyrazole-5carbohydrazide hydrazone derivatives and discovery of a potent apoptosis inducer in A549 lung cancer
cells. Bioorganic \& Medicinal Chemistry. 2009 Mar;17(5):1957-62. <DOI>.
13. Mei WL, Qian L, Fei JL, Qiang ZZ. Synthesis and structure of the acylhydrazone Schiff base. Chin J Struc Chem. 2010;29(9):1399-403.
14. Haj Mohammad Ebrahim Tehrani K, Esfahani Zadeh M, Mashayekhi V, Hashemi M, Kobarfard F, Gharebaghi F, et al. Synthesis, Antiplatelet Activity and Cytotoxicity Assessment of Indole-Based Hydrazone Derivatives. Iran J Pharm Res. 2015;14(4):1077-86.
15. El-Sabbagh OI, Rady HM. Synthesis of new acridines and hydrazones derived from cyclic $\beta$ diketone for cytotoxic and antiviral evaluation. European Journal of Medicinal Chemistry. 2009 Sep;44(9):3680-6. <DOI>.
16. Mahmudov KT, Guedes da Silva MFC, Kopylovich MN, Fernandes AR, Silva A, Mizar A, et al. Di- and tri-organotin(IV) complexes of arylhydrazones of methylene active compounds and their antiproliferative activity. Journal of Organometallic Chemistry. 2014 Jun;760:67-73. <DOI $>$.
17. Sarkar S, Siddiqui AA, Saha SJ, De R, Mazumder S, Banerjee C, et al. Antimalarial Activity of SmallMolecule Benzothiazole Hydrazones. Antimicrob Agents Chemother. 2016 Jul;60(7):4217-28. <DOI $>$.
18. Harish Chandra P.G. College, Varanasi 221001, India, Ritu S, Sn P, Ak S, Sam A. Synthesis of some new Acid hydrazones and their activity against Mycobacterium. Int J of Chem Res. 2010 Jun 30;2(1):18-9. <DOI $>$.
19. Hedrich L W, Patel N R, Kirkpatrick J L. Heterocyclic-Substituted Hydrazides and Hydrazones as Plant Growth Regulators 1982. US patent US4,319,026A. <URL>.
20. Wang Y, Yu X, Zhi X, Xiao X, Yang C, Xu H. Synthesis and insecticidal activity of novel hydrazone compounds derived from a naturally occurring lignan podophyllotoxin against Mythimna separata (Walker). Bioorganic \& Medicinal Chemistry Letters. 2014 Jun;24(12):2621-4. <DOI>.
21. Aggarwal N, Kumar R, Srivastva C, Dureja P, Khurana JM. Synthesis of Nalidixic Acid Based Hydrazones as Novel Pesticides. J Agric Food Chem. 2010 Mar 10;58(5):3056-61. <DOI>.
22. Fouda A, Mostafa H, Ghazy S, Farah S. Use of hydrazone derivates as inhibitors for the corrosion of nickel in hydrochloric acid solution. Int J Electrochem Sci. 2007;2:182-94.
23. Mohareb RM, Fleita DH, Sakka OK. Novel Synthesis of Hydrazide-Hydrazone Derivatives and Their Utilization in the Synthesis of Coumarin, Pyridine, Thiazole and Thiophene Derivatives with Antitumor Activity. Molecules. 2010 Dec 23;16(1):16-27. <DOI $>$.
24. Wolf R A, Warakomski J M. Hydrazone initiated polymerization process. 1993. US patent US5218066A. <URL>.
25.Jani G, Vyas K, Nimavat K, Franco J. synthesis and spectrophotometric studies of metal (II) complexes of hydrazone derivatives. Int J Chem Sci. 2010;8(1):139-45.
25. Basha VS. Synthesis and Characterization of 2Acetyl Furan Benzoyl Hydrazone and its Applications in the Spectrophotometric Determination of Cu (II). MOJBOC [Internet]. 2017 Aug 1 [cited 2022 Apr 29];1(3). Available from: <DOI $>$.
26. Bai KA, Vallinath G, Chandrasekhar K, Devanna N. Derivative spectrophotometric determination of nickel (II) using 3, 5-dimethoxy-4-hydroxy benzaldehyde isonicotinoyl hydrazine (DMHBIH). Rasayan Journal of Chemistry. 2010;3(3):467-72.
27. Rao MR, Chandrasekhar K. Sensitive Derivative Spectrophotometric Determination of Palladium (II) Using 3, 5-Dimethoxy-4hydroxybenzaldehydeisonicotinoylhydrazone in presence of Micellar medium. Chem. 2011;3:35866.
28. Vallinath G, Chandrasekhar K, Devanna N. Determination of thorium (IV) by derivative spectrophotometric technique. Int J Pharm Qual Assur. 2010;2:67-72.
29. Vallinath G, Chandrasekhar K, Devanna N. Sensitive derivative spectrophotometric determination of gold (III) using 3, 5-dimethoxy-4hydroxybenzaldehyde isonicotinoyl hydrazone (DMHBIH) in presence of micellar medium. Chemistry of metals and alloys. 2011;(4,№ 1-2):143-51.
30. Bai KA, Vallinath G, Chandrasekhar K, Devanna N . Derivative spectrophotometric determination of nickel (II) using 3, 5-dimethoxy-4-hydroxy benzaldehyde isonicotinoyl hydrazine (DMHBIH). Rasayan Journal of Chemistry. 2010;3(3):467-72.
31. Devanna N, Reddy G, Bannoth C, Jayaveera K. Derivative Spectrophotometric determination of Lead(II) using diacetylmonoxime 4-hydroxyl hydrazone reagent. Asian J Chem. 2008;20(3):2257-63.
32. Ishii H, Odashima T, Hashimoto T. Synthesis of sensitive pyridylhydrazone reagents and extraction-
spectrophotometric determination of trace nickel with 2-pyridinecarbaldehyde 2-(5nitro)pyridylhydrazone. Anal Sci. 1987;3(4):34752. $<\mathrm{DOI}>$.
33. Cha K, Park C. Spectrofluorimetric determination of iron(III) with 2-pyridinecarbaldhyde-5-nitro-pyridylhydrazone in the presence of hexadecyltrimethylammonium bromide surfactant. Talanta. 1996 Aug;43(8):1335-40. <DOI $>$.
34. Sivaramaiah S, Reddy PR, Reddy V, Reddy T. Direct and derivative spectrophotometric determination of zirconium(IV) with 2,4-dihydroxy benzaldehyde isonicotinoyl hydrazone. Indian J Chem. 2003;42A:109-11. $\leq U R L>$.
35. Babaiah O, Kesavarao C, Sreenivasulureddy T, Krishnareddy V. Rapid, selective, direct and derivative spectrophotometric determination of titanium with 2,4-dihydroxybenzaldehyde isonicotinoyl hydrazone. Talanta. 1996 Apr;43(4):551-8. <DOI $>$.
36. Bai K, Chandrasekhar K. Spectrophotometric Determination of Osmium (VIII) using 2,4Dimethoxybenzaldehyde Isonicotinoyl Hydrazone (Dmbih) in presence of Surfactant Triton X-100. RJPBCS. 2011;2(3):174-82.
37. Sivaramaiah S, Raveendra Reddy P. Direct and Derivative Spectrophotometric Determination of Zinc with 2,4-Dihydroxybenzaldehyde Isonicotinoyl Hydrazone in Potable Water and Pharmaceutical Samples. J Anal Chem. 2005 Sep;60(9):828-32. <DOI $>$.
38. Sivaramaiah S, Raveendra Reddy P, Krishna Reddy V, Sreenivasulu Reddy T. Direct and Derivative Spectrophotometric Determination of Thorium with 2,4-dihydroxybenzaldehyde Isonicotinoyl Hydrazone. Journal of Radioanalytical and Nuclear Chemistry. 2000;245(2):367-70. <DOI $>$.
