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Abstract
In an earlier paper, the author derived generalized Rayleigh-quotient formulas for the real parts, imaginary parts,
and moduli of the eigenvalues of diagonalizable matrices. More precisely, max-, min-max-, min-, and max-
min-formulas were obtained. In this paper, we extend these results to the eigenvalues of linear nonsymmetric
compact operators with simple eigenvalues in a Hilbert space. As an application, a new formula for the spectral
radius is derived. An example arising from a boundary value problem in Mathematical Physics illustrates the
general results, and numerical computations underpin the theoretical findings. In addition, the Euler column is
treated from the area of Elastomechanics, which is complemented by references to other examples from this
area.
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1. Introduction
In [16], the author derived generalized Rayleigh-quotient formulas for the real parts, imaginary parts, and moduli of the
eigenvalues of diagonalizable nonsymmetric matrices, that is, in the case of a finite-dimensional space. In this paper, we extend
these results to the eigenvalues of nonsymmetric compact operators with simple eigenvalues in an infinite-dimensional Hilbert
space. Some arguments in the proofs are similar to those in the finite-dimensional case, but others are very different from them.

The paper is structured as follows. In Section 2, as a basis for what follows, functions of an operator in a Banach space
are discussed which is taken from [18]. Section 3 contains the expansion of a linear nonsymmetric compact operator and of a
pertinent projection operator in a Hilbert space. In Sections 4 - 6, generalized Rayleigh-quotient formulas for the real parts,
imaginary parts, and moduli are given respectively followed in Section 7 by generalized Rayleigh-quotient formulas for real
eigenvalues. In Section 8, the general results are employed to obtain a new formula for the spectral radius. Section 9 presents
new generalized numerical ranges, and in Section 10 an example from the area of a boundary value problem is given along with
the results of numerical computations. In Section 11, it is discussed what consequences changes in the arrangement of the
eigenvalues will have. Section 12 contains the conclusion and an outlook to future work. Finally, the references follow. Besides
the cited references, the following non-cited ones are given: [ 1] - [ 3], [ 6], [ 8], [ 9], [12] - [15], [17], [19], [21], [22], [29],
and [30] since the author thinks that they could be of interest to the reader in the context of the treated subject. We mention that
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the Remarks are not enumerated.

2. Functions of an Operator in a Banach Space
This section is of fundamental importance for what follows; it is taken from the corresponding section in [18]. The results are
obtained in a Banach space of which a Hilbert space is a particular case.

Let {0} 6= E be a Banach space over the field F= C. Whereas in [10, Chapter I] it is supposed that dimE < ∞, here we
assume that dimE = ∞. As was shown in [26] based on findings of [24], the following results taken from [10, Chapter I] are
valid not only for dimE < ∞, but also for dimE = ∞ if the space is complete.

Let p(ζ ) be the polynomial

p(ζ ) = α0 +α1ζ + · · ·αnζ
n, ζ ∈ C (2.1)

with α j ∈ C, j = 0,1, · · · ,n. Then the polynomial p(T ) ∈ B(E) is defined by

p(T ) = α0 +α1T + · · ·αnT n, ζ ∈ C, (2.2)

see [10, Chapter I, §3.3]. Making use of the resolvent

R(ζ ) := (T −ζ )−1, ζ ∈ C, (2.3)

one can now define the function φ(T ) of T for a more general class of functions φ(ζ ).
Before we do this, we mention that linear compact operators need not have eigenvalues. For example, Volterra integral

operators have no eigenvalues. On the other hand, consider a symmetric linear compact operator. Then, such an operator has
at least one eigenvalue, and all eigenvalues are real and simple. For these operators, there may exit only a finite number of
eigenvalues. Further, there is at most a countable set of eigenvalues with the only possible accumulation point zero, and there
exists a set of pertinent pairwise orthonormal eigenvectors. Further, it is known that the non-zero elements of the spectrum
consist solely of eigenvalues and that, if there is a countable set of eigenvalues, the associated sequence tends to zero. For all
this, see [27, Chapter 6].

Further, according to [ 7, Theorem 44.1, p.191], one has σ(T )\{0}= σP(T )\{0} where σ(T ) is the spectrum of T and
σP(T ) the point spectrum consisting of the eigenvalues of T .

Taking this into account, for our general linear compact operator T ∈ B(E), we suppose that the spectrum σ(T ) of T has a
countable set of non-zero eigenvalues λ j and that the sequence of eigenvalues tends to zero.

Additionally, we suppose that 0 6∈ σ(T ) so that N(T ) = {0} since without this condition, we cannot obtain relation (2.11)
resp. (2.14) below.

Now, suppose that φ(ζ ) is holomorphic in a domain D of the complex plane containing all the eigenvalues λ j 6= 0 of T , and
let C ⊂ D be a simple closed smooth curve with positive direction enclosing all the eigenvalues λ j in its interior. Then, φ(T ) is
defined by the Dunford-Taylor integral

φ(T ) =− 1
2πi

∫
C

φ(ζ )R(ζ )dζ =− 1
2πi

∫
C

φ(ζ )(T −ζ )−1 dζ . (2.4)

This is an analogue of the Cauchy integral formula in the Theory of Functions, see [11, Part I, §15, p. 61]. More generally, the
curve C may consist of several simple closed rectifiable Jordan curves Ck having a positive direction with interiors D′k such
that the union of the D′k contains all the eigenvalues of T . We note that (2.4) does not depend on C as long as C satisfies these
conditions. For the Ck, we can use the circles Ck = {z ∈ C | |z−λk|= rk} with sufficiently small radii rk.

It can be verified that, for the polynomial

φ(ζ ) = p(ζ ) = α0 +α1ζ + · · ·αnζ
n, ζ ∈ C (2.5)

with α j ∈ C, j = 0,1, · · · ,n, the Dunford-Taylor integral (2.4) is equal to (2.2).
For the special case

φ(ζ ) = p(ζ ) = ζ , (2.6)

we obtain

T =− 1
2πi

∫
C

T R(ζ )dζ = T
(
− 1

2πi

∫
C

R(ζ )dζ

)
=

(
− 1

2πi

∫
C

R(ζ )dζ

)
T. (2.7)



Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of Simple Eigenvalues of
Compact Operators — 50/77

Now, we set

P :=− 1
2πi

∫
C

R(ζ )dζ . (2.8)

According to [10, Chapter I, §5, Section 3], P is a continuous projection operator onto the algebraic eigenspace X = P(E) =
R(P), where R(P) means the range of P. Thus, from (2.7) and (2.8), one obtains

T = T P = PT = PT P. (2.9)

Now, let the radii rk be chosen such that

C j ∩Ck = /0, j 6= k, j,k = 1,2,3, · · · . (2.10)

Then,

P =− 1
2πi

∫
C

R(ζ )dζ =
∞

∑
j=1

(
− 1

2πi

∫
C j

R(ζ )dζ

)
=

∞

∑
j=1

Pj (2.11)

with

Pj =−
1

2πi

∫
C j

R(ζ )dζ , j = 1,2,3, · · · . (2.12)

At this point, we needed the assumption 0 6∈ σ(T ) since otherwise any circle C0 about λ0 = 0 would eventually intersect with
the circles Ck for sufficiently large k so that we would not have (2.10) for j,k ∈ (0,1,2,3, · · ·). Let J be the sequence

J := (1,2,3, · · ·). (2.13)

Then, (2.11) can be written as

P =
∞

∑
j=1

Pj = ∑
j∈J

Pj. (2.14)

Because of (2.10), one has

PjPk = PkPj = Pjδ jk, j,k ∈ J. (2.15)

Herewith,

Pj(E) =: X j (2.16)

is the algebraic eigenspace of T associated with the eigenvalue λ j.
From (2.9), (2.11), and (2.15), we obtain

T = PT = T P = PT P = ∑
j∈J

PjT = ∑
j∈J

T Pj = ∑
j∈J

PjT Pj, (2.17)

and so

R(T ) = T (E) = (PT )(E) = (T P)(E) = (PT P)(E)

= ∑
j∈J

(PjT )(E) = ∑
j∈J

(T Pj)(E) = ∑
j∈J

(PjT Pj)(E).
(2.18)
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3. Expansion of a Linear Compact Operator and of a Pertinent Projection Operator in
Hilbert Space

Together with Section 2, this section forms a basis for what follows. The statements are taken over from [18], but most of the
proofs are omitted.

(i) The Conditions (C1) - (C4)
We assume the following conditions:

(C1) {0} 6= H is a Hilbert space over the field F= C with scalar product (·, ·)

(C2) 0 6= T ∈ B(H) is compact having countably many simple non-zero eigenvalues λ1,λ2,λ3, · · · with limk→∞ λk = 0 pertinent
to the eigenvectors χ1,χ2,χ3, · · · . Further, 0 6∈ σ(T ).

(C3) The eigenvectors of the adjoint T ∗ of T with the eigenvalues λ 1,λ 2,λ 3, · · · are ψ1,ψ2,ψ3, · · ·

(C4) λi 6= λ j, i 6= j, i, j = 1,2,3 · · ·

One has the following theorem.

Theorem 3.1. (Biorthonormality relations for λ j 6= λk, j 6= k)
Let the conditions (C1) - (C4) be fulfilled. Then, with appropriate normalization, the eigenvectors χ1,χ2,χ3, · · · and

ψ1,ψ2,ψ3, · · · are biorthonormal, that is,

(χ j,ψk) = δ jk, j,k ∈ J. (3.1)

Proof. See [18, Theorem 3.1].

