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Abstract: In the present study, the quintic-septic nonlinear modulation of a longitudinal wave 

propagating to contribute the dispersive and higher-order nonlinear effects in a generalized 

cubically nonlinear elastic medium is considered. In recent work, for the modulation of a 

longitudinal wave, a cubic nonlinear Schrödinger equation with a third-order dispersive term is 

obtained by using a multi-scale expansion of quasi-monochromatic wave solutions. The third- 

quintic-septic longitudinal wave, by choosing specific values of material constants and wave 

number for which some coefficients of nonlinear terms are disappeared. In this case, a new 

perturbation expansion is needed to balance nonlinear effects with dispersive effects. As a 

result, a quintic-septic nonlinear Schrödinger equation with a third-order dispersion term is 

obtained as a new model that balances quintic-septic nonlinearity with a third-order dispersion 

term. 

 

Keywords: Nonlinear Schrödinger Equations, Nonlinear Wave Propagation, Generalized Elastic 

Medium  

 

Üçüncü Mertebe Dispersiyon Terimli Beşli-Yedili Doğrusal Olmayan Schrödinger 

Denklemi  
 

Öz: Bu çalışmada, genelleştirilmiş, kübik doğrusal olmayan elastik bir ortamda yayılan boyuna 

bir dalgada, yüksek mertebeden dağılım ve doğrusal olmayan etkilerin katkılarını incelemek için 

beşli-yedili doğrusal olmayan modülasyonu düşünülmektedir. Son zamandaki çalışmalarda, 

hemen hemen tek dalga sayılı dalga çözümlerinin çok ölçekli açılımı kullanılarak boyuna bir 

dalganın modülasyonu için üçüncü mertebeden dispersiyon terimli kübik, doğrusal olmayan 

Schrödinger denklemi elde edildi. Elde edilen denklemde bazı doğrusal olmayan terimlerin 

katsayılarının yer almadığı belirli bir malzeme sabiti ve dalga sayısı değerleri seçilirse, boyuna 

bir dalganın davranışını tanımlamak için, doğrusal olmayan etkileri dağılım etkilerle 

dengelendiği yeni bir pertürbasyon açılımına ihtiyaç vardır. Sonuç olarak, üçüncü dereceden 

dağılım terimli beşli-yedili doğrusal olmayan Schrödinger denklemi, beşli-yedili doğrusal 

olmayan etkinin üçüncü mertebeden dağılım terimiyle dengelendiği yeni bir model olarak elde 

edilir. 

 

Anahtar kelimeler: Doğrusal Olmayan Schrödinger Denklemleri, Doğrusal Olmayan Dalga 

Yayılımı, Genelleştirilmiş Elastik Ortam 
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1. Introduction 

Nonlinear Schrödinger (NLS) type equations describe the long-time behavior of 

modulated wave propagation in various nonlinear and dispersive media such as fluid, 

optical, elastic, acoustic, plasma, etc. The NLS equation has solutions called solitons in 

which the dispersive and nonlinear effects of the medium are balanced [1, 2]. Solitons 

are localized wave solutions that can retain their shape only by phase shift when they 

make elastic collisions. This type of wave solution was first observed in 1834 by John 

Scott Russell in a narrow and shallow channel in Scotland. Due to this special structure 

of soliton, the derivation of partial differential equations describing nonlinear and 

dispersive wave propagation in such a medium is one of the important areas in 

nonlinear scientific research. In this study, the modulation problem for the complex 

amplitude of (1+1) waves propagating in a homogeneous, infinite, dispersive, and cubic 

nonlinear elastic medium is considered to examine the contributions of quintic-septic 

nonlinear and third-order dispersive effects in a wave motion. 