39. Borhade S. Synthesis, characterisation and spectrophotometric determination of Fe (II) complex of 2, 4-dihydroxybenzaldehyde isonicotinoyl hydrazone (E)- $\mathrm{N}^{\prime}$-(2, 4-dihydroxybenzylidene) isonicotinohydrazide, it's application \& biological activity. Der Chemica Sinica. 2011;2(4):64-71.
40. Babaiah O, Reddy P, Reddy V, Reddy T. Simultaneous spectrophotometric determination of Molybdium (VI) and titanium (IV) using 2,4dihydroxybenzaldehyde isonicotinoyl hydrazone. Indian J Chem. 1999;38A:1035-8. <URL>.
41. Sivaramaiah S, Raveendra Reddy P, Krishna Reddy V, Sreenivasulu Reddy T. Derivative spectrophotometric determination of aluminium
using 2,4-dihydroxybenzaldehyde isonicotinoyl hydrazone as a complexing agent. Chemia Analityczna. 2004;49(1):101-9. <URL>.
42. Vasilikiotis GS, Kouimtzis ThA, Vasiliades VC. Spectrophotometric and solvent extraction study of o-hydroxybenzaldehyde isonicotinoyl hydrazone complexes with gallium and indium. Microchemical Journal. 1975 Jun;20(2):173-9. <DOI $>$.
43. Vasilikiotis GS, Kouimtzis ThA. Spectrophotometric and solvent extraction studies of metal complexes of some hydrazones. Microchemical Journal. 1973 Feb;18(1):85-94. <DOI $>$.
44. Narayana L, Suvarapu, Somala AR, Bobbala P, Inseong H, Ammireddy VR. Simultaneous Spectrophotometric Determination of Chromium(VI) and Vanadium(V) by using 3,4Dihydroxybenzaldehyde isonicotinoyl hydrazone (3,4-DHBINH). E-Journal of Chemistry. 2009;6(s1):S459-65. <DOI $>$.
45. Suvarapu LN, Young-Kyo Seo, Sung-Ok Baek. Spectrophotometric Determination of Titanium(IV) by Using 3,4-Dihydroxybenzaldehydeisonicotinoyl-hydrazone(3,4-DHBINH) as a Chromogenic Agent. Chem Sci Trans. 2012 May 26;1(1):171-9. $\leq \mathrm{DOI}>$.
46. Swetha M, Raveendra Reddy P, Krishna Reddy V. Direct, derivative spectrophotometric determination of micro amounts of Palladium (II) by 5-bromo salicylaldehyde isonocotinoyl hydrazone (5-BrSAINH). Adv Appl Sci Res. 2013;4(2):298304.
47. Sobha S, Swetha M, Reddy PR, Reddy VK. Direct and Derivative Spectrophotometric Determination of Chromium (VI) in Microgram Quantities Using 5Bromo Salicylaldehyde Isonocotinoyl Hydrazone (5BrSAINH). Asian Journal of Research in Chemistry. 2013;6(7):667-70.
48. Swetha M, Reddy PR, Reddy VK. Non-Extractive Spectrophotometric Determination of U (VI) Using 5-Bromo Salicylaldehyde Isonicotinoyl Hydrazone in Environmental, Phosphate Rocks and Fertilizer Samples. International Journal of Scientific and Research Publications. 2013;3(8):1-5.
49. Srilalitha V, Prasad G, Kumar R, Seshagiri V, Ravindranath R. A new spectrophotometric method for the determination of trace amounts of titanium(IV). Facta Univ, Phys Chem Technol. 2010;8(1):15-24. <DOI>.
50. Reddy KH, Chandrasekhar K. Simultaneous first derivative spectrophotometric determination of nickel (II) and copper (II) in alloys with diacetylmonoxime benzoylhydrazone. 2001;
51. Chandrasekhar K, Hussain Reddy K, Sreenivasulu Reddy T. Simultaneous second derivative Spectrophotometric determination of nickel (II) and copper (II) in alloys using diacetylmonoxime benzoylhydrazone (DMBH). Journal of the Indian Chemical Society. 2003;80(10):930-3.
52. Devanna N, Satheesh K, Sekhar KC. Derivative spectrophotometric determination of iron (II) using diacetylmonoxime benzoyl hydrazone. Asian Journal of Chemistry. 2005;17(3):1767.
53. Reddy KR, Devanna N, Sekhar K, Vallinath G. Direct and derivative spectrophotometric determination of mercury (II) using diacetylmonoxime benzoylhydrazone (DMBH). 2010;
54. Ramachandraiah C, Vijayakumari D, Lakshminarayana K. A sensitive spectrophotometric method for the determination of trace amounts of uranium (VI) using o-hydroxypropiophenone isonicotinoyl hydrazone. Journal of Radioanalytical and Nuclear Chemistry Letters. 1993 Mar;175(3):185-90. <DOI>.
55. Vijayakumari D, Lakshiminarayana K. A sensitive spectrophotometric method for the determination of trace amounts of uranium(VI) using 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone. Journal of Radioanalytical and Nuclear Chemistry Letters. 1993 Jan;175(1):1-7. <DOI>.
56. Sonawane RP, Lokhande RS, Chavan UM. Development of Method for Extractive Spectrophotometric Determination of Fe (III) with 2-Hydroxy-1-Naphthalene Carboxaldehyde Phenyl Hydrazone as an Analytical Reagent. ILCPA. 2013 Sep;14:7-12. <DOI>.
57. Sonawane RP, Lokhande RS, Chavan UM. Development of Method for Extractive Spectrophotometric Determination of $\mathrm{Cu}(\mathrm{II})$ with 2-Hydroxy-1-Naphthalene Carboxaldehyde Phenyl Hydrazone as an Analytical Reagent. ILCPA. 2013 Sep;14:1-6. <DOI $>$.
58. Kudapalia Y, Suresh T. Spectrophotometric Determination of Copper (Ii) with 2, 5Dihydroxyacetophenone Benzoic Hydrazone. Orient J Chem. 2004;20(2):18625. $\leq U R L>$.
59. Priya BK, Subrahmanyam P, Kumar JD, Chiranjeevi P. Simple Sensitive Spectrophotometric Determination of Vanadium in Biological and Environmental Samples. E-Journal of Chemistry. 2006;3(4):286-97. <DOI>.
60. Devi VSA, Reddy VK. Spectrophotometric Determination of Iron(II) and Cobalt(II) by Direct, Derivative, and Simultaneous Methods Using 2-Hydroxy-1-Naphthaldehyde-p-

Hydroxybenzoichydrazone. International Journal of Analytical Chemistry. 2012;2012:1-12. <DOI>.
62. Chowdary P, Basha V. Determination of vanadium in different environmental, Leafy vegetable and biological samples using 2-hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone (HNHBH) spectrophotometrically. Der Pharma Chem. 2015;7(12):338-45.
63. Devi VSA, Reddy VK. 2-Hydroxy-1-naphthaldehyde-P-hydroxybenzoichydrazone: A New Chromogenic Reagent for the Determination of Thorium(IV) and Uranium(VI). Journal of Chemistry. 2013;2013:1-10. <DOI $>$.
64. Chowdary PG, Basha VS. Direct and derivative spectrophotometric determination of Yttrium (III) using 2-hydroxy-1-naphthaldehyde-phydroxybenzoichydrazone (HNHBH) in alloy and geological samples. Der Pharm Lett. 2014;6(6):373-9.
65. Chowdary PG, Basha VS, Devi VSA. Simultaneous Third order derivative Spectrophotometric Determination of Vanadium and Palladium Using 2-Hydroxy-1-Naphthaldehyde-Phydroxy Benzoichydrazone (HNHBH). IOSR. 2016 Apr;08(04):55-9. $\leq$ DOI $>$.
66. Reddy G, Devanna N, Chandrasekhar K. Derivative spectrophotometric determination of uranium (VI) using diacetyl monoxime isonicotinoyl hydrazone (DMIH). Orbital Elec J Chem. 2011;3(1):24-31.
67. Reddy GC, Devanna N, Chandrasekhar K. Sensitive method of determination of gold (III) using diacetyl monoxime isonicotinoyl hydrazone (DMIH). Orbital: The Electronic Journal of Chemistry. 2011;3(3):125-32. <DOI $>$.