Furthermore, we obtain the following theorem.

Theorem 3.2. (Expansion of Tu as well as of Pu in a series of eigenvectors) Let the conditions (C1) - (C4) be fulfilled. Then,

Tu = ∑
j∈J

λ j(u,ψ j)χ j, u ∈ H (3.2)

as well as

Pu = ∑
j∈J

(u,ψ j)χ j, u ∈ H. (3.3)

Proof. See [18, Theorem 3.2].

Remark. From (3.2) we conclude that

[χ1,χ2,χ3, · · · ] = T (H) = R(T ).

Further, from (3.3),

P : H 7→ [χ1,χ2,χ3, · · · ].

�
Moreover, in [18, Theorem 3.3], we have proven the following theorem.

Theorem 3.3. Let the conditions (C1) - (C4) be fulfilled. Then, we obtain

u = Pu = ∑
j∈J

(u,ψ j)χ j, u ∈ H (3.4)

and the projection operator

P0 = I−P : H 7→ N(T ) = {0} ⇐⇒ P0 = 0. (3.5)
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For the next theorem, we define new subspaces of H. For every j = 1,2, . . ., let

Nχ, j := {u ∈ H |u =
j

∑
k=1

αkχk with αk ∈ C, k = 1,2, . . . , j}=: [χ1, . . . ,χ j], (3.6)

j = 1,2, . . . and

Nχ, j,R := {u ∈ H |u =
j

∑
k=1

βkχk with βk ∈ R, k = 1,2, . . . , j}= [χ1, . . . ,χ j]R, j = 1,2, . . . (3.7)

j = 1,2, . . . as well as

Nχ := Nχ,∞ := {u ∈ H |u = ∑
∞
k=1 αkχk exists in H with αk ∈ C,k = 1,2, . . .}

= [χ1,χ2, . . .]
(3.8)

and

Nχ,R := Nχ,∞,R := {u ∈ H |u = ∑
∞
k=1 βkχk exists in H with βk ∈ R,k = 1,2, . . .}

= [χ1,χ2, . . .]R.
(3.9)

Likewise, we define

Nψ, j := {u ∈ H |u =
j

∑
k=1

αkψk with αk ∈ C, k = 1,2, . . . , j}=: [ψ1, . . . ,ψ j], (3.10)

j = 1,2, . . . and

Nψ, j,R := {u ∈ H |u =
j

∑
k=1

βkψk with βk ∈ R, k = 1,2, . . . , j}= [ψ1, . . . ,ψ j]R, (3.11)

j = 1,2, . . . as well as

Nψ := Nψ,∞ := {u ∈ H |u = ∑
∞
k=1 αkψk exists in H with αk ∈ C,k = 1,2, . . .}

= [ψ1,ψ2, . . .]
(3.12)

and

Nψ,R := Nψ,∞,R := {u ∈ H |u = ∑
∞
k=1 βkψk exists in H with βk ∈ R,k = 1,2, . . .}

= [ψ1,ψ2, . . .]R.
(3.13)

After these preparations, we are able to prove the following theorem.

Theorem 3.4. Let the conditions (C1) - (C4) be fulfilled. Then,

(Tu,v) = ∑
j∈J

λ j(u,ψ j)(χ j,v), u, v ∈ H (3.14)

and

(u,v) = (Pu,v) = ∑
j∈J

(u,ψ j)(χ j,v), u, v ∈ H (3.15)

where

(u,ψ j), (χ j,v) ∈ R, u ∈ Nχ,R, v ∈ Nψ,R, j ∈ J (3.16)

leading to

Re(Tu,v) = ∑
j∈J

Reλ j(u,ψ j)(χ j,v), u ∈ Nχ,R, v ∈ Nψ,R, j ∈ J. (3.17)
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Proof. Let u ∈ Nχ,R and v ∈ Nψ,R. Then,

u = ∑
j∈J

(u,ψ j)χ j (3.18)

and

v = ∑
k∈J

(v,χk)ψk (3.19)

implying

(Tu,v) = ∑
j,k∈J

λ j(u,ψ j)(v,χk)(χ j,ψk) (3.20)

so that with (3.1) relation (3.14) follows.
Further, let u ∈ Nχ,R. Then,

u = ∑
j∈J

α jχ j

with elements α j ∈ R, j ∈ J so that

(u,ψ j) = ∑
k∈J

αk(χk,ψ j) = α j ∈ R.

Correspondingly, for v ∈ Nψ,R, one has (χ j,v) ∈ R so that (3.16) is proven. Relation (3.17) is a direct consequence of (3.14)
and (3.16). The expression in (3.15) follows in a similar way as that in (3.14) by using (3.4).

Next, we want to define vector spaces similar to those in [16, (16), (17)], namely

Mχ,1,R := Nχ,R = [χ1,χ2, . . .]R, (3.21)

Mχ, j,R := {u ∈ Nχ,R |(u,ψk) = 0, k = 1,2, . . . , j−1}

= [ψ1, . . . ,ψ j−1]
⊥
Nχ,R

, j = 2,3, . . .
(3.22)

where Mχ, j,R is called an orthogonal complement in Nχ,R and

Mψ,1,R := Nψ,R = [ψ1,ψ2, . . .]R, (3.23)

Mψ, j,R := {u ∈ Nψ,R |(u,χk) = 0, k = 1,2, . . . , j−1}

= [χ1, . . . ,χ j−1]
⊥
Nψ,R

, j = 2,3, . . .
(3.24)

where Mψ, j,R is called an orthogonal complement in Nψ,R. The next lemma characterizes these spaces.

Lemma 3.5. Let the conditions (C1) - (C4) be fulfilled as well as {χ1,χ2, . . .} and {ψ1,ψ2, . . .} be sets of biorthogonal
eigenvectors of T and T ∗ respectively, i.e., such that

(χi,ψ j) = δi j, i, j = 1,2, . . . . (3.25)

Then,

Mχ, j,R = [χ j,χ j+1, . . .]R, j = 1,2, . . . (3.26)

and

Mψ, j,R = [ψ j,ψ j+1, . . .]R, j = 1,2, . . . (3.27)
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Proof. The proof is done for (3.26) and j = 3. The general case can be made by induction. The proof of (3.27) is similar. So,
we have to prove

Mχ,3,R := {u ∈ Nχ,R |(u,ψk) = 0, k = 1,2}= [ψ1,ψ2]
⊥
Nχ,R

= [χ3,χ4, . . .]R

(3.28)

(i) [χ3,χ4, . . .]R ⊂Mχ,3,R :

Let u ∈ [χ3,χ4, . . .]R. Then, u = ∑
∞
k=3 β jχ j with elements β j ∈ R, j = 3,4, . . .. Let s ∈ {1,2}. This entails, due to Theorem

3.1, (u,ψs) = ∑
∞
j=3 β j(χ j,ψs) = 0 so that u ∈Mχ,3,R . Therefore, (i) is proven.

(ii) Mχ,3,R ⊂ [χ3,χ4, . . .]R :
Let u ∈Mχ,3,R. This implies u ∈ Nχ,R and (u,ψ j) = 0, j = 1,2. Now, u = ∑

∞
k=1 βkχk with βk = (u,ψk) ∈ R, k = 1,2, . . .

leading to u = ∑
∞
k=3 βkχk since (u,ψk) = 0, k = 1,2 so that u ∈ [χ3,χ4, . . .]R. Therefore, (ii) is proven.

Now, let u ∈ Nχ,R with u = ∑
∞
k=1 αkχk and αk ∈ R as well as v ∈ Nψ,R with v = ∑

∞
k=1 βkψk and βk ∈ R. Then, due to

Theorem 3.1,

(u,v) =
∞

∑
k=1

αkβk. (3.29)

In order to facilitate the manner of speaking, we say that the scalar product (u,v) of u ∈ Nχ,R and v ∈ Nψ,R is strongly positive
iff αkβk ≥ 0, k = 1,2, . . . and ∑

∞
k=1 αkβk > 0. For short, we write

(u,v)>> 0.

Remark. One has αk = (u,ψk), u ∈ Nχ,R and βk = (χk,v), v ∈ Nψ,R for k = 1,2, . . .. Therefore, (u,v) >> 0 means
(u,ψk)(χk,v)≥ 0, k = 1,2, . . . and (u,v) = ∑

∞
k=1(u,ψk)(χk,v)> 0. �

Remark. For (u,v) >> 0, one can admit linear combinations u = ∑
∞
k=1 αkχk and v = ∑

∞
k=1 βkψk with αk,βk ∈ C, k =

1,2, . . . such that αkβ k = |αkβk|, k = 1,2, . . . and ∑
∞
k=1 |αkβk| > 0. For example, all elements αk,βk ∈ C with αk = |αk|eiϕk

and βk = |βk|eiϕk where ϕk is in 0≤ ϕk < 2π, k = 1,2, . . . are acceptable. �
Remark. At this point, we mention that, due to (2.14) and (2.17), it follows that we have the convergence

P(n) =
n

∑
j=1

Pj→ P (n→ ∞)

and

T (n) =
n

∑
j=1

PjT Pj→ T (n→ ∞)

in B(H) so that, e.g., the operators T and P defined in (3.2) and (3.3) are approximated by their partial sums not only pointwise,
but even in the norm of B(H). �

4. Generalized Rayleigh-Quotient Formulas for the Real Parts of the Eigenvalues
In the sequel, we suppose that the non-zero eigenvalues are arranged according to

Reλ1 ≥ Reλ2 ≥ Reλ3 ≥ . . . . (4.1)

Such an arrangement is possible, for instance, if the real parts of all eigenvalues are positive. An arrangement that is always
possible will be dealt with in Section 11.