Erofeyev and Potapov obtained the governing equations of motion describing the 

propagation of two transverse waves and one longitudinal wave in an infinite 

homogeneous micromorphic elastic medium containing high-order displacement 

gradients and cubic nonlinear effects [3]: 
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where t  is the time variable and x  is the spatial variable in the propagation direction. In 

Equation (1), the function u  represents the longitudinal component of the displacement 

vector with the speed Lc , while v  and w  represent the transverse components with the 

velocity Tc . Additionally, the coefficients in Equation (1) are given as 
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where   and  are linear elastic constants (EC), i ’s are the second-order EC, i ’s 

are third-order EC, and , m  are the microstructure constants with the mass density 

0.  When the harmonic wave solutions 

 

 
( , , ) ( , , )

i kx t
u v w e U V W


 , (3) 

 

where  ( , , )U V W  represents the complex amplitude vector;   represents the frequency 

and k  represents the wavenumber, substitute the linear part of Equation (1), the 

dispersion relations 

  

2 2 2 2 2 4

1

2 2 2 2 2 4

2

( , ) 4 (1 ) 0,

( , ) 4 0

L T

T T

D k c k c m k

D k c k c m k

  

 

    

   
 (4) 

 

are obtained. In Equation (4), 1D  denotes the dispersion relation associated with the 

longitudinal displacement  u , whereas 2D  denotes the dispersion relation associated 

with the transverse displacements  v  and  w . Due to the dispersion relations (4), it is 

seen that the longitudinal wave and transverse waves are dispersive.   

On the other hand, the cubic NLS (CNLS) equation developed by Erwin Schrödinger in 

1927 

 

2
0t xxi u pu q u u    (5) 

 

characterizes the slowly-varying amplitude of a quasi-monochromatic wave that 

propagates in the weakly nonlinear and weakly dispersive medium [4, 5]. The function 

u  in Equation (5) denotes the envelope of the complex amplitude of the short wave. 

The CNLS equation was recently re-derived in a study examining the contribution of 

the high-order dispersive effects on the longitudinal wave modulation emitted in a 

generalized elastic medium [6]. In [6], under the assumption 1( , ) 0D k   , the 

components of the displacement vector were expanded into asymptotic power series of 

. Then 0,v  0,w   and the CNLS equation valid at the level 
3  was obtained. 

The coefficients in Equation (5) are given by 
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with  2 2 2

1(2 ,2 ) 4
Lg LD k k c c   . In Equation (6), 

Lgc is the group speed of the 

longitudinal wave. However, for fairly short pulses, the CNLS equation is not a correct 
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model of the wave motion, so higher-order dispersive effects need to be included in the 

evolution equation. Therefore, in the same study [6], the evolution equation with third-

order dispersive term valid at the level 
4  
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was also found. Then the new depend variable 
2u U     was defined to combine 

Equation (5) and Equation (7), which leads to the CNLS equation with third-order 

dispersive terms: 
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with   2

1 2 1 2( , , ) , ,q r r q r r  .  

If the coefficient of the nonlinear term in Equation (5) is zero ( 0q  ), the balance 

between the nonlinear effect and the dispersive effect in the medium will be 

disappeared. This situation occurs for the critical wave number ck  that is a solution of 

the equation 
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A new perturbation expansion is needed to examine the effect of the dropping 

nonlinearity on wave propagation around the critical wave number ck . Erbay 

investigated this problem in a fluid-filled nonlinear elastic tube, and founded the quintic 

NLS (QNLS) equation [7]: 
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This paper aims to investigate how a balance could be obtained between the third-order 

dispersion and nonlinear effects on the wave propagating in the generalized elastic 

medium when the coefficient q  of the cubic term 
2

   in Equation (9) vanishes. To 

do this, under the constraint  2 2 2

1(2 ,2 ) 4
Lg LD k k c c    with Equation (10), the new 

perturbation expansion for the variable u  near the critical wave number ck  is needed. A 

similar problem has been discussed in the literature for waves propagating in different 

media [8, 9]. 

In [8], Essamma et al., theoretically characterized the electromagnetic wave propagating 

in negative-index material by the cubic-quintic NLS (CQNLS) equation with the third-

order dispersive term: 
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In addition, on nonlinear optical waves, the CQNLS equation with third- and fourth-

order dispersive terms  
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was considered to find soliton solutions and exact solutions [10, 11], and to analyze 

modulation instability [12]. 

In [9], the cubic-quintic-septic NLS (CQSNLS) equation with third- and fourth-order 

dispersive term 
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was obtained as the model for the propagation of femtosecond optical pulses through 

fiber Bragg grating structure. Solitary wave solutions and dipole solution solutions were 

also presented in [9] and in [13], respectively. 

