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Abstract. Gaussian distribution is a common choice when dealing with
symmetric data. However, other alternatives must be considered in ap-
plications with high tail-weight. One option is the randomization of the
scale parameter for the Gaussian distribution, enabling a more flexible
model for the tails albeit maintaining symmetry. Although any positive
random variable can be used as a random scale parameter, Pareto distri-
bution is a suitable choice in order to increase variance and tail-weight.
Therefore, the aim of this work is to study the Pareto randomization
of the scale parameter for symmetric distributions, in particular for the
Gaussian distribution. Estimation problem is tackled and a simulation
study is discussed. Finally, an application concerning the directions cho-
sen by ants after a stimulus is provided. The results reveal that the
proposed methodology works well both on simulated and real data.

Keywords: Scale Parameter Randomization · Heavy-tailed Distribu-
tions · Parameters Estimation · Gaussian Distribution.



44 M.Felgueiras et al.

1 Introduction

Common distribution functions F usually have a real location parameter µ and a
positive scale parameter σ, that is, F (x|µ, σ). In order to obtain a larger variabil-
ity, useful when analysing some phenomenons [9], it might be advantageous to
randomize the scale parameter. Some practical applications concern Log-returns
analysis for financial data [13], natural phenomena like the eggs laid by some
species or the direction followed by animals after some stimulus [2, 7, 8], or the
energy released by the greater earthquakes [4, 6, 12].
A scale mixture can be seen as the distribution of the random variable (r.v.)
Y = ΘX, where X and Θ are independent and absolutely continuous r.v., with
support SX = R and SΘ =]0,∞[. In fact, any positive distribution is a possible
choice for Θ. However, to ensure that Y has an higher variance than X, which
is our goal, we will restrict the study to the cases where SΘ =]1,∞[.
The Pareto distribution with density function

fΘ (θ) = αθ−α−1, θ ≥ 1, α > 0, (1)

is a suitable option for Θ distribution for several reasons. First, it fulfils the
restriction SΘ =]1,∞[. Second, Pareto’s distribution is heavy tail-weighted (note
that the k-th moment only exists when k < α) implying that the r.v. Y has
a higher kurtosis than the r.v. X. Third, Pareto’s distribution has a simple
analytical form, leading to straightforward calculus of Y densities. As we will
see later, in several situations it is possible to achieve a closed form expression
for the Y distribution. The scale mixture can also be seen as a slash distribution,
since

Y = ΘX =
X

Θ−1

where Θ−1 ∼ Beta(α, 1). When α = 1 we get the standard slash distribution

since Θ−1 ∼ U(0, 1). Also, note that Θ−1 d
=U1/α where U ∼ U(0, 1). This

duality was already explored in [5, 13]. There are many examples concerning
the application of slash distributions in real datasets, that can also be seen as
scale mixtures. For instance, a recent work [1] uses a slash logistic distribution
when modelling glass fiber strength and the nickel concentration in soils. The
α parameter works as a tuning parameter since when α < 1 the mixture has
heavier tail-weight than the slash distribution, and when α > 1 we have the
reverse situation. The probability density function of the scale mixture Y = ΘX
can be written as

fY (y) =

∫ ∞

1

αθ−α−2fX
(
y
θ

)
dθ, (2)

originating explicit densities based in the incomplete gamma function

γ (a, y) =

∫ y

0

ta−1e−tdt. (3)

For some distributions of the r.v. X, the mixture densities are presented in Table
1 (cf. [5]).
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Table 1. Some Pareto scale mixtures densities

Distribution Density Mixture density

X ∼ Gaussian (0, 1) fX (x) =
1√
2π

e
−
x2

2 fY (y) =
α20.5α−1γ

(
α+1
2

, y2

2

)
√
π |y|α+1 , y ̸= 0

2−
3+β
2 exp

[
−0.5 |x|

2
1+β

]
Γ
(
3+β
2

) , − 1 < β ≤ 1 fY (y) =

α(1+β)γ

β+1
2

(α+1),0.5|y|
2

1+β


2
−α

β+1
2 4Γ

(
3+β
2

)
|y|α+1

, y ̸= 0

X ∼ Cauchy(0, 1) fX (x) =
1

π

1

1 + x2 fY (y) =
αy−α−1

π

∫ y

0

zα

1 + z2
dz, y ̸= 0

X ∼ Gama(β, 1) fX (x) =
1

Γ (β)
xβ−1e−x fY (y) =

αy−α−1

Γ (β)
γ (α+ β, y) , y > 0

X ∼ Beta(p, q) fX (x) =
(1− x)q−1

x1−pB(p, q)
fY (y) =


αB (p+ α, q, y)