One has the following generalized max-representation.

Theorem 4.1. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (4.1).
Moreover, let the vector spaces Mχ, j,R resp. Mψ, j,R for j ∈ J be defined by (3.21), (3.22) resp. (3.23), (3.24) or (3.26) resp.
(3.27). Then,

Reλ j = max
(u,v)>>0

u∈Mχ, j,R ,v∈Mψ, j,R

Re(Tu,v)
(u,v)

, j ∈ J. (4.2)

The maximum is attained for u = χ j, v = ψ j.
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Proof. One uses (3.17) as starting point, i.e.,

Re(Tu,v) = ∑
j∈J

Reλ j(u,ψ j)(χ j,v), u ∈ Nχ,R, v ∈ Nψ,R

with

Reλ j, (u,ψ j), (χ j,v) ∈ R, u ∈ Nχ,R, v ∈ Nψ,R.

Let j ∈ J be arbitrarily chosen, but fixed as well as u ∈Mχ, j,R ⊂ Nχ,R and v ∈Mψ, j,R ⊂ Nψ,R also be arbitrarily chosen, but
fixed with (u,v)>> 0. Then,

Re(Tu,v) =
∞

∑
k= j

Reλk(u,ψk)(χk,v)

≤ max
k= j, j+1,...

Reλk

∞

∑
k= j

(u,ψk)(χk,v)

= Reλ j

∞

∑
k=1

(u,ψk)(χk,v)

= Reλ j(u,v), u ∈Mχ, j,R,v ∈Mψ, j,R, (u,v)>> 0,

that is,

Re(Tu,v)
(u,v)

≤ Reλ j, u ∈Mχ, j,R,v ∈Mψ, j,R, (u,v)>> 0

and thus

max
(u,v)>>0

u∈Mχ, j,R,v∈Mψ, j,R

Re(Tu,v)
(u,v)

≤ Reλ j.

Now, Reλ j is attained for u = χ j ∈Mχ, j,R and v = ψ j ∈Mψ, j,R. Thus, because of (χ j,ψ j)>> 0,

Reλ j =
Re(T χ j,ψ j)

(χ j,ψ j)
≤ max

(u,v)>>0
u∈Mχ, j,R ,v∈Mψ, j,R

Re(Tu,v)
(u,v)

≤ Reλ j

so that (4.2) is proven.

For the next theorem, we need the following denotation of codimension. A subspace M ⊂ H has codimension j for j ∈ J
denoted by codimM = j if there exist linearly independent vectors v1, . . . ,v j ∈ H such that

M = [v1, . . . ,v j]
⊥ := [v1, . . . ,v j]

⊥
H = {u ∈ H |(u,vk) = 0, k = 1, . . . , j}.

Further, we set

codim M = 0

if M = H. Next, we prove a generalized min-max-representation.

Theorem 4.2. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (4.1).
Then, for every j ∈ J and every subspace Mχ ⊂ Nχ,R and Mψ ⊂ Nψ,R with codim Mχ = codim Mψ = j−1, the following

inequalities are valid:

Reλ j ≤ max
(u,v)>>0

u∈Mχ ,v∈Mψ

Re(Tu,v)
(u,v)

≤ Reλ1, (4.3)

and the following min-max-representation formulas hold:

Reλ j = min
codim Mχ= j−1
codim Mψ= j−1

max
(u,v)>>0

u∈Mχ ,v∈Mψ

Re(Tu,v)
(u,v)

, j ∈ J. (4.4)

The minimum is attained for

Mχ = Mχ, j,R, Mψ = Mψ, j,R. (4.5)



Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of Simple Eigenvalues of
Compact Operators — 56/77

Proof. (4.3): For all subspaces Mχ ⊂ Nχ,R, one has

max
(u,v)>>0

u∈Mχ ,v∈Mψ

Re(Tu,v)
(u,v)

≤ max
(u,v)>>0

u∈Nχ,R ,v∈Nψ ,R

Re(Tu,v)
(u,v)

= Reλ1. (4.6)

In case j = 1, it follows by definition of codim Mχ = codim Mψ = 0 that Mχ = Nχ,R and Mψ = Nψ,R and thus the equal sign
in (4.3); further, (4.4) reduces to (4.3) with the equal signs instead of the signs ≤. Now, let j ≥ 2. Then, there exist linearly
independent vectors u1, . . . ,u j−1 and v1, . . . ,v j−1 with

Mχ = [u1, . . . ,u j−1]
⊥
Nχ,R

, Mψ = [v1, . . . ,v j−1]
⊥
Nψ,R

. (4.7)

Define

zχ =
j

∑
i=1

αiχi

and determine the coefficients α1, . . . ,α j by the j−1 linear equations

(zχ ,uk) =
j

∑
i=1

αi(χi,uk) = 0, k = 1, . . . , j−1. (4.8)

This system of j−1 linear equations and j unknowns has a nontrivial solution

zχ 6= 0, zχ ∈Mχ = [u1, . . . ,u j−1]
⊥
Nχ,R

. (4.9)

Now, define

zψ =
j

∑
i=1

αiψi (4.10)

with the same coefficients αi as in zχ . Then,

zψ 6= 0. (4.11)

Further,

(zχ ,zψ) =
j

∑
i=1

α
2
i > 0 (4.12)

so that (zχ ,zψ)>> 0. Moreover,

zψ ∈ [zψ ]R ⊂Mψ,zψ
(4.13)

where Mψ,zψ
is any subspace of Nψ,R with codimension j−1 containing the element zψ . From the above, it follows

Re(T zχ ,zψ) =
j

∑
i,k=1

αi Reλi αk (χi,ψk) =
j

∑
i=1

Reλi α
2
i . (4.14)

Now, αi ∈ R, i = 1, . . . , j. Therefore,

Re(T zχ ,zψ)≥ ( min
i=1,..., j

Reλi)
j

∑
i=1

α
2
i = Reλ j (zχ ,zψ) (4.15)

leading to

Re(T zχ ,zψ)

(zχ ,zψ)
≥ Reλ j. (4.16)
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Moreover, due to (4.1),

Re(Tu,v)≤ ( max
j=1,2,...

Reλ j)
∞

∑
j=1

(u,ψ j)(χ j,v) = Reλ1 (u,v),

(u,v)>> 0, u ∈ Nχ,R, v ∈ Nψ,R so that

Reλ1 ≥
(Tu,v)
(u,v)

, (u,v)>> 0, u ∈ Nχ,R, v ∈ Nψ,R. (4.17)

This implies

Reλ j ≤
Re(T zχ ,zψ)

(zχ ,zψ)
≤ max

(u,v)>>0
u∈Mχ,zχ ,v∈Mψ,zψ

Re(Tu,v)
(u,v)

≤ max
(u,v)>>0

u∈Mχ ,v∈Mψ

Re(Tu,v)
(u,v)

≤ Reλ1. (4.18)

Therefore, (4.3) is proven.
Proof of (4.4): From (4.3), we conclude

min
codim Mχ= j−1
codim Mψ= j−1

max
(u,v)>>0

u∈Mχ ,v∈Mψ

Re(Tu,v)
(u,v)

≥ Reλ j. (4.19)

On the other hand, from Theorem 4.1,

Reλ j = max
(u,v)>>0

u∈Mχ, j,R ,v∈Mψ, j,R

Re(Tu,v)
(u,v)

≥ min
codim Mχ= j−1
codim Mψ= j−1

max
(u,v)>>0

u∈Mχ ,v∈Mψ

Re(Tu,v)
(u,v)

(4.20)

since

Mχ, j,R = [χ j,χ j+1, . . .]R = [ψ1, . . . ,ψ j−1]
⊥
Nχ,R

(4.21)

and

Mψ, j,R = [ψ j,ψ j+1, . . .]R = [χ1, . . . ,χ j−1]
⊥
Nψ,R

(4.22)

so that codim Mχ, j,R = j−1 and codim Mψ, j,R = j−1.
Relations (4.19) and (4.20) imply (4.4).
The last assertion follows from (4.21) and (4.22).

The next theorem contains a generalized min-representation.

Theorem 4.3. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (4.1).
Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11). Then,

Reλ j = min
(u,v)>>0

u∈Nχ, j,R,v∈Nψ, j,R

Re(Tu,v)
(u,v)

, j ∈ J. (4.23)

The minimum is attained for u = χ j, v = ψ j.