 

2. Material and Method 

In nonlinear wave theory, various asymptotic methods are used for the formal derivation 

of the evolution equations [14-17]. In this study, the reductive perturbation method 

[14,15] will be applied to obtain the quintic-septic NLS (QSNLS) equation with the 

third-order dispersive term in a generalized elastic medium.  The main principle of this 

method is based on understanding how the amplitudes of harmonic waves are 

modulated by a nonlinear system. Therefore, two harmonic waves  
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are considered in the linear system. The waves 1( , )u x t  and 2 ( , )u x t  have the same 

amplitude ,U  but their wavenumbers are very close to each other. Superposition of the 

harmonic waves (15) simulated in Figure 1,   
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divides the harmonic waves into two parts: a slow-varying part cos( )k x t   and a 

fast-varying part 
 i k x t

e


. That means the amplitude of the wave (16)  is modulated. 
 

 
Figure 1. Superposition of two harmonic waves 

 

At this stage, under the assumptions 1k k  and 1  , the phase of the 

amplitude is expressed as 
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Thanks to Equation (17), the slow variables  
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are introduced with k   is a small parameter and 
Lgc d dk . In this way, the 

parameter   appears to be a tool for measuring the weakness of dispersion. On the 

other hand,   will also measure the weakness of nonlinearity if the components of the 

displacement vector are written in asymptotic power series of  .  
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This study aims to derive the evolution equation that re-establishes the balance between 

nonlinear and dispersive effects of the longitudinal wave propagating in the generalized 

elastic medium around the critical wave number ck  that provides Equation (10). 

Considering that the coefficient q  of the cubic nonlinear term in Equation (9) 

disappears around ck , nonlinearity should be taken as 
1 2  instead of  (for 

simplification, the subscript c  will be omitted for the rest part of the paper.). For this 

purpose, the solution u  of the governing equations (1)  will be taken into account as the 

asymptotic series given by 
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where k x t    and . .c c  denotes the complex conjugate of the preceding expression.  

The functions (1)

1u  and (1)

2u  in Equation (19) are called the first-order longitudinal mode 

and the second-order longitudinal mode, respectively. As the longitudinal wave motion 

is considered, the transverse components  v  and w  are assumed to be a linear function 

in time t . In addition, 1( , ) 0D k   ,  2 2 2

1(2 ,2 ) 4 0,
Lg LD k k c c     1( , ) 0D n k n  , 

( 2,3, )n  , and 2 ( , ) 0, ( 1,2, )D l k l l    will be taken. 

Putting the new coordinates (18) and the expansion (19) into Equation (1) leads to a 

hierarchy of equations in half power of  . By equating the coefficients of the same 

powers, perturbation equations are obtained and then are solved to find the evolution 

equations describing the long-time behavior of the wave motion. 

 

3. Results 

In this section, the QSNLS equation with the third-order dispersive term involving the 

first- and the second-order longitudinal modes is derived. For this purpose, perturbation 

equations are first obtained by plugging the transformations (18) together with the 

asymptotic series solution (19) into the governing equation (1). Then, these perturbation 

equations are solved to drive the evolution equations for the first- and second-order 

components. Here are only presented the solutions of the perturbation equation required 

to find the evolution equations. Finally, by properly combining the first- and second-

order modes, an evolution equation containing quintic-septic nonlinear and third-order 

dispersive terms is obtained.  
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For  1/2O  , the perturbation equation is (1)

1 1( , ) 0D k u  . Recalling that 1( , ) 0D k   , 

the first-order mode (1)

1u  is an arbitrary function of the slow variables   and  . For 

order  ,  the term (2)

2u  is expressed by the first-order mode (1)

1u , as follows:      
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In the next order,  3/2O  ,  the equations  

 

  

 

2 2 3 2 (1) (1) 2 (0) (1)

1, 1 2 1 1, 1

2
3 (2) (1)* 4 (1) (1)

1 2 1 3 1 1

3
(3) 4 (1) 3 (2) (1)

1 2 3 1 1 2 1

2 8 1 ( , )