yα+1B(p, q)
, 0 < y < 1

αB (p+ α, q)

yα+1B(p, q)
, y ≥ 1

X ∼ Weibull (β, 1) fX (x) = βxβ−1e−xβ

fY (y) =
αγ
(
αβ−1 + 1, yβ

)
yα+1

, y > 0

X ∼ Pareto (β) fX (x) = βx−β−1 fY (y) =


α2y−α−1 ln y, α = β, y > 0

αβ
(
y−α−1 − y−β−1

)
β − α

, α ̸= β, y > 0

2 Moments and Tail-weight

Mixture moments and other properties can be found in [5]. A key result states that
mixture moments can only exist when k < α. Hence, the necessary condition for
the existence of Pareto’s moments is also required for the existence of the mixture’s
moments, even if the mean value of X, E(X), is equal to 0. The most used tail-weight
measure, the kurtosis, denoted as β2, is given by

β2 (Y ) = β2 (X)
(α− 2)2

α (α− 4)
, α > 4. (4)
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Assuming that E (X) = 0 (otherwise a location transformation can be performed) and
that β2 (X) exists, then β2 (Y ) > β2 (X). Thus, the mixture can be used to increase
the tail-weight of the original X distribution.

3 Symmetric Mixtures

The main focus of this work is symmetric mixtures (specially Gaussian mixtures),
that is, the ones generated by a symmetric r.v. X. Let us consider, without loss of
generalization, that E (X) = 0 (otherwise perform a location shift). In this situation it
is clear that the mixture skewness coefficient, if exists, will be β1 (Y ) = 0. From now
on, we will assume that we are dealing with a mixture that can be written as

W = µ+ σY = µ+ σΘX, (5)

where µ and σ are respectively the location and the scale parameters of the mixture,
Θ ∼ Pareto (α) and X is an absolutely continuous random variable, symmetric with
E (X) = 0.

3.1 Gaussian Mixtures

When X ∼ Gaussian (0, 1) the mixture defined in (5) is infinitely divisible [11]. More-
over, if µ = 0 and σ = 1 in equation (5), the mixture density is (cf. Table 1)

fW (w) = α20.5α−1 |w|−α−1 π−0.5γ

(
α+ 1

2
,
w2

2

)
, w ̸= 0. (6)

For instance, when α = 1 we get

fW (w) =
1− e

−
w2

2
√
2πw2

, w ̸= 0, (7)

and when α = 3

fW (w) =
3
(
2−

(
2 + w2

)
e−w2/2

)
√
2πw4

, w ̸= 0. (8)

Figure 1 presents some possible densities for the mixture defined in equation (5), for
X ∼ Gaussian (0, 1), µ = 0, σ = 10 and α ∈ {.25, .5, .75, 1, 1.5, 2}. Thus, the mix-
ture density is closer to the Gaussian density as α increases, and more far apart as α
decreases. It is evident that α parameter works in a similar way as the n parameter
in a t−Student distributions. However, in this situation, the W distribution is heav-
ier tail-weighted for small values of α. From equation (4), it is straightforward that
limα→∞ β2(W ) = β2(X) = 3.

3.2 Estimation

Maximum likelihood estimator for α is obtained by solving the maximum likelihood
equation

d

dα
lnL (α|w) = 0
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Fig. 1. Densities for the mixtures models where, from lower f(0) (α = 0.25) to higher
f(0) (α = 2), α ∈ {.25, .5, .75, 1, 1.5, 2}.

in order to α, where

L (α|w) =

n∏
i=1

fW (wi)

is the likelihood function. From equation (6),

L (α|w) =

n∏
i=1

α20.5α−1 |wi|−α−1 π−0.5γ

(
α+ 1

2
,
w2

i

2

)
and therefore the equation to be solved is

d

dα
ln

(
n∏

i=1

α20.5α−1 |wi|−α−1 π−0.5γ

(
α+ 1

2
,
w2

i

2

))
= 0

that doesn’t have an explicit solution. Numerical analysis techniques can be applied
to obtain point estimates for a particular dataset. Nevertheless, in this work we will
use other methods that allow to obtain explicit estimators that can be used for any
dataset.