Proof. Due to (3.17),

Re(Tu,v) = ∑
j∈J

Reλ j(u,ψ j)(χ j,v), u ∈ Nχ,R, v ∈ Nψ,R

with

Reλ j, (u,ψ j), (χ j,v) ∈ R, u ∈ Nχ,R, v ∈ Nψ,R.
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Let j ∈ J be arbitrarily chosen, but fixed as well as u ∈ Nχ, j,R ⊂ Nχ,R and v ∈ Nψ, j,R ⊂ Nψ,R also be arbitrarily chosen, but
fixed with (u,v)>> 0. Then, with (4.1),

Re(Tu,v) =
j

∑
k=1

Reλk(u,ψk)(χk,v)

≥ min
k=1,..., j

Reλk

j

∑
k=1

(u,ψk)(χk,v)

= Reλ j

j

∑
k=1

(u,ψk)(χk,v)

= Reλ j(u,v),

that is,

Re(Tu,v)
(u,v)

≥ Reλ j, u ∈ Nχ, j,R,v ∈ Nψ, j,R, (u,v)>> 0

and therefore,

min
(u,v)>>0

u∈Nχ, j,R,v∈Nψ, j,R

Re(Tu,v)
(u,v)

≥ Reλ j.

Now, Reλ j is attained for u = χ j ∈ Nχ, j,R and v = ψ j ∈ Nψ, j,R, that is,

Reλ j =
Re(T χ j,ψ j)

(χ j,ψ j)
≥ min

(u,v)>>0
u∈Nχ, j,R,v∈Nψ, j,R

Re(Tu,v)
(u,v)

≥ Reλ j

so that (4.23) is proven.

Next, we derive the following generalized max-min-representation of Reλ j.

Theorem 4.4. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (4.1).
Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11).

Then, for every j ∈ J and every subspace Nχ ⊂ Nχ,R and Nψ ⊂ Nψ,R with dim Nχ = dim Nψ = j, the following inequalities
are valid:

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Re(Tu,v)
(u,v)

≤ Reλ j, (4.24)

and the following max-min-representation formulas hold:

Reλ j = max
dimNχ= j
dimNψ= j

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Re(Tu,v)
(u,v)

, j ∈ J. (4.25)

The maximum is attained for

Nχ = Nχ, j,R, Nψ = Nψ, j,R. (4.26)

Proof. Let j ∈ J, and let Nχ ⊂ Nχ,R as well as Nψ ⊂ Nψ,R be subspaces with dimNχ = dimNψ = j. Then,

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Re(Tu,v)
(u,v)

≤ min
(u,v)>>0

u∈Nχ, j,R,v∈Nψ , j,R

Re(Tu,v)
(u,v)

≤
Re(T χ j,ψ j)

(χ j,ψ j)
= Reλ j (4.27)

so that (4.24) follows. From (4.27), we conclude

max
dimNχ= j
dimNψ= j

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Re(Tu,v)
(u,v)

≤ Reλ j. (4.28)
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Further, (4.23) implies

Reλ j = min
(u,v)>>0

u∈Nχ, j,R,v∈Nψ, j,R

Re(Tu,v)
(u,v)

≤ max
dimNχ= j
dimNψ= j

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Re(Tu,v)
(u,v)

≤ Reλ j. (4.29)

From (4.28) and (4.29), we deduce (4.25) and that the maximum is attained for Nχ = Nχ, j,R, Nψ = Nψ, j,R.

Changes in the Finite-Dimensional Case
In this case, the Hilbert space H over the field F=C can be identified with Cn and the compact operator with an n×n-matrix.

Further, one has J = (1, . . . ,n) instead of J = (1,2, . . .), and (4.1) is replaced by

Reλ1 ≥ . . .≥ Reλn.

Moreover, the condition lim j→∞ λ j = 0 is omitted.
As a consequence, Theorems 4.1 - 4.4 deliver [16, Theorems 4 - 7] where the proofs of the theorems in this paper are

essentially different from those in [16]. Beyond this, the proof of Theorem 4.2 is more detailed than the proof of [16, Theorem
5.]

5. Generalized Rayleigh-Quotient Formulas for the Imaginary Parts of the Eigenvalues

In this section, we want to state formulas for the representation of the imaginary parts of the eigenvalues of the compact
operator 0 6= T ∈ B(H) by Rayleigh quotients that generalize existing ones. We remind the reader that, in this paper beginning
with Section 3, all eigenvalues are assumed to be simple. We obtain max-, min-max-, min-, and max-min-representations
corresponding to those in Section 4.

Similarly to (4.1) we suppose that the eigenvalues of the compact operator T are arranged such that

Imλ1 ≥ Imλ2 ≥ Imλ3 ≥ . . . . (5.1)

First, we want to state a relation corresponding to that of (3.17).

Lemma 5.1. Let the conditions (C1) - (C4) be fulfilled. Then, with the denotations of Theorem 3.1,

Im(Tu,v) = ∑
j∈J

Imλ j(u,ψ j)(χ j,v), u ∈ Nχ,R, v ∈ Nψ,R. (5.2)

Proof. Equation (5.2) follows directly from Theorem 3.4, Formulas (3.14) and (3.16).

One has a series of theorems for the imaginary parts of the eigenvalues corresponding to those of Theorems 4.1 - 4.4 in
Section 4. These Theorems 5.2 - 5.5 are stated without proofs since the only difference is that (5.1) and (5.2) are used instead
of (4.1) and (3.17).

Theorem 5.2. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (5.1).
Moreover, let the vector spaces Mχ, j,R resp. Mψ, j,R for j ∈ J be defined by (3.21), (3.22) resp. (3.23), (3.24) or (3.26) resp.
(3.27). Then,

Imλ j = max
(u,v)>>0

u∈Mχ, j,R ,v∈Mψ, j,R

Im(Tu,v)
(u,v)

, j ∈ J. (5.3)

The maximum is attained for u = χ j, v = ψ j.
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Theorem 5.3. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (5.1).
Then, for every j ∈ J and every subspace Mχ ⊂ Nχ,R and Mψ ⊂ Nψ,R with codim Mχ = codim Mψ = j−1, the following

inequalities are valid:

Imλ j ≤ max
(u,v)>>0

u∈Mχ ,v∈Mψ

Im(Tu,v)
(u,v)

≤ Imλ1, (5.4)

and the following min-max-representation formulas hold:

Imλ j = min
codim Mχ= j−1
codim Mψ= j−1

max
(u,v)>>0

u∈Mχ ,v∈Mψ

Im(Tu,v)
(u,v)

, j ∈ J. (5.5)

The minimum is attained for

Mχ = Mχ, j,R, Mψ = Mψ, j,R. (5.6)

The next theorem contains a generalized min-representation of Imλ j.

Theorem 5.4. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (5.1).
Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11). Then,

Imλ j = min
(u,v)>>0

u∈Nχ, j,R,v∈Nψ, j,R

Im(Tu,v)
(u,v)

, j ∈ J. (5.7)

The minimum is attained for u = χ j, v = ψ j.

Next, we derive the following generalized max-min-representation of Imλ j.

Theorem 5.5. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (5.1).
Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11).

Then, for every j ∈ J and every subspace Nχ ⊂ Nχ,R and Nψ ⊂ Nψ,R with dim Nχ = dim Nψ = j, the following inequalities
are valid:

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Im(Tu,v)
(u,v)

≤ Imλ j, (5.8)

and the following max-min-representation formulas hold:

Imλ j = max
dimNχ= j
dimNψ= j

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Im(Tu,v)
(u,v)

, j ∈ J. (5.9)

The maximum is attained for

Nχ = Nχ, j,R, Nψ = Nψ, j,R. (5.10)

Changes in the Finite-Dimensional Case
In this case, the Hilbert space H over the field F=C can be identified with Cn and the compact operator with an n×n-matrix.

Further, one has J = (1, . . . ,n) instead of J = (1,2, . . .), and (5.1) is replaced by

Imλ1 ≥ . . .≥ Imλn.

Further, the condition lim j→∞ λ j = 0 is omitted.
As a consequence, Theorems 5.2 - 5.5 deliver [16, Theorems 9 - 12].
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6. Generalized Rayleigh-Quotient Formulas for the Moduli of the Eigenvalues
Whereas in Sections 4 and 5 max-, min-max-, min-, and max-min-representations with generalized Rayleigh quotients could be
obtained, it seems that, for the moduli of the eigenvalues, only a max-representation is possible.

We now deduce this max-representation. For this, we suppose that the eigenvalues λ1,λ2, . . . are arranged such that

|λ1| ≥ |λ2| ≥ . . . . (6.1)

Herewith, one has the following theorem.

Theorem 6.1. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (6.1).
Moreover, let the vector spaces Mχ, j,R resp. Mψ, j,R for j ∈ J be defined by (3.21), (3.22) resp. (3.23), (3.24) or (3.26) resp.
(3.27). Then,

|λ j|= max
(u,v)>>0

u∈Mχ, j,R,v∈Mψ, j,R

|(Tu,v)|
(u,v)

, j ∈ J. (6.2)

The maximum is attained for u = χ j, v = ψ j.

Proof. One uses (3.14) and (3.16) as starting point, i.e.,

(Tu,v) = ∑
j∈J

λ j(u,ψ j)(χ j,v), u ∈ Nχ,R, v ∈ Nψ,R

with

(u,ψ j), (χ j,v) ∈ R, u ∈ Nχ,R, v ∈ Nψ,R.