68. Reddy GC, Devanna N, Chandrasekhar K. SENSITIVE SPECTROPHOTOMETRIC DETERMINATION OF THORIUM (IV) USING DIACETYL MONOXIME ISONICOTINOYL HYDRAZONE (DMIH). Int J App Bio Pharm Tech. 2011;2(2):1339.
69. Gadikota CR, Devanna N, Chandrasekhar KB, Derivative Spectrophotometric Determination of Mercury (II) Using Diacetyl Monoxime Isonicotinoyl Hydrazone (DMIH). IJC. 2011 Jun 13;3(2):p227. <DOI>.
70. Mallikarjuna P, Mastanaiah T, Narayana BV, Varma MP, Rao VS. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2012;3(3):1140-9
71. Gadikota CR, Devanna N, Chandrasekhar KB. Derivative Spectrophotometric Determination of

Mercury (II) Using Diacetyl Monoxime Isonicotinoyl Hydrazone (DMIH). IJC. 2011 Jun 13;3(2):p227. <DOI $>$.
72. Patil S, Sawant A. Pyridine-2-acetaldehyde salicyloyl hydrazone as reagent for extractive and spectrophotometric determination of cobalt(II) at trace level. Indian J Chem Technol. 2001;8:88-91.
73. Garcia-Vargas M, Rodriguez JMB, Novás SA, Coy-YII R. Absorptiometric determination of microand submicroamounts of iron using an extractive method with pyridine-2-acetaldehyde salicyloylhydrazone. Microchemical Journal. 1982 Dec;27(4):519-29. $\leq \mathrm{DOI}>$.
74. Vargas M, Gallego M, Guardiat M. Pyridine-2acetaIdehyde SaIicyIoyI hydrazone as an Analytical Reagent and its Application to the Determination of Vanadium. Analyst. 1980;105:965-73.
75. Bale M. Extraction and spectrophotometric determination of lead(II) with pyridine-2acetaldehyde salicyloylhydrazone. Talanta. 1995 Sep;42(9):1291-6. <DOI>.
76. Sinha SH, Sawant AD. Extraction and Spectrophotometric Determination of Palladium with Pyridine-2-acetaldehyde Salicyloylhydrazone. BCSJ. 1992 Jun;65(6):1622-5. <DOI $>$.
77. Patil S, Sawant A. Solvent extraction and spectrophotometric determination of Sb (III) with pyridine-2-acetaldehyde salicyloylhydrazone. 1998;
78. Bale MN, Sawant AD. Solvent Extraction and Spectroscopic determination of Uranium (VI) with pyridine-2-carboxaldehyde 2hydroxybenzoylhydrazone. Journal of Radioanalytical and Nuclear Chemistry. 2001;247(3):531-4. <DOI>.
79. Bale MN, Sawant AD, Shaikh H, Garole DJ. Extractive Spectrophotometric Determination of Trace Hg (II) in Eye Drops and Ayurvedic Medicines Using Pyridine 2-Carboxaldehyde 2Hydroxybenzoylhydrazone. IOSR JAC. 2017 Feb;10(01):24-31. <DOI $>$.
80. Bale MN, Sawant AD, Shaikh H, Garole DJ. Spectrophotometric Determination of $\mathrm{Bi}(\mathrm{III})$ from Alloys and Drugs Samples Using Pyridine-2-carboxaldehyde-2-hydroxybenzoylhydrazone. Asian J Chem. 2017 Apr 30;29(6):1328-32. <DOI $>$.
81. Reddy P, Reddy G, Kumar S, Reddy A, Parveen S, Reddy N. A New Hydrazone Derivative as a Sensitive Analytical Reagent for The Determination of Co(II) in Food, Water and Synthetic Samples. IJPSR. 2016;7(1). <DOI>.
82. Ramanjaneyulu G, Reddy PR, Reddy VK, Reddy TS. Direct and Derivative Spectrophotometric Determination of Copper(II) with 5Bromosalicylaldehyde Thiosemicarbazone. TOACJ. 2009 Jan 2;2(1):78-82. <DOI $>$.
83. Asuero AG, Marques ML, Herrador MA. Spectrophotometric determinationof zinc in cooking salts, tap and mineral waters with phenylglyoxal mono(2-pyridyl)hydrazone. Analytica Chimica Acta. 1987;196:311-6. <DOI $>$.
84. de Pablos F, Galan G, Ariza JG. Fluorimetric determination of gallium in a nickel alloy and aluminium with N -oxalylamine(salicylaldehyde hydrazone). Talanta. 1987 Oct;34(10):835-8. <DOI $>$.
85. de Pablos F, Ariza JLG, Pino F. Noxalylamine(salicylaldehyde hydrazone) as an analytical fluorimetric reagent for the determination of nanogram amounts of aluminium. Analyst. 1986;111(10):1159. <DOI $>$.
86. Krishna D, Devi C. Determination of Iron (II) and Iron (III) in Presence of Micellar Medium Using 4-Hydroxy 3, 5 Dimethoxy Benzaldehyde 4-Hydroxy Benzoyl hydrazone by Spectrophotometry. IJGHC. 2012;1(3):256-63.
87. Krishna D, Devanna N, Chandrasekhar K. A Comparative study of Nickel (II) using 4-Hydroxy 3,5 dimethoxy benzaldehyde 4-hydroxy benzoylhydrazone and Cinnamaldehyde 4hydroxybenzoyl hydrazone in presence of micellar medium by Spectrophotometry. Int J ChemTech Res. 2011;3(1):506-15.
88. KRISHNA DG, Devanna N, Chandrasekhar K. A comparative study of cobalt (II) using 4-hydroxy 3, 5 dimethoxy benzaldehyde 4-hydroxy benzoyl hydrazone and cinnamaldehyde 4-hydroxy benzoylhydrazone in presence of micellar medium by spectrophotometry. International Journal of Pharma and Bio Sciences. 2011;2:341.
89. Krishna D, Devanna N, Chandrasekhar K. Comparative study of Copper (II) using 4-Hydroxy 3, 5 dimethoxy benzaldehyde 4-hydroxy benzoyl hydrazone and Cinnamaldehyde 4-hydroxy benzoylhydrazone in presence of micellar medium by Spectrophotometry. Res J Pharm Biol. 2011;2(1):252-4.
90. Rao MR, Chandrasekhar K, Devanna N. Simultaneous determination of nickel (II) and copper (II) using 3-methoxysalcilaldehyde-4hydroxybenzoylhydrazone (MSHBH) by first order derivative spectrophotometric technique. Archives of Applied Science Research. 2011;3(1):462-71.
91. Krishna G, Chan D, Drasekhar B. Direct and Derivative Spectrophotometric Determination of Cobalt (II) in presence of Micellar Medium in Real Samples using Cinnamaldehyde-4-Hydroxy Benzoyl Hydrazone (CMHBH). International Journal of Organic and Bio Organic Chemistry. 2011;1:1-7.
92. Krishna D, Devi C. Determination of Chromium (VI) In Presence of Micellar Medium Using Cinnamaldehyde-4-Hydroxybenzoylhydrazone by Spectrophotometry. Int J Anal Bioanal Chem. 2011;1(3):107-9.
93. Devi C, Krishna D, Devanna N, Chandrasekhar K. Direct and derivative spectrophotometric determination of Molybdenum (VI) in presence of micellar medium in food stuffs, pharmaceutical samples and in alloys using cinnamaldehyde-4hydroxy benzoylhydrazone (CHBH). Research Journal of Pharmaceutical Biological and Chemical Sciences. 2010;1(3):808-25.
94. Ramesh M, Chandrasekhar K, Reddy KH. Spectrophotometric determination of lead (II) in water samples using benzil a-monoxime isonicotinoyl hydrazone. 2000;
95. Asuero AG, Marques ML, Navas MJ. Spectrophotometric determination of cobalt in multivitaminic preparations with dipyridylglyoxal mono (2-pyridyl) hydrazone. International Journal of Pharmaceutics. 1987 Nov;40(1-2):43-9. <DOI $>$.