Estimation of µ Note that the mixture median, denoted by Me, is defined as
P (W < Me) = 0.5. Therefore, Me = µ and an estimator for µ can be

µ̂ = me, (9)

where me represents the sample median. Using moments estimator, and assuming
α > 1, E (W ) = µ+ σE (Θ)E (X) = µ and another estimator for µ can be

µ̂ = X, (10)

where X represents the sample mean.
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Estimation of σ and α Recall that the k-th moment of the mixture can only
exist when k < α, independently of the distribution of X. Therefore, as we are esti-
mating two more parameters, we must have α > 3 to use the moments method when
estimating (µ, σ, α), or at least α > 2 if µ is estimated using equation (9). This is a
penalizing restriction to the model, because our main purpose is to increase variance
and tail-weight, which is achieved for small values of α, mainly α ∈ (0, 2]. However, it
is possible to apply a data transformation that will allow the estimation of (µ, σ, α) by
the moments method. The transformed r.v. W ′ is defined as in [3] by

W ′ = ln |W − µ| = lnσ + lnΘ + ln |X| =
(
σ′ +Θ′)+X ′ = Θ′′ +X ′. (11)

W ′ moments exist for the majority of distributions (excluding when X is a super heavy
tailed distribution, like the log-Pareto). Now, it is important to check the distributions
of Θ′′ and X ′. Θ′′ has a shifted exponential distribution, that is

Θ′′ ∼ Exp
(
σ′, α

)
, (12)

where
fΘ′′ (x) = αe−α(x−σ′)

for x > σ′. Thence, Θ′′ moments are
E (Θ́́) = σ′ +

1

α
= lnσ +

1

α

V ar (Θ́́) =
1

α2
.

(13)

Checking now X ′ distribution, note that its density function is given by

fX (x) = e
x−

e2x

2 +

√
2

π
x, (14)

with x ∈ R. X ′ moments can be found using standard formulas and equation (14),
E (X́) = −γ + ln 2

2

V ar (X́) =
π2

8

(15)

where γ represents the Euler constant, γ ≈ 0.5772. Finally, for W ′ moments
E (W )́ = E (Θ́́) + E (X ′) = lnσ +

1

α
− γ + ln 2

2

V ar (W ′) = V ar (Θ́́) + V ar (X ′) =
1

α2
+

π2

8

(16)

which can be write as 
lnσ = E (W )́− 1

α
+

γ + ln 2

2

α2 =

[
V ar (W ′)− π2

8

]−1
(17)
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where V ar (W ′) represent W ′ variance. The moments estimators will be
α̂ =

[
S′2 − π2

8

]−1/2

σ̂ = exp

[
W ′ − α̂−1 +

γ + ln 2

2

] (18)

where W ′ and S′2 represent the sample mean and the sample variance, respectively.

4 Simulation study

The performance of the estimators defined on equations (9) and (18) was verified
through a simulation study.

Table 2. Simulation results of µ, σ and α estimation (106 replicas) and samples with
dimension n = 100.

n = 100
µ = 10, σ = 1 µ = 10, σ = 10

α Mean SD MSE Mean SD MSE

µ estimation
0.25 10.00 .6757 .4566 9.998 6.762 45.72
0.50 10.00 .3829 .1466 10.00 3.820 14.59
0.75 10.00 .2938 .0863 10.00 2.940 8.642
1.00 10.00 .2509 .0629 10.00 2.511 6.303
1.50 10.00 .2083 .0434 10.00 2.084 4.343
2.00 10.00 .1873 .0351 10.00 1.873 3.508

σ estimation
0.25 1.083 .4594 .2180 10.83 4.588 21.74
0.50 .9788 .2878 .0833 9.787 2.879 8.332
0.75 .9514 .2752 .0781 9.515 2.756 7.834
1.00 .9423 .2986 .0925 9.426 2.980 9.213
1.50 .9323 .3323 .1150 9.330 3.324 11.50
2.00 .8951 .3088 .1064 8.951 3.087 10.63

α estimation
0.25 .2557 .0361 .0013 .2557 .0361 .0013
0.50 .5038 .0798 .0064 .5038 .0798 .0064
0.75 .7473 .1623 .0264 .7475 .1600 .0256
1.00 1.012 .5789 .3353 1.012 .6950 .4832
1.50 1.719 2.671 7.185 1.720 2.558 6.589
2.00 2.287 5.126 26.36 2.278 4.422 19.64

In this study, each simulated sample had dimension n = 100 (Table 2) or n = 1000
(Table 3), and the parameters values were µ = 10, σ ∈ {1, 10} and w ∈ {0.25, 0.50, 0.75, 1, 1.5, 2}.
For each combination 106 replicas were simulated and the parameters were estimated
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Table 3. Simulation results for µ, σ and α estimation (106 replicas) and samples with
dimension n = 1000.