Let j ∈ J be arbitrarily chosen, but fixed as well as u ∈Mχ, j,R ⊂ Nχ,R and v ∈Mψ, j,R ⊂ Nψ,R also be arbitrarily chosen, but
fixed with (u,v)>> 0. Then,

|(Tu,v)| = |
∞

∑
k= j

λk(u,ψk)(χk,v)|

≤ max
k= j, j+1,...

|λk|
∞

∑
k= j

(u,ψk)(χk,v)

= |λ j|
∞

∑
k=1

(u,ψk)(χk,v)

= |λ j|(u,v), u ∈Mχ, j,R,v ∈Mψ, j,R, (u,v)>> 0,

that is,

|(Tu,v)|
(u,v)

≤ |λ j|, u ∈Mχ, j,R,v ∈Mψ, j,R, (u,v)>> 0

and thus

max
(u,v)>>0

u∈Mχ, j,R,v∈Mψ, j,R

|(Tu,v)|
(u,v)

≤ |λ j|.

Now, |λ j| is attained for u = χ j ∈Mχ, j,R and v = ψ j ∈Mψ, j,R. Thus, because of (χ j,ψ j)>> 0,

|λ j|=
|(T χ j,ψ j)|
(χ j,ψ j)

≤ max
(u,v)>>0

u∈Mχ, j,R,v∈Mψ, j,R

|(Tu,v)|
(u,v)

≤ |λ j|

so that (6.2) is proven.
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7. Generalized Rayleigh-Quotient Formulas for Real Eigenvalues
When all eigenvalues of a compact operator T are real and simple, then

σ(T )⊂ R

and

Reλ j = λ j, j = 1,2, . . . .

We mention that, in particular, λ j(T ∗T ) ∈ R+
0 := {x ∈ R |x≥ 0} ⊂ R. For σ(T )⊂ R, from Section 4 one gets the following

corollaries where correspondingly to (4.1), we suppose that the eigenvalues are arranged such that

λ1 ≥ λ2 ≥ . . . . (7.1)

The corollaries are obtained as follows.

Corollary 7.1. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (7.1).
Moreover, let the vector spaces Mχ, j,R resp. Mψ, j,R for j ∈ J be defined by (3.21), (3.22) resp. (3.23), (3.24) or (3.26) resp.
(3.27). Then,

λ j = max
(u,v)>>0

u∈Mχ, j,R,v∈Mψ, j,R

(Tu,v)
(u,v)

, j ∈ J. (7.2)

The maximum is attained for u = χ j, v = ψ j.

Corollary 7.2. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (7.1).
Then, for every j ∈ J and every subspace Mχ ⊂ Nχ,R and Mψ ⊂ Nψ,R with codim Mχ = codim Mψ = j−1, the following

inequalities are valid:

λ j ≤ max
(u,v)>>0

u∈Mχ ,v∈Mψ

(Tu,v)
(u,v)

≤ λ1, (7.3)

and the following min-max-representation formulas hold:

λ j = min
codim Mχ= j−1
codim Mψ= j−1

max
(u,v)>>0

u∈Mχ ,v∈Mψ

(Tu,v)
(u,v)

, j ∈ J. (7.4)

The minimum is attained for

Mχ = Mχ, j,R, Mψ = Mψ, j,R. (7.5)

The next corollary contains a generalized min-representation of λ j.

Corollary 7.3. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (7.1).
Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11). Then,

λ j = min
(u,v)>>0

u∈Nχ, j,R,v∈Nψ, j,R

(Tu,v)
(u,v)

, j ∈ J. (7.6)

The minimum is attained for u = χ j, v = ψ j.

Corollary 7.4. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (7.1).
Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11).
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Then, for every j ∈ J and every subspace Nχ ⊂ Nχ,R and Nψ ⊂ Nψ,R with dim Nχ = dim Nψ = j, the following inequalities
are valid:

min
(u,v)>>0

u∈Nχ ,v∈Nψ

(Tu,v)
(u,v)

≤ λ j, (7.7)

and the following max-min-representation formulas hold:

λ j = max
dimNχ= j
dimNψ= j

min
(u,v)>>0

u∈Nχ ,v∈Nψ

(Tu,v)
(u,v)

, j ∈ J. (7.8)

The maximum is attained for Nχ = Nχ, j,R, Nψ = Nψ, j,R.

Changes in the Finite-Dimensional Case
In this case, the Hilbert space H over the field F=C can be identified with Cn and the compact operator with an n×n-matrix.

Further, one has J = (1, . . . ,n) instead of J = (1,2, . . ., and (7.1) is replaced by

λ1 ≥ . . .≥ λn.

Further, the condition lim j→∞ λ j = 0 is omitted.
As a consequence, Corollaries 7.1 - 7.4 deliver [16, Corollaries 14 - 17].

8. Application to New Formula for Spectral Radius

In this section, an application of the obtained results is presented. More precisely, a new formula for the spectral radius ρ(T ) is
derived. First, known formulas for this quantity are recapitulated.

Known formulas for the spectral radius ρ(T )
Let the conditions (C1) - (C4) be fulfilled. One formula is given by

ρ(T ) = lim
n→∞
‖T n‖

1
n , (8.1)

see [10, Chapter I, p. 27], where the expression on the right-hand member of (8.1) is independent of the norm ‖ · ‖.
If F= C, another representation is

ρ(T ) = max
j=1,2,...

|λ j|, (8.2)

cf. [10, Chapter I, (5.10), p. 38].
New formula for the spectral radius ρ(T )
Let the conditions (C1) - (C4) be fulfilled, and let the eigenvalues of T be arranged according to (6.1).
Then, from Theorem 6.1, as Application, we deduce the new formula

ρ(T ) = max
(u,v)>>0

u∈Nχ,R ,v∈Nψ,R

|(Tu,v)|
(u,v)

. (8.3)

Proof. This follows from (6.2) as well as Mχ,1,R = Nχ,R, Mψ,1,R = Nψ,R according to (3.21) and (3.23) as well as (3.9) and
(3.13) since

ρ(T ) = max
j=1,2,...

|λ j|= |λ1|= max
(u,v)>>0

u∈Mχ,1,R,v∈Mψ,1,R

|(Tu,v)|
(u,v)

= max
(u,v)>>0

u∈Nχ,R ,v∈Nψ,R

|(Tu,v)|
(u,v)

. (8.4)
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9. New Generalized Numerical Ranges
In this section, a series of known numerical ranges is recapitulated, and new numerical ranges of a compact operator are defined.
The new generalized numerical ranges are defined for compact operators with simple eigenvalues similarly as for diagonalizable
matrices in [16].

Known numerical range of T ∈ B(H) with respect to the Hilbert space H
Following [25, Section 5.4,(5)], the numerical range of T ∈ B(H) is defined by

WH(T ) = {z ∈ C |z = (Tu,u)
(u,u)

, 0 6= u ∈ H} (9.1)

which is a convex subset of C. Applying this definition to T ∗T instead to T , we obtain

WH(T ∗T ) = {x ∈ R+
0 |x =

(T ∗Tu,u)
(u,u)

=
(Tu,Tu)
(u,u)

≥ 0, 0 6= u ∈ H} (9.2)

which is a convex subset of R+
0 . One has

WH(T ∗T ) = [ inf
j=1,2,...

λ j(T ∗T ), sup
j=1,2,...

λ j(T ∗T )] = [
1

‖T−1‖2
2
,‖T‖2

2 ] (9.3)

where 1/‖T−1‖2
2 has to be interpreted as zero if T−1 does not exist.

Generalized numerical range of T ∈ B(H) with respect to the subspaces Nχ and Nψ

Let the conditions (C1) - (C4) be fulfilled. Then, we define the generalized range of T with respect to the subspaces Nχ and
Nψ by

WNχ ,Nψ ,gen.(T ) = {z ∈ C |z = (Tu,v)
(u,v)

, (u,v)>> 0, u ∈ Nχ ,v ∈ Nψ} (9.4)

Real part of the numerical range of T ∈ B(H) with respect to the subspaces Nχ,R and Nψ,R
Let the conditions (C1) - (C4) be fulfilled. Then, we define the real part of the generalized numerical range of T with

respect to the subspaces Nχ,R and Nψ,R by

Re [WNχ,R,Nψ,R,gen.](T ) = {x ∈ R |x = Re(Tu,v)
(u,v)

, (u,v)>> 0, u ∈ Nχ,R,v ∈ Nψ,R}. (9.5)

Imaginary part of the numerical range of T ∈ B(H) with respect to the subspaces Nχ,R and Nψ,R
Let the conditions (C1) - (C4) be fulfilled. Then, we define the imaginary part of the generalized numerical range of T with

respect to the subspaces Nχ,R and Nψ,R by

Im [WNχ,R,Nψ,R,gen.](T ) = {y ∈ R |y = Im(Tu,v)
(u,v)

, (u,v)>> 0, u ∈ Nχ,R,v ∈ Nψ,R}. (9.6)

Modulus of the generalized numerical range of T ∈ B(H) with respect to the subspaces Nχ,R and Nψ,R
Let the conditions (C1) - (C4) be fulfilled. Then, we define the modulus of the generalized numerical range of T with

respect to the subspaces Nχ,R and Nψ,R by

|WNχ,R,Nψ,R,gen.(T ) |= {x ∈ R+
0 |x =

|(Tu,v)|
(u,v)

, (u,v)>> 0, u ∈ Nχ,R,v ∈ Nψ,R}. (9.7)

10. Examples from the Area of Boundary Eigenvalue Problems
In this section, we check some of the formulas of Section 7 on an example of a nonsymmetric compact operator with nonnegative
simple eigenvalues from the area of Mathematical Physics. More precisely, we check the validity of the following relation

(Tu,v)
(u,v)

∈ [ inf
j=1,2,...