2 0,

(3 ,3 ) 6 0

Lg L Ti c c k c k m u D k u k u u

ik u u k u u

D k u k u ik u u

    

 

  

    

  

  

  (21) 

 

are obtained. By Equation (21), the second-order mode (1)

2u  remains an arbitrary 

function, and 
Lgc   is verified, that is, 

Lgc is the group velocity of the longitudinal 

waves. Meanwhile, imposing Equation (10) and Equation (20) in Equation (21) implies 
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With similar calculations, for order 
2 , the functions (2)

3u  and (4)

3u  express in terms of 

the first-order and second-order modes:   
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For 
5/2( )O  , the equation for the first-order longitudinal mode is founded by using the 

solutions of lower perturbation equations:  
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)

2

1 1, 1,

4

2

(1

1 ,

12 1 i
i

2

25
0

22 8

L
L

L
L

T

g Lg L

g L g L

ik m c k
u pu u

c cc c

k k k
u u u u u u u u

c c

u u u

u
c c

   



  



  

 


 



   










  (24) 

 

where 
 2 2 2 2 2 1

2

24

2

LL g T
p

c c c k m  



  
  .  In addition, the solution (3)

3u  expresses 

explicitly in terms of the first-order mode. 

 

  

 
 

  
 

 

)

3 2 2 2 2 2 2

1

2
2 2

6 4 2

1 2

2
(3) (1 (1)

3 1 1,

1

2 2

31 (1) (1)

1 1
2 2

1

3

1

3i 24 1

15 7 1

(3 ,3 )

(4 , 4 )
      

(3 ,3 ) (4 4

6

8 , )

L

L

L

L

g L

g L

g L T

g L

u u u
D k

D k c c

c

u u
c c D k D k

k c c c k m

c

k k
























  




  (25) 

 

To present compact form of the evolution equation (24) for the first-order mode, (0)

2,u 
 is 

calculated from the higher-order perturbation equation in the order of 
3 : 

 

   
 

 
 

2
4

(0) (1)* (1) (1) (1)* (1) (1)* (1)* (1) (1)1 1
2, 1, 1 1, 1 2 1 2 12

3

2 12
2 2

2
21 (1)

12
2 2

15

4

2
.

L
L

L

L

g L
g L

g

g L

k k
u i u u u u k u u u u u

c c c c

k c
u d

c c

  





 






 
     
  
 






 (26) 

 

The integrand of all integral is assumed to be rapidly decreasing functions of   as   

approaches to  . Now, substituting Equation (26) to Equation (24), the 

integrodifferential equation involving the first-order mode (1)

1u  is obtained: 

 

   
2 2 2

(1) (1) (1) (1) (1) (1) (1) (1)

1, 1, 1 1, 2 1 1 1 3 1 1i 0,u pu iq u q u u u q u u d


  





      (27) 

 

where the coefficients in Equation (27) are given by  
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  

     

3 2 2 2 2 2 2 24
1 11

1 2 33
2 2

2 6

2
2 2 2 2

2

24 1
, , .

5

2

L L

L L L

g L T g

g L g L g L

k c c c k m c kk
q q q

c c c c c c

  

  

  
   

  

 (28) 

 

At this stage, the integral term should be eliminated from Equation (27). Therefore, 

subtracting the (1)*

1u  multiplied of Equation (27) from its complex conjugate gives 

 

   
2 4

(1) (1)* (1) (1) (1)* (1)1
1 1, 1 1, 1 1 .

2

q
u i p u u u u u 

 

 
    

 
 (29) 

 

When plugging Equation (29) to Equation (27) leads to the QNLS equation describing 

the propagation of the first-order longitudinal wave near the critical wavenumber ck : 

 

  
4

(1) (1) (1) (1)* (1)* (1) (1) (1) (1)1 3
1, 1, 1 3 1, 1 3 1, 1 1 2 1 1i 0.