96. Asuero AG, Marques ML, Navas MJ. Spectrophotometric determination of cobalt with dipyridylglyoxal mono(2-pyridyl)hydrazone. Microchemical Journal. 1987 Oct;36(2):216-21. <DOI $>$.
97. Ahmed MJ, Zannat T. Simple Spectrophotometric Method for the Determination of Copper in Some Real, Environmental, Biological, Food and Soil Samples Using Salicylaldehyde Benzoyl Hydrazone. Pakistan Journal of Analytical \& Environmental Chemistry. 2012;13(1):14.
98. Pflaum RT, Tucker EScott. Spectrophotometric determination of cobalt with benzil mono-(2pyridyl)hydrazone. Anal Chem. 1971 Mar 1;43(3):458-9. <DOI>.
99. Berger SA. Benzil-mono- (2-quinolyl) hydrazone as a chelating agent for copper. Mikrochim Acta. 1979 May;71(3-4):311-6. <DOI $>$.
100. Berger S. The solvent extraction of $\mathrm{Cu}(\mathrm{II})$, $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Co}(\mathrm{II})$ with benzil mono(2quinolyl)hydrazone. Talanta. 1982 Aug;29(8):71820. $\langle\mathrm{DOI}>$.
101. Radhakrishna N, Viswanatha C, Reddy KR, Devanna N. A Sensitive and Selective Chromogenic

Organic Reagent 4-hydroxy-3,5-dimethoxy benzaldehyde-4-hydroxy benzoyl hydrazone (HDMBHBH) for the Direct and Derivative Spectrophotometric Determination of Lead (II). European Reviews of Chemical Research. 2015 Mar $11 ; 3(1): 43-50$. $\leq \mathrm{DOI}>$.
102. Rao C. Rapid and sensitive spectrophotometric determination of cerium(IV) with 2,4-dihydroxy benzophenone benzoic hydrazone. Talanta. 1994 Feb;41(2):237-41. <DOI $>$.
103. Saritha B, Reddy ProfTS. Direct Spectrophotometric Determination of Ni (II) Using 5- Bromo-2- hydroxyl -3-methoxybenzaldehyde-4hydroxy benzoichydrazone. IOSRJAC. 2014;7(3):22-6. <DOI $>$.
104. Devireddy M, Saritha B, Giri A, Reddy TS Direct spectrophotometric determination of titanium (IV) with 5-bromo-2-hydroxy-3-methoxybenzaldehyde-p-hydroxybenzoic hydrazine. J Chem Pharm Res. 2014;6:1145-50.
105. Nakanishi T, Otomo M. Spectrophotometric determination of iron(II) with 2-(3'sulfobenzoyl)pyridine benzoylhydrazone. Microchemical Journal. 1987 Aug;36(1):128-34. <DOI $>$.
106. Ariza JLG, González MLM, González MTM. N, N'oxalylbis(salicylaldehyde hydrazone) as an analytical spectrophotometric and fluorimetric reagent. Part I. Study of the metal reactivity and application to the determination of aluminium. Analyst. 1984;109(7):885-9. <DOI>
107. Kabil MA, Ghazy SE, Mostafa MA, El-Asmy AA. Micro-determination of gold using Ncyanoacylacetaldehyde hydrazone. Fresenius J Anal Chem. 1994;349(10-11):775-6. <DOI>.
108. Vasilikiotis GS. Analytical applications of isonicotinoyl hydrazones. Microchemical Journal. 1968 Dec;13(4):526-8. <DOI>
109. Rekha D, Kumar JengitiD, Jayaraj B, Lingappa Y, Chiranjeevi P. Nickel(II) Determination by Spectrophotometry Coupled with Preconcentration Technique in Water and Alloy Samples. Bulletin of the Korean Chemical Society. 2007 Mar 20;28(3):373-8. <DOI $>$.
110. Rajendraprasad N, Basavaiah K, Vinay KB. Application of 3-methylbenzothiazolin-2-one hydrazone for the quantitative spectrophotometric determination of oxcarbazepine in pharmaceuticals with cerium(IV) and periodate. J Appl Spectrosc. 2012 Sep;79(4):616-25. <DOI $>$.
111. Yaseen S, Qasim B, Al-lame N. Spectrophotometric Determination of Cu (+II) by

Complexation with 2-(4-biphenyl) Imidazo [1,2-] Pyrimidine-3-Hydrazone and Studying Characteristics of prepared complex. Egypt J Chem. 2020 Oct 5;64(2):673-91. <DOI>.
112. Echioda S, Ogunieye AO, Salisu S, Abdulrasheed AA, Chindo IY, Kolo AM. UV-Vis Spectrophotometric Determination of Selected Heavy Metals (Pb, Cr, Cd and As) in Environmental, Water and Biological Samples with Synthesized Glutaraldehyde Phenyl Hydrazone as the Chromogenic Reagent. EJCHEM. 2021 Jul 13;2(3):1-5. <DOI>.
113. Tümay SO, Şenocak A, Mermer A. A "turn-on" small molecule fluorescent sensor for the determination of $\mathrm{Al}^{3+}$ ion in real samples: theoretical calculations, and photophysical and electrochemical properties. New J Chem. 2021;45(39):18400-11. <DOI $>$.
114. Li T, Yang Z, Li Y, Liu Z, Qi G, Wang B. A novel fluorescein derivative as a colorimetric chemosensor for detecting copper(II) ion. Dyes and Pigments. 2011 Jan;88(1):103-8. <DOI $>$.
115. Hu S, Song J, Zhao F, Meng X, Wu G. Highly sensitive and selective colorimetric naked-eye detection of $\mathrm{Cu} 2+$ in aqueous medium using a hydrazone chemosensor. Sensors and Actuators B: Chemical. 2015 Aug;215:241-8. <DOI $>$.
116. Rahman FU, Ali A, Khalil SK, Guo R, Zhang P, Wang H , et al. Tuning sensitivity of a simple hydrazone for selective fluorescent "turn on" chemo-sensing of Al3+ and its application in living cells imaging. Talanta. 2017 Mar;164:307-13. <DOI $>$.
117. Xu ZH, Wang Y, Wang Y, Li JY, Luo WF, Wu WN, et al. AIE active salicylaldehyde-based hydrazone: A novel single-molecule multianalyte ( $\mathrm{Al}^{3+}$ or $\mathrm{Cu}^{2+}$ ) sensor in different solvents. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019 Apr;212:146-54. <DOI $>$.
118. Wang Y, Mao PD, Wu WN, Mao XJ, Zhao XL, Xu ZQ, et al. A novel colorimetric and ratiometric fluorescent Cu2+ sensor based on hydrazone bearing 1,8-naphthalimide and pyrrole moieties. Sensors and Actuators B: Chemical. 2017 Nov;251:813-20. <DOI>.
119. Saini N, Prigyai N, Wannasiri C, Ervithayasuporn V, Kiatkamjornwong S. Green synthesis of fluorescent N,O-chelating hydrazone Schiff base for multi-analyte sensing in $\mathrm{Cu}^{2+}, \mathrm{F}^{-}$and $\mathrm{CN}^{-}$ions. Journal of Photochemistry and Photobiology A: Chemistry. 2018 May;358:215-25. <DOI $>$.
120. Ling L, Hu J, Zhang H. Ferrocene containing Ntosyl hydrazones as optical and electrochemical sensors for $\mathrm{Hg} 2+, \mathrm{Cu} 2+$ and $\mathrm{F}-$ ions. Tetrahedron. 2019 Apr;75(17):2472-81. <DOI>.
121. Mani KS, Rajamanikandan R, Murugesapandian B, Shankar R, Sivaraman G, Ilanchelian M, et al. Coumarin based hydrazone as an ICT-based fluorescence chemosensor for the detection of $\mathrm{Cu}^{2+}$ ions and the application in HeLa cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019 May;214:170-6. <DOI $>$
122. Xu H, Wang $X$, Zhang $C$, Wu $Y$, Liu $Z$. Coumarin-hydrazone based high selective fluorescence sensor for copper(II) detection in aqueous solution. Inorganic Chemistry Communications. 2013 Aug;34:8-11. <DOI $>$.