λ j(T ), sup
j=1,2,...

λ j(T )]

for a series of vectors u ∈ Nχ,R, v ∈ Nψ,R with (u,v)>> 0, which is a consequence of Theorems 7.2 and 7.4.
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10.1 A Non-Selfadjoint BEVP with Ordinary Differential Operator of 2nd Order
(i) The Differential Operators L and L+ and Pertinent BEVPs

As an example, we choose the non-selfadjoint Boundary Eigenvalue Problem (for short: BEVP) with ordinary differential
operator of 2nd order in [18]. The differential operator L is given by

(Lu)(x) =−u′′(x)+ p0 u′(x)+q0 u(x), 0≤ x≤ l (10.1)

with the real constants p0,q0 where we restrict q0 to q0 > 0 and with the boundary conditions

u(0) = u(l) = 0. (10.2)

The formally adjoint differential operator L+ is given by

(L+v)(x) =−v′′(x)− p0 v′(x)+q0 v(x), 0≤ x≤ l (10.3)

with the boundary conditions

v(0) = v(l) = 0. (10.4)

The pertinent BEVPs read

π2,µ : Lu = µu, u ∈ HD = D(L) (10.5)

where

HD = {u ∈C2[0, l] |u(0) = u(l) = 0} (10.6)

and

π2,µ,+ : L+v = µv, v ∈ HD,+ = D(L+). (10.7)

where

HD,+ = HD. (10.8)

(ii) The Eigenvalues and Eigenfunctions
The eigenvalues of L and L+ are given by

µ = µ = µ j = µ j =
j2π2

l2 +D, j ∈ J (10.9)

with the quantity

D = D(p0,q0) = (
p0

2
)2 +q0 (10.10)

so that

λ j =
1
µ j

=
1

j2π2

l2 +D
, j ∈ J. (10.11)

The biorthonormal eigenfunctions are found to be

χ j(x) =

√
2
l

exp(
p0

2
x) sin j π

x
l
, 0≤ x≤ l, j ∈ J (10.12)

and

ψ j(x) =

√
2
l

exp(− p0

2
x) sin j π

x
l
, 0≤ x≤ l, j ∈ J (10.13)
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so that we have

(χ j,ψk) =
∫ l

0
χ j(x)ψk(x)dx =

2
l

∫ l

0
sin j π

x
l

sink π
x
l

dx = δ jk, 0≤ x≤ l, j,k ∈ J. (10.14)

(iii) The Green’s Function of Lp0,q0 u = 0, u(0) = u(l) = 0
A set of fundamental solutions of Lp0.q0 = 0, i.e., when µ = 0, is given by

u1(x) = e
p0
2 x sinh

√
Dx (10.15)

u2(x) = e
p0
2 x cosh

√
Dx (10.16)

with

D = D(p0,q0) = (
p0

2
)2 +q0

in (10.10). Based on these fundamental solutions, the Green’s functions pertinent to the BVPs Lp0.q0 u = 0, u(0) = u(l) = 0
resp. L+,p0.q0 v = 0, v(0) = v(l) = 0 are given by

G(x,s) =


G1(x,s) =

sinh
√

Dx sinh
√

D(l− s)√
Dsinh

√
Dl

exp
( p0

2
(x− s)

)
, 0≤ x≤ s≤ l,

G2(x,s) =
sinh
√

D(l− x) sinh
√

Ds√
Dsinh

√
Dl

exp
( p0

2
(x− s)

)
0≤ s≤ x≤ l,

(10.17)

resp.

G+(x,s) =


G+,1(x,s) =

sinh
√

D(l− x) sinh
√

Ds√
Dsinh

√
Dl

exp
( p0

2
(s− x)

)
, 0≤ x≤ s≤ l,

G+,2(x,s) =
sinh
√

Dx sinh
√

D(l− s)√
Dsinh

√
Dl

exp
( p0

2
(s− x)

)
0≤ s≤ x≤ l,

(10.18)

so that, because of D = D(p0,q0),

G(x,s) = G(x,s; p0,q0) (10.19)

and

G+(x,s) = GT (x,s) = G(s,x) = G(s,x;−p0,q0) (10.20)

in accordance with the fact that, for the pertinent operators, one has G+ = GT , see [18].
(iv) The Compact Operators T and T+ = T ∗ = T T

The inverse operators T := G := L−1
+ and T+ := G+ := L−1

+ are given by

(Tu)(x) = (Gu)(x) = (L−1u)(x) =
∫ l

0
G(x,s; p0,q0)u(s)ds, u ∈C([0, l],R)⊂C[0, l] (10.21)

where C([0, l],R) is the set of real-valued continuous functions on [0, l] endowed with the norm ‖ · ‖2, and

(T+u)(x) = (G+u)(x) = (L−1
+ u)(x) =

∫ l

0
GT (x,s;−p0,q0)u(s)ds, u ∈C([0, l],R) (10.22)

with the eigenvalues

λ j(T ) = λ j(G) = λ j(T T ) = λ j(GT ) =
1

µ j(L)
=

1
j2π2

l2 +D
, j ∈ J, (10.23)
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and the same eigenfunctions χ j in (10.12) resp. ψ j in (10.13). From (10.23), we have

lim
j→∞

λ j(T ) = 0. (10.24)

Further,

inf
j=1,2,...

λ j(T ) = 0, sup
j=1,2,...

λ j(T ) = λ1(T ) =
1

π2

l2 +D
=

1
π2

l2 +(
p0

2
)2 +q0

. (10.25)

Now, due to [18, Theorem 3.3, (3.14)] and since χ j(x) ∈ R, 0≤ x≤ l, one has

C([0, l],R)⊂ Nχ,R ⊂ L2(0, l).

Therefore, from (7.1) and (7.3), we obtain

0≤ (Tu,v)
(u,v)

≤ 1
π2

l2 +(
p0

2
)2 +q0

, (u,v)>> 0, u,v ∈C([0, l],R). (10.26)

(v) Special case p0 = q0 = 0

We mention that, in the particular case p0 = q0 = 0, we obtain

µ j =
j2π2

l2 , j ∈ J,

λ j =
l2

j2π2 , j ∈ J,

χ j(x) = ψ j(x) = ϕ j(x) =

√
2
l

sin j π
x
l
, 0≤ x≤ l, j ∈ J,

G(x,s) =


G1(x,s) =

x(l− s)
l

, 0≤ x≤ s≤ l,

G2(x,s) =
s(l− x)

l
, 0≤ s≤ x≤ l.

In this special case, we have

(Tu,v)
(u,v)

∈ [0; l2/π
2], (u,v)>> 0, u,v ∈C([0, l];R)). (10.27)

10.2 Computations with Computer Algebra
In the particular case p0 = q0 = 0, using the symbolic-function feature of Matlab, one obtains the following Table 10.1.
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iu iv u v (Tu,v)) (u,v) (Tu,v))/(u,v)

1 1 1 1 l3

12 l 1
12 l2

2 1 x 1 l4

24
l2

2
1
12 l2

1 2 1 x l4

24
l2

2
1
12 l2

3 1 x2 1 l5

40
l3

3
3
40 l2

2 2 x x l5

45
l3

3
1
15 l2

1 3 1 x2 l5

40
l3

3
3
40 l2

4 1 x3 1 l6

60
l4

4
1
15 l2

3 2 x2 x l6

72
l4

4
1
18 l2

2 3 x x2 l6

72
l4

4
1
18 l2

1 4 1 x3 l6

60
l4

4
1
15 l2

5 1 x4 1 l7

84
l5

5
5
84 l2

4 2 x3 x l7

105
l5

5
1
21 l2

3 3 x2 x2 l7

112
l5

5
5

112 l2

2 4 x x3 l7

105
l5

5
1
21 l2

1 5 1 x4 l7

84
l5

5
5
84 l2

6 1 1+ x 1 (l+2) l3

24
l (l+2)

2
1
12 l2

1 6 1 1+ x (l+2) l3

24
l (l+2)

2
1
12 l2

6 6 1+ x 1+ x (4 l2+15 l+15) l3

180 l + l2 ( l
3 +1) f (l) = g(l) l2

Table 10.1: Computer-Algebra Results

with

f (l) =
(4 l2 +15 l +15) l3

180(l + l2 ( l
3 +1))

=
4 l5 +15 l4 +15 l3

60 l3 +180 l2 +180 l
= l2 4 l2 +15 l +15

60 l2 +180 l +180
= g(l) l2

where

g(l) =
4 l2 +15 l +15

60 l2 +180 l +180
.

The function y = g(x) for 0≤ x≤ 10 is illustrated in Fig. 10.1.

0 2 4 6 8 10
0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

x

y=g(x) = (4 x2 + 15 x + 15)/(60 x2 + 180 x + 180)

p
0
=0, q

0
=0, u(x)=1+x, v(x)=1+x

Fig. 10.1: Curve y=g(x) for 0≤ x≤ 10

One has

lim
l→0

g(l) =
15

180
=

1
12
∈ [0;

1
π2 ]
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and

lim
l→∞

g(l) = lim
l→∞

4+ 15
l + 15

l2

60+ 180
l + 180

l2

=
4

60
=

1
15
∈ [0;

1
π2 ]

as well as

g′(x) =− x(x+2)
20(x2 +3x+3)

< 0, x > 0

so that y = g(x), x > 0 is strictly monotonically decreasing. In Fig. 10.2, the curve y = g(x) for 1≤ x≤ 3 is shown.