n = 1000
µ = 10, σ = 1 µ = 10, σ = 10

α Mean SD MSE Mean SD MSE

µ estimation
0.25 10.00 .1994 .0397 10.00 1.991 3.964
0.50 10.00 .1191 .0141 10.00 1.189 1.414
0.75 10.00 .0925 .0086 10.00 .9253 .8563
1.00 10.00 .0793 .0063 10.00 .7920 .6268
1.50 10.00 .0660 .0044 10.00 .6603 .4360
2.00 10.00 .0595 .0035 10.00 .5938 .3527

σ estimation
0.25 1.002 .1375 .0189 10.02 1.375 1.890
0.50 .9878 .0896 .0082 9.882 .8951 .8152
0.75 .9820 .0846 .0075 9.819 .8466 .7493
1.00 .9778 .0893 .0085 9.777 .8927 .8468
1.50 .9719 .1071 .0123 9.719 1.072 1.227
2.00 .9704 .1312 .0181 9.704 1.313 1.812

α estimation
0.25 .2503 .0114 .0000 .2503 .0114 .0000
0.50 .4985 .0246 .0006 .4986 .0246 .0006
0.75 .7437 .0438 .0020 .7436 .0438 .0020
1.00 .9853 .0749 .0058 .9853 .0748 .0058
1.50 1.464 .2024 .0423 1.464 .2028 .0424
2.00 2.000 1.257 1.579 1.999 .9792 .9589

using equations (9) and (18). The results can be seen in Table 2 and Table 3.
When analysing Table 2, µ estimative seems clearly unbiased, with larger standard
deviation (SD) and mean square error (MSE) when σ = 10 and when α decreases.
This was expected because the distribution is heavier tail-weighted when α is small,
and variance increases with σ. As for σ estimation, there is a slight bias (for α ≥ 0.5
it is always negative) but with almost constant levels of SD and MSE. Finally, for α
estimation, the bias is also low, but with larger SD and MSE for higher values of α.
This is natural because the SD and MSE increase with the parameter. The results
displayed in Table 3 are quite similar to the ones observed in Table 2. Bias, SD and
MSE decrease as n increases. In general, the performance of the estimators is quite
good and, therefore, the introduced procedure can be applied in practical issues.

5 Modelling the directions chosen by ants

To exemplify the Gaussian mixture model, this subsection present an “almost symmet-
rical” data set modelling. In the R-package circular - fisher B7 data set are available
the directions chosen by 100 ants in response to an evenly illuminated black target. If
the ants react positively to the stimulus, as expected, they should go directly to the
the target in an 180 degrees movement. This data set is also available in [7] and has
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its origins in [8]. Some more or less complex models were proposed by several authors
[2, 8, 10] to deal with this kind of problem, but often the adjusted models reveal some
low quality fit. Since the data is rounded to 10 grades, we summed a random uniform
number to each observation, to avoid excessive probabilities accumulations points that
would lead to a small p-value when using the K-S test (similar to the procedure indi-
cated by [10]). We used as estimators for (µ, σ, α) the ones indicated in equations (9)
and (18). The obtained estimates were µ̂ = 181.98, σ̂ = 18.056 and α̂ = 1.265. The K-S
test yielded p-value= 0.6560, implying that the fitted model should not be rejected.
When analysing Figure 2, the model seems well fitted to the data, despite a slight S
shape in the qq-plot.

-2 2 4 6
Observed Quantiles

-2

2

4

6

Expected Quantiles

Fig. 2. qq-plot for the fitted Gaussian mixture.

6 Conclusions

Modelling heavy-tailed data is always a difficult process, because standard methods
tend to give more importance to the central part of the data and less to the most
extreme observations. For symmetrical data, we proposed a model that uses a Gaussian
distribution as the starting point, but with a random scale parameter based on the
Pareto distribution. To increase flexibility, fixed location and scale parameters were
also included leading to a three parameter model. The estimation procedure based on
median and moments was validated under simulation, and latter applied to a real data
set. The achieved results are quite encouraging as the proposed estimators are easy to
apply and revealed good fit to both simulated and real data

7 Discussion and Future Work

Despite the good results that were achieved with the proposed estimation method, it
would be a step forward to develop more robust estimation methods. Also, instead of us-
ing Gaussian distribution as the starting point, other distributions could be considered,
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regardless of its symmetry. Ideally, a general estimation method that is independent
from the starting distribution should be obtained and evaluated on simulated data.
Finally, the development of confidence intervals for the mixture parameters would be
a plus.
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