2

q q
u pu i q pq u u pq u u u q u u   

 
     

 
   (30) 

 

In addition, for 
3( )O  , the solution 

(2)

4u  is given by 

 

   

      

32 2
(2) (1) (1) (1) (1) (1) (1) (1)* (1)* (1)2
4 1 1 1 2 2 3 1, 1 1 2 4 1, 1

2 2
(1) (1) (1) (1) (1) (1)

5 2 6 2 1 7 1, 1 1,

3

3 ,

iA
u i A u u A u A u u u u A u u

i A u A u u i A u u u

 

 

 
   



 

 


 

 (31) 

 
with the coefficients 

 

 

 

 

   

 

5 6 4 2

1

8
2 2

5 5 2 2 4 3 3
1 1

8 3
2 2 2 2

2 3 4 2 4 22

6 2 4 6

1

4 2

2

4

3

1

49054 100327 66620 14888

3840

49055 83812 35216 15
, ,

3840 4

9 278 289 56 541 1636

L L L L

L

L L

L L

L L L

g L L g L g g

g L

L L L g g

g L g L

g L L g g L Lc

A
k c c c c c c c

c c

k c c c c c k

c c c c

k kc c c c c

A

A
c c





 

 

  



 
 

 


   





  
 

 

       

2 4

5
2 2

2 3

1 1 1 1

3 2 2 2 2 2 22 2
4 5 6 7

1772
,

192

25 18
, , , .

4 4 88

L L

L

L

L L L
L

g g

g L

g

g L g L g Lg L

c

c c

k kc k

c c c c k c cc c
A A A A



    








 
  

 

 

(32) 

 

To be able to observe the contribution of higher-order dispersion and higher nonlinear 

impacts, the behavior of the mode (1)

2u  is determined on the order of 
7 2 : 
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    

    

2 2 2
(1) (1) (1) (1) (1)* (1) (1)* (1) (1)

2, 2, 1, 1 1 2, 1 2 2 2 1

22 2
(1) (1)* (1)* (1) (1) (1) (1) (1) (1) (1)* (1)

3 1, 1 1, 1 2 1 2, 4 1 2 5 1 2 1

2
(1) (1) (1)*

6 1, 7 1, 1 8 1,

i i

2

u pu ru iB u u u u B u u

iB u u u u u iB u B u u B u u u

B u B u u B u

   


  

 

 
     

 

    

     

  

2
(1)* (1) (1) (1) (1)*

1 1 9 1, 1

4 2
(1)* (1) (1) (1)* (1) (1) (1) (0) (1)

10 1, 1 11 1, 1 12 1 1 1 13 3, 1 0,

u u B u u

i B u u B u u B u u u B u u

 

  



    

 (33) 

 

where 

 

    
 

 
 

 

   

  
 

2 2 2 2 2

1

2 2 2

3 2 6 4 6 4
1 1 1

3 32 2 2 2 2 2 2 2

3 2 2 4 2 4

3

1

2 1 3 4 5

6

1 1

3 2 2 7

8 1 2 3
, ,

2 6 2

3 45 25
, , , ,

2 4 4

11 2 3 7 142
,

6

L L L

L

L L

L
L L

L L

L

g L g T g

g L

g g

g L g L g L

L g g L

L g

c c c km c kc k
r

k

B

B k
c

B B B

c c

k c k kc k

k

B

B

c c c c c

k c c kc k c

c
B

c

  

 

    

  

  



    
  



 









   




 


 

 

 
 

 
 

 

 

 

 

 

 

2 2 4

2
3 2 2

3 2 4 2 2 2 7 4 2 2

1 1 1

33 2 2 3 2 2 3 2 2

7 4 2 2

8

2 2 4 2

1 1

3 3
3 2 2 3 2 2

9 1

1

0

9

11

137 99
,

36

3 9 7 338 149
, , ,

2 2 12

11 164 25 7

12 2 3

L L

L

L L L L

L L
L

L L L

L L

L g g

g L

g g L g L g

g L g L g L

g L g L g

g L g L

B B B
k

c c c

c c

k c c k c c k c c

c c c c c c

k c c k c c c

c c c c
B

D



   

  

 

 

 



  


  



 
 





  

 

 

 

 

8 6 6 4 2 2 4 6

1

8
2 2

9 6 6 4 2 2
1

2

12

2 4 6

3
1

8
2 2

1

,
,3

14975 24805 11399 12

480

40645 87798 65349 15082
, .