1 1.5 2 2.5 3
0.076

0.077

0.078

0.079

0.08

0.081

0.082

x

y=g(x)

p
0
=0, q

0
=0, u(x)=1+x, v(x)=1+x

Fig. 10.2: Curve y=g(x) for 1≤ x≤ 3

At this point, we introduce the denotation of reduced length. Apparently,

(Tu,v)
(u,v)

∈ [0;
1

π2 l2]

for all values in Table 10.1 which confirms (10.27) for p0 = q0 = 0, and for the largest eigenvalue of T , one has

λ1(T ) = max
(u,v)>>0

u∈Nχ,R,v∈Nψ,R

(Tu,v)
(u,v)

= max
(u,v)>>0

u,v∈C([0,l;R])

(Tu,v)
(u,v)

=
(T χ1,ψ1)

(χ1,ψ1)
=

l2

π2 .

Correspondingly to this formula, for u,v ∈C([0, l],R) with (u,v)>> 0, we define the reduced length lred,D=0 by

QRay :=
(Tu,v)
(u,v)

=
l2
red,D=0

π2

implying

l2
red,D=0 = QRay π

2.

For u = χ1, v = ψ1, we get back

l2
red,D=0 =

l2

π2 π
2 = l2

or

lred,D=0 = l,

as it must be. For iu = 5, iv = 1, i.e., for u(x) = x4, v(x) = 1, Table 10.1 delivers QRay = 5/84 l2 and therefore

lred,D=0 = π

√
5

84
l .
= 0.766470 l < l
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and for iu = 6, iv = 6, i.e., for u(x) = 1+ x, v(x) = 1+ x, Table 10.1 gives QRay ∈ [1/15 l2,1/12 l2] so that

lred,D=0 ∈ π[
1√
15

l;
1√
12

l] .= [0.2581988 l;0.288675 l]⊂ [0, l]

The interpretation of lred,D=0 is as follows. If the length l is replaced by lred,D=0 for the index pair (iu, iv) resp. the pair of

functions u,v ∈C([0, l],R) with (u,v)>> 0, then λ1(T ) = max
(u,v)>>0

u,v∈C([0,l];R)

(Tu,v)
(u,v)

is attained for the pair of functions pertinent to

the pair of indices (iu, iv) in Table 10.1.

10.3 Numerical Computations
If p0 6= 0 or q0 6= 0, then the results obtained by the Computer Algebra using the symbolic-function feature of Matlab get
complicated. So, in this subsection, we use numerical integration methods to compute the Rayleigh quotients (Tu,v)/(u,v).
For the computation of

(Tu)(x) =
∫ l

0
G(x,s)u(s)ds =

∫ x

0
G2(x,s)u(s)ds+

∫ l

x
G1(x,s)u(s)ds,

we employ the Matlab routine dblquad, and for (Tu,v) =
∫ l

0(Tu)(x)v(x)dx as well as (u,v) =
∫ l

0 u(x)v(x)dx the Matlab routine
quadl that is based on the Simpson rule.

As to the reduced length lred,D for the general case when D = ( p0
2 )2 +q0 is not necessary equal to zero, we depart from the

formula

λ1(T ) = max
(u,v)>>0

u∈Nχ,R,v∈Nψ,R

(Tu,v)
(u,v)

=
1

π2

l2 +D
=

l2

π2 +Dl2

since the maximum is attained for u = χ1 ∈C([0, l];R)⊂ Nχ,R and v = ψ1 ∈C([0, l];R)⊂ Nχ,R. In analogy to this formula,
we define

QRay =
(Tu,v)
(u,v)

:=
l2
red,D

π2 +Dl2
red,D

leading to

l2
red,D = QRay (π

2 +Dl2
red,D).

This implies

l2
red,D (1−DQRay) = π

2 QRay

or

l2
red,D = π

2 QRay

1−DQRay

leading to

lred,D = π

√
QRay√

1−DQRay
= π

√
(Tu,v)
(u,v)√

1−D (Tu,v)
(u,v)

.

Special Case: u = χ1, v = ψ1

In this case, we obtain

QRay =
(T χ1,ψ1)

(χ1,ψ1)
= λ1 =

l2

π2 +Dl2 =
l2
red,D

π2 +Dl2
red,D
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implying

lred,D = l,

as it must be. In order to test the numerical computations, we begin with the special case p0 = q0 = 0 . The pertinent

computations for y = (Tu,v)/(u,v) 1
l2 with u(x) = 1+ x, v(x) = 1+ x, 1 ≤ x ≤ 3 deliver the same numerical values as for

y = g(l), 1≤ l ≤ 3 in Table 10.2. This is illustrated in Fig. 10.3.

1 1.5 2 2.5 3
0.076

0.077

0.078

0.079

0.08

0.081

0.082

y=(Tu,v)/(u,v)⋅ 1/l2

l

p
0
=0, q

0
=0, u(x)=1+x, v(x)=1+x

Fig. 10.3: Curve y = ((Tu,v)/(u,v))/l2 for 0≤ l ≤ 3

From this, one can expect that the numerical computations for the other pairs u,v of functions are reliable.

For p0 = 0, q0 = 1 and u(x) = 1, v(x) = 1 , we have computed a series of variants for l = 1.0(0.1)3.0 given in Table
10.2.

k l (Tu,v)
(u,v))

(Tu,v)
(u,v))

1
l2

1
π2+Dl2

lred,D
lred,D

l

1 1.000000 0.083334 0.08333422 0.052995 0.947231 0.947231
2 1.100000 0.100834 0.08333422 0.052995 1.052045 0.956405
3 1.200000 0.120001 0.08333422 0.052995 1.160117 0.966764
4 1.300000 0.140834 0.08333387 0.052995 1.271937 0.978413
5 1.400000 0.163334 0.08333358 0.052995 1.388071 0.991480
6 1.500000 0.187501 0.08333358 0.052995 1.509175 1.006117
7 1.600000 0.213334 0.08333350 0.052995 1.636004 1.022503
8 1.700000 0.240834 0.08333350 0.052995 1.769458 1.040857
9 1.800000 0.270000 0.08333346 0.052995 1.910604 1.061447
10 1.900000 0.300834 0.08333346 0.052995 2.060739 1.084599
11 2.000000 0.333334 0.08333346 0.052995 2.221444 1.110722
12 2.100000 0.367501 0.08333346 0.052995 2.394687 1.140327
13 2.200000 0.403334 0.08333346 0.052995 2.582953 1.174070
14 2.300000 0.440834 0.08333346 0.052995 2.789440 1.212800
15 2.400000 0.480001 0.08333346 0.052995 3.018349 1.257645
16 2.500000 0.520834 0.08333341 0.052995 3.275340 1.310136
17 2.600000 0.563334 0.08333341 0.052995 3.568273 1.372413
18 2.700000 0.607501 0.08333341 0.052995 3.908442 1.447571
19 2.800000 0.653334 0.08333341 0.052995 4.312825 1.540295
20 2.900000 0.700834 0.08333341 0.052995 4.808408 1.658072
21 3.000000 0.750001 0.08333341 0.052995 5.441409 1.813803

Table 10.2: Computational Results for p0 = 0, q0 = 1, u(x) = 1, v(x) = 1

For p0 = 0, q0 = 1 and u(x) = 1+ x, v(x) = 1+ x , we have computed a series of variants for l = 1.0(0.1)3.0 given in
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Table 10.3. This is illustrated in Fig. 10.4.

k l (Tu,v)
(u,v))

(Tu,v)
(u,v))

1
l2

1
π2+Dl2

lred,D
lred,D

l

1 1.000000 0.080953 0.08095276 0.052995 0.932388 0.932388

2 1.100000 0.097584 0.08064818 0.052995 1.033086 0.939169

3 1.200000 0.115702 0.08034841 0.052995 1.136372 0.946976

4 1.300000 0.135292 0.08005448 0.052995 1.242657 0.955890

5 1.400000 0.156344 0.07976723 0.052995 1.352407 0.966005

6 1.500000 0.178846 0.07948727 0.052995 1.466148 0.977432

7 1.600000 0.202790 0.07921501 0.052995 1.584482 0.990301

8 1.700000 0.228167 0.07895064 0.052995 1.708107 1.004769

9 1.800000 0.254969 0.07869424 0.052995 1.837836 1.021020

10 1.900000 0.283189 0.07844575 0.052995 1.974631 1.039279

11 2.000000 0.312821 0.07820516 0.052995 2.119642 1.059821

12 2.100000 0.343858 0.07797231 0.052995 2.274262 1.082982

13 2.200000 0.376296 0.07774703 0.052995 2.440198 1.109181

14 2.300000 0.410129 0.07752910 0.052995 2.619579 1.138948

15 2.400000 0.445354 0.07731832 0.052995 2.815102 1.172959

16 2.500000 0.481965 0.07711445 0.052995 3.030249 1.212100

17 2.600000 0.519961 0.07691725 0.052995 3.269615 1.257544

18 2.700000 0.559336 0.07672649 0.052995 3.539424 1.310898

19 2.800000 0.600089 0.07654194 0.052995 3.848361 1.374415

20 2.900000 0.642216 0.07636335 0.052995 4.209008 1.451382

21 3.000000 0.685714 0.07619049 0.052995 4.640441 1.546814

Table 10.3: Computational Results for p0 = 0, q0 = 1, u(x) = 1+ x, v(x) = 1+ x
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Fig. 10.4: Curve y = ((Tu,v)/(u,v))/l2 for 0≤ l ≤ 3

10.4 Computational Aspects
In this subsection, we say something about the used computer equipment, the computational times, and the Matlab numerical
integration programs quadl and dblquad.