123. Kejík $Z$, Kaplánek $R$, Havlík M, Bříza $T$, Vavřinová D, Dolenský B, et al. Aluminium(III) sensing by pyridoxal hydrazone utilising the chelation enhanced fluorescence effect. Journal of Luminescence. 2016 Dec;180:269-77. $\leq \mathrm{DOI}>$.
124. Jin X, Yang Z, Li T, Wang B, Li Y, Yan M, et al. 8-hydroxyquinoline-5-carbaldehyde-(benzotriazol-1'-acetyl)hydrazone as a potential $\mathrm{Mg}^{2+}$ fluorescent chemosensor. Journal of Coordination Chemistry. 2013 Jan 1;66(2):300-5. <DOI $>$.
125. Patil DY, Patil AA, Khadke NB, Borhade AV. Highly selective and sensitive colorimetric probe for $\mathrm{Al}^{3+}$ and $\mathrm{Fe}^{3+}$ metal ions based on 2-aminoquinolin-$3-y l$ phenyl hydrazone Schiff base. Inorganica Chimica Acta. 2019 Jun;492:167-76. <DOI $>$.
126. Wu WN, Mao PD, Wang Y, Zhao XL, Xu ZQ, Xu ZH, et al. Quinoline containing acetyl hydrazone: An easily accessible switch-on optical chemosensor for $\mathrm{Zn}^{2+}$. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018 Jan;188:324-31. <DOI $>$.
127. Ma R, Li Q, Zhang Q. A novel selective chemosensor for $\mathrm{Mg}^{2+}$ detection based on quinoline-hydrazone-crown ether. Indian J Chem. 2018;57B:120-6.
128. Long $\mathrm{C}, \mathrm{Hu} \mathrm{JH}, \mathrm{Fu} \mathrm{QQ}, \mathrm{Ni} \mathrm{PW}$. A new colorimetric and fluorescent probe based on Rhodamine B hydrazone derivatives for cyanide and Cu2+ in aqueous media and its application in real life. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019 Aug;219:297306. $\leq \mathrm{DOI}>$.
129. Xiang Y, Tong A, Jin P, Ju Y. New Fluorescent Rhodamine Hydrazone Chemosensor for $\mathrm{Cu}(\mathrm{II})$ with High Selectivity and Sensitivity. Org Lett. 2006 Jun 1;8(13):2863-6. <DOI $>$.
130. Lee HY, Swamy KMK, Jung JY, Kim G, Yoon J. Rhodamine hydrazone derivatives based selective fluorescent and colorimetric chemodosimeters for $\mathrm{Hg}^{2+}$ and selective colorimetric chemosensor for $\mathrm{Cu}^{2+}$. Sensors and Actuators B: Chemical. 2013 Jun;182:530-7. <DOI $>$.
131. Said AI, Georgiev NI, Bojinov VB. Sensor activity and logic behavior of dihydroxyphenyl hydrazone derivative as a chemosensor for $\mathrm{Cu}^{2+}$ determination in alkaline aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry. 2015 Oct;311:16-24. <DOI $>$.
132. Park S, Kim W, Swamy KMK, Lee HY, Jung JY, Kim G, et al. Rhodamine hydrazone derivatives bearing thiophene group as fluorescent chemosensors for $\mathrm{Hg}^{2+}$. Dyes and Pigments. 2013 Nov;99(2):323-8. <DOI $>$.
133. Yang Y, Gao CY, Li T, Chen J. A Tetraphenylethene-Based Rhodamine Hydrazone Chemosensor for Colorimetric and Reversible Detection of $\mathrm{Cu}^{2+}$. ChemistrySelect. 2016 Sep 16;1(15):4577-81. <DOI $>$.
134. Fang Y, Li X, Li JY, Wang GY, Zhou Y, Xu NZ, et al. Thiooxo-Rhodamine B hydrazone derivatives bearing bithiophene group as fluorescent chemosensors for detecting mercury(II) in aqueous media and living HeLa cells. Sensors and Actuators B: Chemical. 2018 Feb;255:1182-90. <DOI $>$.
135. Jiang Z, Tian S, Wei C, Ni T, Li Y, Dai L, et al. A novel selective and sensitive fluorescent turn-on chemodosimeter based on rhodamine hydrazone for copper ions and its application to bioimaging. Sensors and Actuators B: Chemical. 2013 Jul;184:106-12. <DOI $>$.
136. Ge F, Ye H, Luo JZ, Wang S, Sun YJ, Zhao BX, et al. A new fluorescent and colorimetric chemosensor for $\mathrm{Cu}(\mathrm{II})$ based on rhodamine hydrazone and ferrocene unit. Sensors and Actuators B: Chemical. 2013 May;181:215-20. <DOI $>$.
137. Zhou Y, Kim HN, Yoon J. A selective 'Off-On' fluorescent sensor for $\mathrm{Zn} 2+$ based on hydrazonepyrene derivative and its application for imaging of intracellular Zn2+. Bioorganic \& Medicinal Chemistry Letters. 2010 Jan;20(1):125-8. <DOI>.
138. Kim HN, Nam SW, Swamy KMK, Jin Y, Chen X, Kim Y, et al. Rhodamine hydrazone derivatives as $\mathrm{Hg}^{2+}$ selective fluorescent and colorimetric chemosensors and their applications to bioimaging and microfluidic system. Analyst. 2011;136(7):1339. $\leq \mathrm{DOI}>$.
139. Han F, Bao Y, Yang Z, Fyles TM, Zhao J, Peng $X$, et al. Simple Bisthiocarbonohydrazones as Sensitive, Selective, Colorimetric, and Switch-On Fluorescent Chemosensors for Fluoride Anions. Chem Eur J. 2007 Mar 26;13(10):2880-92. <DOI>.
140. Wang H, Li Y, Xu S, Li Y, Zhou C, Fei X, et al. Rhodamine-based highly sensitive colorimetric offon fluorescent chemosensor for $\mathrm{Hg} 2+$ in aqueous solution and for live cell imaging. Org Biomol Chem. 2011;9(8):2850. <DOI $>$.
141. Saravanakumar D, Devaraj S, Iyyampillai S, Mohandoss K, Kandaswamy M. Schiff's base phenolhydrazone derivatives as colorimetric chemosensors for fluoride ions. Tetrahedron Letters. 2008 Jan;49(1):127-32. <DOI $>$.
142. Anbu S, Shanmugaraju S, Ravishankaran R, Karande AA, Mukherjee PS. Naphthylhydrazone based selective and sensitive chemosensors for $\mathrm{Cu} 2+$ and their application in bioimaging. Dalton Trans. 2012;41(43):13330. <DOI $>$.
143. Li H, Fan J, Song F, Zhu H, Du J, Sun S, et al. Fluorescent Probes for Pd $2+$ Detection by Allylidene-Hydrazone Ligands with Excellent Selectivity and Large Fluorescence Enhancement. Chem Eur J. 2010 Nov 2;16(41):12349-56. <DOI>.
144. Espada-Bellido E, Galindo-Riaño MD, GarcíaVargas M, Narayanaswamy R. Selective Chemosensor for Copper Ions Based on Fluorescence Quenching of a Schiff-Base Fluorophore. Appl Spectrosc. 2010 Jul;64(7):72732. $\leq \mathrm{DOI}>$.
145. Liao ZC, Yang ZY, Li Y, Wang BD, Zhou QX. A simple structure fluorescent chemosensor for high selectivity and sensitivity of aluminum ions. Dyes and Pigments. 2013 Apr;97(1):124-8. <DOI $>$.
146. Tang R, Lei K, Chen K, Zhao H, Chen J. A Rhodamine-Based Off-On Fluorescent Chemosensor for Selectively Sensing $\mathrm{Cu}(\mathrm{II})$ in Aqueous Solution. J Fluoresc. 2011 Jan;21(1):141-8. $\leq \mathrm{DOI}>$.
147. Kumaravel M, Mague JT, Balakrishna MS. Hydrazone derivatives appended to diphenylphosphine oxide as anion sensors. J Chem Sci. 2017 Apr;129(4):471-81. <DOI $>$.