2960

L L L

L

L L L L

L

L L g L g g

g L

g L L g L g g

g L

k w

k c c c c c c

c c

k c c c c c c c k

c c

B

B





 



  

  









 

(34) 

 

The term (0)

3,u 
 in Equation (33) is found from the solution of the equation for 

4( )O   and 

the expression of (0)

3,u 
 in terms of the first-mode (1)

1u  and the second-mode (1)

2u  is as 

follows: 
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 

   

 

(0) (1) (1)* (1) (1)* (1) (1) (1)* (1) (1)*

3, 1 2 2 2, 1 1, 2 1, 2 2, 1

(1)* (1) (1) (1)* (1) (1)* (1) (1) (1)*

3 2 1 2 1 1 4 2 1 2 1

2
(1)* (1) (1) (1)* (1) (1)* (1)

5 1, 1 1, 1 6 1, 1

2

7 ,

2

1

u C u iC u u u u u u u u

C u u u u u C u u u u d

C u u u u C u iC u u

    



   






   

 





 







 

    

(1) (1)* (1)

1, 1 1

2 2
(1) (1) (1)* (1)* (1)

8 1

2

6

1 9 , 1 1, 1 .

u u u

C u iC u u u u d





  




 

 (35) 

 

The coefficients in Equation (35) are given by 

 

     

 

   

22 4 3
11 1 1 1

3

6

22 2 2 2 2 22 2 2 2

2 4 2 2 4 3 3
1 1

2

1 2 3 4 5

7

8

3
2 2 2 2 2

8 5 6 4 2

1

215
, , , , ,

32

321 118 167 613
, ,

18

2233 4248 1428

2

L

L L L
L L

L L L

L L

L

g

g L g L g LL g g L

L L g g g

g L L g

L L g

k ck k k
C C C

c c c c c cc c c c

k c c c c kck
C C

c c c c

k c c

C C

C
c

   

 





 

   
 

 

    














 

 

 

 

 

 
   

2 4 6

7
2 2 2

9 5 6 4 2 2 4 6

1

7
3 2 2

5 3
4 2 2 4 4 2 2 41

4
2 2

9
2

8

72

563 2025 2785 776
,

72

3 49 74 26 48 44 .
4

L L

L

L L L L

L

L

L L L L

L

L g g

L g

g L L g L g g

L g

g

L L g g L L g g

g L

c c c

c c

k c c c c c c c

c c

kck
C c c c c c c c c

c c















  




 
  


  



 

(36) 

 

 Now, the integrodifferential equation involving the second-order mode (1)

2u  given as 

below is calculated by substituting Equation (35) to Equation (33): 

 

    
    

   

2 2
(1) (1) (1) (1) (1)* (1) (1)

2, 2, 1, 1 13 2 1 2 1 2,

(1) (1)* (1)* (1) (1) (1) (1)* (1) (1) (1)*

3 1, 1 3 13 2 1, 1 2 13 4 1 2 1 2 1

(1) (1)* (1)* (

4 13 3 2 1 5 13 3 2 1

i i 2 2
2

i
u pu ru B B C u u u u

i B u u B B C u u u B C u u u u u d

B B C u u B B C u u

   




  




 
     

 

    

   



   

      

      

2 2
1) (1) (1) (1) (1)

1 1 6 13 6 1, 1

2
(1) (1)* (1)* (1) (1) (1) (1)*

7 13 5 1, 1 8 13 5 1, 1 1 9 1, 1

4 2
(1)* (1) (1) (1)* (1) (1) (1)

10 13 7 1, 1 11 13 7 1, 1 12 13 8 1 1 1

(1) (1) (

13 9 1 1, 1

u u B B C u u

B B C u u B B C u u u B u u

i B B C u u i B B C u u B B C u u u

iB C u u u



  

 



 

    

     

     2 2
1)* (1)* (1)

1, 1 0.u u d


 


 

 (37) 
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To eliminate the integral terms in (37),  the real part of (1)*

2u  times Equation (27) is 

added to the real part of (1)*

1u times Equation (37). As a result,  

 

        
 

     

8 9 7

2
(1) (1)* (1) (1)* (1)* (1) (1)* (1) (1)