(i) As to the computer equipment, the following hardware was available: an Intel Core 2 Duo Processor at 3166 GHz, a 500
GB mass storage facility, and two 2048 MB high-speed memories. As software, for the computations, we used Matlab Version
7.11.

(ii) The computation time t of an operation was determined by the command sequence t1 = clock;operation; t = etime(clock, t1).
It is put out in seconds rounded to four decimal places. For the computation of the values in Table 10.2, the computation time
was t = 2.3400s.

(iii) The double integrals I1 := (Tu,v)1 :=
∫ l

0
∫ l

x G1(x,s)u(s)v(x)dsdx and I2 := (Tu,v)2 :=
∫ l

0
∫ x

0 G2(x,s)u(s)v(x)dsdx
are computed by the Matlab commands

I1 = dblquad(@(x,s)G1uv(x,s).∗ (x <= s),0, l,0, l, [],@quadl);

and

I2 = dblquad(@(x,s)G2uv(x,s).∗ (s <= x),0, l,0, l, [],@quadl);

where

y = G1uv(x,s) = G1(x,s)∗u(s)∗ v(x)
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and

y = G2uv(x,s) = G2(x,s)∗u(s)∗ v(x)

are defined in corresponding m-files. The quantity (Tu,v) is obtained as the sum of I1 and I2. The default absolut tolerance for
quadl is tol = 1.0e−6.

The scalar product (u,v) is computed by the Matlab command

uv = quadl(@(t), f uv(t),0, l);

where

y = f uv(t) = u(t).∗ v(t);

is defined in an associated m-file. Here, it is of interest to note that this command worked correctly for all function pairs
u,v in Table 10.2 except for the function pair u(x) = 1, v(x) = 1. It does neither work if one replaces u(x) = 1, v(x) = 1 by
u(x) = x0, v(x) = x0, but it works correctly if one choose as replacements u(x) = x+1− x, v(x) = x+1− x. This is, of course,
a shortcoming of the program and should be remedied by the company Mathworks.

10.5 Examples of Buckling Problems in Elastomechanics
In this subsection, we use some verbatim passages from [28].

(i) The Euler Column
As a simple example of a problem from Eleastomechanics, we choose the buckling of a slender elastic bar of length l with

hinged ends, also called Euler column, see [28, Section 2.1, pp. 46-49] and [23, Section 7.2, pp. 218-226]. We assume that the
bar with constant cross-section is compressed by a centrically applied force F . We further assume that the unloaded bar is
exactly straight. When the critical force Fcrit is applied, besides the undeformed shape, there exists a neighbouring shape with
lateral deflection w 6= 0, see Fig. 10.5.

Fig. 10.5: Euler Buckling Column

In order to determine Fcrit , it is necessary to set up the equilibrium conditions for the deflected shape, i.e., for the deformed
bar. (Hereby, the change of the length can be neglected.) If one cuts the bar at the place x (Fig.10.5 (c)), then from the
equilibrium of the bending moment about the left end taken counterclockwise for the deformed bar, one obtains

x
0 : M−F w = 0. (10.28)

Here, we have taken into account that, under horizontal force, there is no vertical bearing reaction. Substituting this in the law
of elasticity −EI w′′ = M for the shearless bending bar leads to

−EI w′′ = F w. (10.29)

With the abbreviation

µ =
F
EI

, (10.30)
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the buckling equation reads

−w′′ = µ w. (10.31)

The boundary conditions for the hinges at the ends have the form

w(0) = w(l) = 0. (10.32)

The BEVP consisting of (10.31) and (10.32) has the eigenvalues

µ = µ j = j2 π2

l2 , j = 1,2, . . . (10.33)

and the eigenfunctions read

χ j(x) = ψ j(x) = ϕ j(x) =

√
2
l

sin j π
x
l
, j = 1,2, . . . . (10.34)

As already found in Subsection 10.1, the Green’s function G(x,s) = G(x,s, p0→ 0,q0→ 0) turn into

G(x,s) =


G1(x,s) =

x(l− s)
l

, 0≤ x≤ s≤ l,

G2(x,s) =
s(l− x)

l
, 0≤ s≤ x≤ l,

so that the largest eigenvalue is

λ1 =
l2

π2 .

In [23, p.223, Fig. 7/5], the critical forces for other boundary conditions such as clamped end - hinged end can be found.
(ii) Some References to Other Problems of Mathematical Physics and Engineering
Many examples for Eigenvalue Problems that can be treated by the methods of the paper may be found in the classical

books [ 4],[ 5], [20], and [28].
In [ 4, Chapter I, pp. 5-39], one finds examples from the area of Engineering Mechanics. Further, there is a list of examples

at the end of this book, cf. pages 406-456.
In [ 5, Chapter V, pp. 234-343], one finds vibratory and eigenvalue problems of Mathematical Physics.
The book [20, Chapter V, pp. 168-221] contains eigenvalue problems with many examples from Elastomechanics.
Books on the Theory of Elastic Stability such as [28] written primarily for engineers are full of examples from this field.

11. Changes for Other Arrangements of the Eigenvalues
(i) Changes for the Real Parts of the Eigenvalues

An arrangement of the eigenvalues as in (4.1) is possible, for instance, when all real parts are positive. However, such an
arrangement is not possible if there are infinitely many eigenvalues with negative real parts and infinitely many eigenvalues
with positive real parts.

In the general case that contains the last-mentioned one we proceed similarly as in [26, Section 15] for symmetric compact
operators in Hilbert space: So, the sequence of eigenvalues and eigenvectors will be numbered such that eigenvalues with
positive real parts have positive indices and eigenvalues with negative real parts have negative indices. Accordingly, there are
sequences of numbers J+, J− whereby the finite resp. infinite sequence of eigenvalues can be arranged in the form

Reλ−1 ≤ Reλ−2 ≤ . . .Reλ−k ≤ . . . < 0≤ . . .≤ Reλ j . . .≤ Reλ2 ≤ Reλ1 (11.1)

for j ∈ J+, k ∈ J−. For the index sequences J+, J−, it may happen that J+ = /0, J+ = (1,2, . . . ,m+), or J+ = (1,2, . . .) and
J− = /0, J− = (1,2, . . . ,m−), or J− = (1,2, . . .), depending on whether no, finitely many, or infinitely many eigenvalues of T
with positive real resp. negative real parts exist. Herewith, the formula (3.2) turns into

Tu = ∑
j∈J+

λ j (u,ψ j)χ j + ∑
k∈J−

λ−k (u,ψ−k)χ−k (11.2)
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and the formula (3.3) into

Pu = ∑
j∈J+

(u,ψ j)χ j + ∑
k∈J−

(u,ψ−k)χ−k (11.3)

Further, the formulas (3.14), (3.15), (3.17) respectively become

(Tu,v) = ∑
j∈J+

λ j(u,ψ j)(χ j,v)+ ∑
k∈J−

λ−k(u,ψ−k)(χ−k,v), (11.4)

u, v ∈ H,

(u,v) = (Pu,v) = ∑
j∈J+

(u,ψ j)(χ j,v)+ ∑
k∈J−

(u,ψ−k)(χ−k,v), (11.5)

u, v ∈ H,

Re(Tu,v) = ∑
j∈J+

Reλ j(u,ψ j)(χ j,v)+ ∑
k∈J−

Reλ−k(u,ψ−k)(χ−k,v), (11.6)

u ∈ Nχ,R, v ∈ Nψ,R.
At this point, we make the important remark that the eigenvalues of −T are obtained by multiplying the eigenvalues of

T by −1. Therefore, it is sufficient to characterize the positive real parts of the eigenvalues by extremal principles since the
corresponding statements on the negative real parts of the eigenvalues are obtained by applying the formulas for the operator
−T resp. the pertinent expression Re(−Tu,v)

(u,v) .
It is left to the reader to show that the formulas in Theorems 4.1 - 4.4 remain valid for J+ instead of J for the arrangement

(11.1).

(ii) Changes for the Imaginary Parts of the Eigenvalues
As to the imaginary parts of the eigenvalues, considerations similar to those in (i) have to be taken into account.

(iii) Moduli of the Eigenvalues
It is not necessary to make any changes in the arrangement (6.1) for the moduli of the eigenvalues.

12. Conclusion and Outlook to Future Work
In this paper, it could be shown that generalized Rayleigh-quotient formulas for the real parts, imaginary parts, and moduli of
simple eigenvalues of nonsymmetric compact operators can be derived that resemble corresponding results for diagonalizable
matrices. Since the underlying Hilbert space is assumed to be infinite-dimensional, the proofs differ, in part, significantly from
those in the finite-dimensional case of matrices. For instance, in the proof of Theorem 4.2, the denotation of codimension of a
subspace of a Hilbert space was necessary that can be avoided in the finite-dimensional case, cf. [26, Section 15, pp.84-85].

In a subsequent paper, the results of this paper will be extended to defective, more precisely, to not necessarily simple
eigenvalues of nonsymmetric compact operators.
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