148. Isaad J, Achari AE. A novel glycoconjugated Nacetylamino aldehyde hydrazone azo dye as chromogenic probe for cyanide detection in water. Analytica Chimica Acta. 2011 May;694(1-2):120-7. <DOI $>$.
149. Mondal J, Manna AK, Patra GK. Highly selective hydrazone based reversible colorimetric chemosensors for expeditious detection of $\mathrm{CN}-$ in
aqueous media. Inorganica Chimica Acta. 2018 Apr;474:22-9. $\leq \mathrm{DOI}>$.
150. Shang $X F, X u \quad X F$. The anion recognition properties of hydrazone derivatives containing anthracene. Biosystems. 2009 May;96(2):165-71. <DOI $>$.
151. Wu M, Yang DD, Zheng HW, Liang QF, Li JB, Kang $Y$, et al. A multi-binding site hydrazone-based chemosensor for Zn ( II ) and Cd ( II ): a new strategy for the detection of metal ions in aqueous media based on aggregation-induced emission. Dalton Trans. 2021;50(4):1507-13. <DOI $>$.
152. Alzweiri M, Al-Marabeh S, Bardaweel SK, Alfar R, AI-Hiari YM. Stability determination for cyclized 2,4-dinitrophenyl hydrazone derivative of glucose. J Anal Sci Technol. 2017 Dec;8(1):9. <DOI>.
153. Friestad HO, Ott DE, Gunther FA. Automated colorimetric microdetermination of phenols by oxidative coupling with 3-methyl-2benzothiazolinone hydrazone. Anal Chem. 1969 Nov 1;41(13):1750-4. <DOI $>$.
154. Sawicki Eugene, Hauser TR, Stanley TW, Elbert Walter, Fox FT. Spot Test Detection and Spectrophotometric Characterization and Determination of Carbazoles, Azo Dyes, Stilbenes, and Schiff Bases. Application of 3-Methyl-2benzothiazolone Hydrazone, $p$-Nitrosophenol, and Fluorometric Methods to the Determination of Carbazole in Air. Anal Chem. 1961 Oct 1;33(11):1574-9. <DOI $>$.
155. Nebel GJ. Determination of total aliphatic aldehydes in auto exhaust by a modified 3-methyl-2-benzothiazolinone hydrazone method. Anal Chem. 1981 Sep 1;53(11):1708-9. $\leq$ DOI $>$.
156. Cohen IR, Altschuller AP. Spot Test Detection and Colorimetric Determination of Aromatic Amines and Imino Heteroaromatic Compounds with 3-Methyl-2benzothiazolone Hydrazone. Anal Chem. 1961 May 1;33(6):722-5. <DOI>.
157. John M. Utilization of 3-Methylbenzthiazolinone-2(3H)-Hydrazone as a Chromogenic Reagent in Pharmaceutical Analysis. ASPS. 2018;2(7):1-2.
158. Lavanya K, Baggi TR. Spectrophotometric determination of rutin in pharmaceutical preparations using 3-methylbenzthiazolinone-2hydrazone. Microchemical Journal. 1990 Apr;41(2):126-31. <DOI>.
159. Neumann FW. Spectrophotometric determination of glyoxal with 3-methyl-2benzothiazolinone hydrazone. Anal Chem. 1969 Dec 1;41(14):2077-8. <DOI>.
160. Geeta N, Veena AP, Baggi TR. Spectrophotometric determination of phenolphthalein in pharmaceutical products using 3-methylbenzthiazolinone-2-hydrazone. Microchemical Journal. 1989 Dec;40(3):304-10. <DOI $>$.
161. Kumar D, Archana G, Sunitha G, Paul K, Harika R, Sowndarya N. Simplistic Application of 3-Methy-2-Benzothiazoline Hydrazone (MBTH), an Oxidative Coupling Chromogenic Reagent for Quantification ofMetaxalone and Dabigatran Etexilate Mesylate Bulk Drug and Their Dosage Forms. Pharm Anal Acta. 2015;06(05):362-7. <DOI $>$.
162. Yee HY, Jackson Bobette. Determination of total estrogens in urine with 3-methyl-2benzothiazolinone hydrazone. Anal Chem. 1976 Oct 1;48(12):1704-7. <DOI $>$.
163. Oliveira FS de, Leite BCO, Andrade MVAS de, Korn M. Determination of total aldehydes in fuel ethanol by MBTH method: sequential injection analysis. J Braz Chem Soc. 2005 Feb;16(1):87-92. <DOI $>$.
164. El-Kommos ME, Emara KM. Application of 3-methylbenzothiazolin-2-one hydrazone as a chromogenic reagent for the spectrophotometric determination of certain sulpha drugs. Analyst. 1988;113(1):133. <DOI $>$.
165. Baggi TR. 3-Methylbenzthiazolinone-2Hydrazone (MBTH) as a New Visualization Reagent for the Detection of Cannabinoids on Thin-Layer Chromatography Plates. J Forensic Sci. 1980 Jul 1;25(3):11277J. <DOI $>$.
166. Geeta N, Baggi TR. A new spectrophotometric method for the determination of free salicylic acid in aspirin and its formulations based on oxidative coupling of 3-methylbenzthiazolinone-2-hydrazone with salicylic acid. Microchemical Journal. 1988 Oct;38(2):236-40. <DOI $>$.
167. El-Kommos ME. Spectrophotometric determination of dobutamine hydrochloride using 3-methylbenzothiazolin-2-one hydrazone. Analyst. 1987;112(1):101. <DOI $>$.
168. Siyal AN, Memon SQ, Parveen S, Soomro A, Khaskheli MI, Khuhawar MY. Chemical Recycling of Expanded Polystyrene Waste: Synthesis of Novel Functional Polystyrene-Hydrazone Surface for Phenol Removal. Journal of Chemistry. 2013;2013:1-8. <DOI $>$.
169. Amos D. Specific spectrofluorometric determination of atmospheric ozone using 2-diphenylacetyl-1,3-indandione-1-hydrazone. Anal Chem. 1970 Jul 1;42(8):842-4.
170. Pietrzyk DJ, Chan EP. Determination of carbonyl compounds by 2-diphenylacetyl-1,3-indandione-1-hydrazone. Anal Chem. 1970 Jan 1;42(1):37-43. <DOI $>$.
171. Wang P, Liu J, Lv X, Liu Y, Zhao Y, Guo W. A Naphthalimide-Based Glyoxal Hydrazone for Selective Fluorescence Turn-On Sensing of Cys and Hcy. Org Lett. 2012 Jan 20;14(2):520-3. <DOI $>$.
172. Kim YH, Choi MG, Im HG, Ahn S, Shim IW, Chang SK. Chromogenic signalling of water content in organic solvents by hydrazone-acetate complexes. Dyes and Pigments. 2012 Mar;92(3):1199-203. <DOI $>$.
173. Khattab TA, Gaffer HE. Synthesis and application of novel tricyanofuran hydrazone dyes as sensors for detection of microbes. Coloration Technol. 2016 Dec;132(6):460-5. $\leq \mathrm{DOI}>$.
174. Abdelmoez S, Abdelrahman $M$, Khattab $T$. Synthesis, solvatochromic properties and pH sensory of novel symmetrical bis(tricyanofuran)hydrazone chromophore. Egypt J Chem. 2019 Jan 14;62(7):1197-206. $\langle\mathrm{DOI}\rangle$.
175. Kenawy I, Geragh B, El-Menshawy A, El-Asmy A. Separation and Preconcentration of Fe (III) from Aqueous and Nonaqueous Media using 1-(3,4-Dihydroxybenzylidine)-2-acetylpyridinium chloride Hydrazone Modified Resin. Can Chem Trans. 2013 Nov 20;1(4):338-52. <DOI $>$.
176. Hassanien MM, Kenawy IM, El-Menshawy AM, El-Asmy AA. A novel method for speciation of $\operatorname{Cr}(\mathrm{III})$ and $\mathrm{Cr}(\mathrm{VI})$ and individual determination using Duolite C20 modified with active hydrazone. Journal of Hazardous Materials. 2008 Oct;158(1):170-6. <DOI $>$.