2, 1 1, 2 2, 1 1, 2 1,

4 2

2 2
(1)* (1) (1) (1)* (1)* (1) (1) (1)*

2 1 2 1

((1)*

1

1

(1) (1) (1)

3 3 2 1 10

1, 1, 1

1) (1)*

2 1 1 1 13

u i B B B

u u u u u u u u

u

r u

p

u u u d u u u u

i

q B u u B

d

B uu u

p

 

  

    

 
 

 

    



 

 



 

 

 (38) 

 

is founded. Then substituting Equation (38) into Equation (37) with the constraint 

 

 9 4 7 8 9C C B B B    (39) 

 

leads to the partial differential equation in terms of the second-order mode (1)

2u : 

 

     
     

     

2 2
(1) (1) (1) (1) (1)* (1) (1)

2, 2, 1, 1 13 2 4 1 2 1 2,

(1) (1)* (1)* (1) (1)

3 1, 1 3 13 4 2 1, 1 2 13 4

22
(1) (1) (1)*

5 13 3 4 1 1 2

4 13 3 4

2
(1) (1)*

1 2,

3 3

i i 2 2
2

 

i
u pu ru B B C pC u u u u

i B u u B B pC C u u u i pB C

B B C C u u u

B C

u u

pq B

B C

   


  

 
      

 

    

  

 



       

      

    

   

4 2
(1) (1) (1) (1)

1 2 6 13 6 4 1, 1

2
(1) (1)* (1)* (1) (1) (1) (1)*

7 13 5 1, 1 8 13 5 1, 1 1 9 1, 1

2
(1)* (1) (1) (1)* (1) (1)

10 13 7 1, 1 11 13 7 1, 1 1 1

6
(1) (1

12 13 8 4 1 1

3 3

10 11 3

p u u B B C C u u

B B C u u B B C u u u B u u

i B B C u u B B C u u u u

C

q B r

uBB B uBC



  

 

  

   





   





 ) 0.

 
(40) 

 

On the other hand, the constraint given in Equation (39)  causes relationships between 

some coefficients in Equation (30) and Equation (40)., i.e., 

 

  

  

       

1 3 1 13 2 4 3

3 13 4 3 13 4 2

4 13 7 4 3 3 5 13 3 4 3 31 3
2

 2  ,

   2,

   
.

2 3 2

q p q B B C p C B

p q p B C B B p C C

B B C C p q B B B C C p q Bq q
q

     

   

    
 



 (41) 
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One can easily see that that Equation (40) is linear in terms of the second-order mode 
(1)

2 ,u  however, it is nonlinear in the first-order mode (1)

1u . As a result, defining the 

dependent variable transformation 

 

(1) 2 (1)

1 2 ,u u     (42) 

 

Equation (30) and Equation (40) can be conveniently combined, that is,  adding    

times Equation (30) to   times Equation (40) implies the equation  

 

    

  

4 2* * * *

1 2 1 2 3

2 2 2 6* 2 *

3 4 5 6

i i

0.

p i r      

   

                     

               

      

     
 (43) 

 

Equation (43) is valid for 
3( )O   with the coefficients 

 

  

     

   

   

2 2 2 2

1 3 2 13 4 3 6 13 6 4 4 9

2 2 4

5 7 13 5 6 8 13 5 1 2 1 3

4 4

2 11 13 7 3 10 13 7

6

12 13 8 4 10 11

, , , ,

, , 2 ,

, ,

3 .

B pB C B B C rC B

B B C B B C q q q

B B C B B C

B B C C B B

       

     

   

 

      

     

   

   

 (44) 

 

4. Conclusion and Comment 

In this study, by a perturbation approach, a nonlinear evolution equation, which may be 

said to be the quintic-septic NLS equation with a third-order dispersion term, is 

obtained to propagate the longitudinal wave in a dispersive and nonlinearly elastic 

medium. Similar evolution equations balancing the septic nonlinear effect with the 

third- and fourth-order dispersive effect are found to descript the nonlinear wave motion 

propagating in different media [8, 9]. However, for the generalized elastic medium, this 

balance could be achieved between septic nonlinearity and third-order dispersibility. 

The balance problem of fourth-order dispersive effect and higher-order nonlinearity can 

be studied in the future. 
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