177. Hassanien MM, Kenawy IM, El-Menshawy AM, El-Asmy AA. Separation and Preconcentration of Gallium(III), Indium(III), and Thallium(III) Using New Hydrazone-modified Resin. Anal Sci. 2007;23(12):1403-8. <DOI $>$.
178. Ali A, Khzam A, Alhony M, Bin S, Salleh B. Acenaphthenequinone Hydrazone Derivative Based Sol-Gel In Solid-Phase Extraction of Lanthanum (III) in Aqueous. World Appl Sci J. 2013;21(3):433-41.
179. Mohamad Ali AS, Abdul Razak N, Ab Rahman I. Bach Adsorption Study for the Extraction of Silver Ions by Hydrazone Compounds from Aqueous Solution. The Scientific World Journal. 2012;2012:1-10. <DOI $>$.
180. Tameem AA, Saad B, Makahleh A, Salhin A, Saleh MI. A 4-hydroxy-N'-[(E)-(2-hydroxyphenyl)methylidene]benzohydrazide-based sorbent material for the extraction-HPLC
determination of biogenic amines in food samples. Talanta. 2010 Sep 15;82(4):1385-91. <DOI $>$.
181. Ghazy S, Rakha T, EI-Kady E, El-Asmy A. Use of some hydrazine derivatives for the separation of mercury(II) from aqueous solutions by flotation technique. Indian J Chem Technol. 2000;7(4):17882.
182. Ghazy S, Mostafa H, El-Farra S, Fouda A. Flotation-separation of nickel from aqueous media using some hydrazone derivatives as organic collectors and oleic acid as surfactant. IJCT. 2004;11(6):787-92.
183. Ghazy SE, Abu El-Reash GM, Al-Gammal OA, Yousef T. Flotation separation of mercury(II) from environmental water samples using thiosemicarbazide derivatives as chelating agents and oleic acid as surfactant. Chemical Speciation \& Bioavailability. 2010 Jan;22(2):127-34. <DOI>.
184. Khalifa, Youssef H, Majeed A, El-Reash G. Structural investigation, biological and flotation studies of $\mathrm{Co}(\mathrm{II})$ and Zn (II) complexes of salicoyl hydrazone ending by thiazole ring. IJARBS. 2016;3(6):235-54.
185. M Bekheit MAA, Mezban Salih Q. Surfactant Assisted Separation Spectrophotometric Procedure for the Trace Analysis of Copper (II) in Drug and Water Samples Using a Heterocyclic Pyridyl Azo Dye. Pharm Anal Acta [Internet]. 2015 [cited 2022 Apr 30];06(09). <DOI>.
186. El-Asmy AA, El-Gammal OA, Radwan HA, Ghazy SE. Ligational, analytical and biological applications on oxalyl bis(3,4-dihydroxybenzylidene) hydrazone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2010
Sep;77(1):297-303. <DOI>.
187. Shah R. Ligational, potentiometric and floatation studies on $\mathrm{Cu}(\mathrm{II})$ complexes of hydrazones derived from $p$ and o-vanillin condensed with diketo hydrazide. Journal of Molecular Liquids. 2016 Aug;220:939-53. <DOI>.
188. El Meligy MG, El Rafie Sh, Abu-Zied KM. Preparation of dialdehyde cellulose hydrazone derivatives andevaluating their efficiency for sewage wastewater treatment. Desalination. 2005
Mar;173(1):33-44. <DOI $>$.
189. Masuda H, Fujii T, Nakanishi H, Matsumoto S, Arikawa H. Catalyst using hydrazone compound, hydrazone polymer compound, and catalyst using hydrazone polymer compound. 2011. Japan patent US7960501 B2. <URL>.
190. Nakanishi H, Matsumoto S, Arikawa H, Kllmagais H. Hydrazone Compound, Hydrazone

Compound for Forming Complex, Ligand for Forming Metal Complex, and Monomer for Manufacturing Polymer Compound 2011. US patent US7,951,903 B2. $\leq U R L>$.
191. Gao S, Li L, Vohra I, Zha D, You L. Differential metal-binding properties of dynamic acylhydrazone polymers and their sensing applications. R Soc open sci. 2017 Aug;4(8):170466. <DOI $>$.
192. Singh RK, Stoffer JO, Flaim TD, Hall DB, Torkelson JM. Monohydroxy-hydrazonefunctionalized thermally crosslinked polymers for nonlinear optics. J Appl Polym Sci. 2004 Apr 15;92(2):770-81. <DOI $>$.
193. Love BE, Jones EG. The Use of Salicylaldehyde Phenylhydrazone as an Indicator for the Titration of Organometallic Reagents. J Org Chem. 1999 May 1;64(10):3755-6. <DOI $>$.
194. Tai XS, Li PF, Liu LL. Preparation, Characterization, and Catalytic Property of a Cu(II) Complex with 2-Carboxybenzaldehyde-pToluenesulfonyl Hydrazone Ligand. Bull Chem React Eng Catal. 2018 Apr 2;13(1):7. <DOI $>$.
195. Jahdaly B, Althagafi I, Abdallah M, Khairou K, Ahmed S. Fluorenone Hydrazone Derivatives as efficient Inhibitors of Acidic and Pitting Corrosion of Carbon Steel. J Mater Environ Sci. 2016;7(5):1798809.
196. Saliyan, Adhikari A. Corrosion inhibition of mild steel in acid media by quinolinyl thiopropano hydrazone. Indian J Chem Technol. 2009;16:16274.
197. A, Gouda M, El-Rahman S. 2-Hydroxyacetophenone-aroyl Hydrazone Derivatives as Corrosion Inhibitors for Copper Dissolution in Nitric Acid Solution. B K Chem Soc. 2000;21(11):1085-9.
198. Fouda AS, Gouda MM, El-Rahman SIA. Benzaldehyde, 2-Hydroxybenzoyl Hydrazone Derivatives as Inhibitors of the Corrosion of Aluminium in Hydrochloric Acid. Chem Pharm Bull. 2000;48(5):636-40. <DOI>.
199. Negm NA, Morsy SMI, Said MM. Corrosion inhibition of some novel hydrazone derivatives. J Surfact Deterg. 2005 Jan;8(1):95-8. <DOI>.
200. Moussa MNH, EI-Far AA, El-Shafei AA. The use of water-soluble hydrazones as inhibitors for the corrosion of C-steel in acidic medium. Materials Chemistry and Physics. 2007 Sep;105(1):105-13. <DOI $>$.
201. Sherif ESM, Ahmed AH. Synthesizing New Hydrazone Derivatives and Studying their Effects on
the Inhibition of Copper Corrosion in Sodium Chloride Solutions. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2010 Jul 19;40(6):365-72. <DOI $>$.
202. Fouda AS, EL-Sayyad SA, Abdallah M. N-3-hydroxyl-2-naphthoyl hydrazone derivatives as inhibitors for corrosion of carbon steel in $\mathrm{H}_{2} \mathrm{SO}_{4}$ acid solution. Anti-Corrosion Methods and Materials. 2011 Mar 22;58(2):63-9. <DOI>.
203. Fouda AS, Badr GE, El-Haddad MN. The Inhibition of C-steel Corrosion in $\mathrm{H}_{3} \mathrm{PO}_{4}$ Solution by Some Furfural Hydrazone Derivatives. Journal of the Korean Chemical Society. 2008 Apr 20;52(2):12432. $<\mathrm{DOI}>$.
204. Fouda AEAS, Al-Sarawy AA, Radwan MS. Some Aromatic Hydrazone Derivatives as Inhibitors for the Corrosion of C-Steel in Phosphoric Acid Solution. Annali di Chimica. 2006 Jan;96(1-2):85-96. <DOI $>$.
205. Singh DK, Kumar S, Udayabhanu G, John RP. 4(N,N-dimethylamino) benzaldehyde nicotinic hydrazone as corrosion inhibitor for mild steel in 1 M HCl solution: An experimental and theoretical study. Journal of Molecular Liquids. 2016 Apr;216:738-46. <DOI $>$.
206. Lgaz H, Zehra S, Albayati M, Toumiat K, Aoufir Y, Chaouiki A, et al. Corrosion Inhibition of Mild Steel in 1.0 M HCl by two Hydrazone Derivatives. Int J Electrochem Sci. 2019 Jul;14:6667-81. <DOI $>$.
207. Lgaz H, Chaouiki A, Albayati MR, Salghi R, El Aoufir Y, Ali IH, et al. Synthesis and evaluation of some new hydrazones as corrosion inhibitors for mild steel in acidic media. Res Chem Intermed. 2019 Apr;45(4):2269-86. <DOI>.
208. Mohan P, Usha R, Kalaignan GP, Muralidharan VS. Inhibition Effect of Benzohydrazide Derivatives on Corrosion Behaviour of Mild Steel in 1 M HCl . Journal of Chemistry. 2013;2013:1-7. <DOI $>$.
209. El-Tagouri MM, Mostafa MR, Abu El-Nader HM, Abu El-Reash GM. Efficiency of some 2-heterocarboxaldehyde-2'-pyridyl-hydrazones as corrosion inhibitors for Al dissolution in HCl solution. Anti-Corrosion Methods and Materials. 1989 Sep 1;36(9):10-4. <DOI>.
210. Chaitra TK, Mohana KN, Tandon HC. Evaluation of newly synthesized hydrazones as mild steel corrosion inhibitors by adsorption, electrochemical, quantum chemical and morphological studies. Arab Journal of Basic and Applied Sciences. 2018 May 4;25(2):45-55. <DOI $>$.
211. Liu B, Xi H, Li Z, Xia Q. Adsorption and corrosion-inhibiting effect of 2-(2-\{[2-(4Pyridylcarbonyl)hydrazono]methyl\}phenoxy)acetic acid on mild steel surface in seawater. Applied Surface Science. 2012 Jun;258(17):6679-87. <DOI $>$.
212. Liu H, Zhu L, Zhao Q. Schiff base compound as a corrosion inhibitor for mild steel in 1 M HCl . Res Chem Intermed. 2015 Jul;41(7):4943-60. <DOI>.
213. Ramesh SV, Adhikari AV. N'-[4-(diethylamino)benzylidine]-3-\{[8-(trifluoromethyl) quinolin-4-yl]thio\}propano hydrazide) as an effective inhibitor of mild steel corrosion in acid media. Materials Chemistry and Physics. 2009 Jun;115(2-3):618-27. <DOI $>$.
214. Ganjali MR, Rezapour M, Rasoolipour S, Norouzi P, Adib M. Application of pyridine-2-carbaldehyde-2-(4-methyl-1,3-benzo thiazol-2yl)hydrazone as a neutral ionophore in the construction of a novel $\operatorname{Er}($ III ) sensor. J Braz Chem Soc. 2007 Apr;18(2):352-8. <DOI>.
215. Ganjali MR, Rasoolipour S, Rezapour M, Norouzi P, Adib M. Synthesis of thiophene-2-carbaldehyde-(7-methyl-1,3-benzothiazol-2-
yl )hydrazone and its application as an ionophore in the construction of a novel thulium(III) selective membrane sensor. Electrochemistry Communications. 2005 Oct;7(10):989-94. $\leq \mathrm{DOI}>$.
216. Khattab TA, Allam AA, Othman SI, Bin-Jumah M, Al-Harbi HM, Fouda MMG. Synthesis, Solvatochromic Performance, pH Sensing, Dyeing Ability, and Antimicrobial Activity of Novel Hydrazone Dyestuffs. Journal of Chemistry. 2019 Feb 5;2019:1-10. <DOI $>$.
217. Qian HF, Zhao XL, Dai Y, Huang W. Visualized fabric discoloration of bi-heterocyclic hydrazone dyes. Dyes and Pigments. 2017 Aug;143:223-31. <DOI $>$.
218. G. Al-Sehemi A, Irfan A, M. Asiri A, A. Ammar Y. Synthesis, characterization and density functional theory study of low cost hydrazone sensitizers. Bull Chem Soc Eth. 2015 Jan 18;29(1):137. <DOI $>$.
219. Al-Sehemi AG, Irfan A, Asiri AM. The DFT investigations of the electron injection in hydrazonebased sensitizers. Theor Chem Acc. 2012 Mar;131(3):1199. <DOI>.
220. Al-Sehemi AG, Irfan A, Al-Melfi MAM. Highly efficient donor-acceptor hydrazone dyes-inorganic $\mathrm{Si} / \mathrm{TiO}_{2}$ hybrid solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015 Jun;145:40-6. <DOI $>$.
221. Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA. Synthesis, characterization and DFT study of methoxybenzylidene containing chromophores for DSSC materials. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012 Jun;91:239-43. <DOI $>$.
222. Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA. Molecular design of new hydrazone dyes for dyesensitized solar cells: Synthesis, characterization and DFT study. Journal of Molecular Structure. 2012 Jul;1019:130-4. $\leq \mathrm{DOI}>$.
223. Shen P, Liu X, Jiang S, Wang L, Yi L, Ye D, et al. Synthesis of new N, N-diphenylhydrazone dyes for solar cells: Effects of thiophene-derived $\quad$ conjugated bridge. Dyes and Pigments. 2012 Mar;92(3):1042-51. <DOI>.
224. Urnikaite $S$, Daskeviciene $M$, Send $R$, Wonneberger H, Sackus A, Bruder I, et al. Organic dyes containing a hydrazone moiety as auxiliary donor for solid-state DSSC applications. Dyes and Pigments. 2015 Mar;114:175-83. <DOI>.
225. Urnikaite S, Malinauskas T, Gaidelis V, Bruder I, Send R, Sens R, et al. Simple and Inexpensive Organic Dyes with Hydrazone Moiety as $\quad$ Conjugation Bridge for Solid-State Dye-Sensitized Solar Cells. Chem Asian J. 2013 Mar;8(3):538-41. <DOI $>$.
226. Urnikaite S, Malinauskas T, Bruder I, Send R, Gaidelis V, Sens R, et al. Organic Dyes with Hydrazone Moieties: A Study of Correlation between Structure and Performance in the Solid-State DyeSensitized Solar Cells. J Phys Chem C. 2014 Apr 17;118(15):7832-43. <DOI $>$.
227. Al-Sehemi AG, Allami SAS, Kalam A. Design and synthesis of organic dyes with various donor groups: promising dyes for dye-sensitized solar cells. Bull Mater Sci. 2020 Dec;43(1):224. <DOI $>$.
228. Vasileva MYu, Ershov AYu, Baigildin VA, Lagoda IV, Kuleshova LYu, Shtro AA, et al. Synthesis of Silver Glyconanoparticles Based on 3Thiopropionylhydrazones of Mono- and Disaccharides. Russ J Gen Chem. 2018 Jan;88(1):109-13. <DOI $>$.
229. Wong MS, Meier U, Pan F, Gramlich V, Bosshard C, Günter P. Five-membered heteroaromatic hydrazone derivatives for secondorder nonlinear optics. Adv Mater. 1996 May;8(5):416-20. <DOI $>$.
230. Xu W, Shao Z, Han Y, Wang W, Song Y, Hou H. Light-adjustable third-order nonlinear absorption properties based on a series of hydrazone compounds. Dyes and Pigments. 2018 May;152:171-9. <DOI $>$.
231. Follonier S, Bosshard Ch, Meier U, Knöpfle G, Serbutoviez C, Pan F, et al. New nonlinear-optical organic crystal: 4-dimethyl-aminobenzaldehyde- 4-nitrophenyl-hydrazone. J Opt Soc Am B. 1997 Mar 1;14(3):593. <DOI>.
232. Chung PJ, Chang HJ. Synthesis of 6-Alkyl-3Chromonealdehyde (2, 2-dialkyl) hydrazone Derivatives for Green Light Emitting Materials. Applied Chemistry for Engineering. 2010;21(4):424-9.

