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Christophe Chesneau4 

 

ABSTRACT 

This work demonstrates the attractivity of the alpha-skew hyperbolic secant distribution, a new 

skewed distribution based on the alpha-skew technique and the hyperbolic secant distribution. 

In the first part, we determine its main features, including its cumulative distribution function, 

modality, non-central moments, skewness, kurtosis, moment generating function and 

characteristic function. The remaining part is devoted to the model applicability in a statistical 

context. As a first step, the parameters are estimated by maximum likelihood estimates. Then, 

we perform a data fitting experiment and compare the values of the Akaike and Bayesian 

information criteriawith those of some other similar distributions. By considering an 

astronomical dataset and valuable competitors also based on the alpha-skew technique, the 

alpha-skew hyperbolic secant distribution turns out to be the best. 

Keywords: Skewed distribution, Hyperbolic secant distribution, Bimodality, Parametric 

estimation, Data analysis. 
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ASTRONOMİK BİR VERİ KÜMESİ UYGULAMASI İLE ALFA 

ÇARPIK HİPERBOLİK SEKANT DAĞILIMI 

 

ÖZ 

Bu çalışma, alfa-çarpık tekniğine ve hiperbolik sekant dağılımına dayanan yeni bir çarpık 

dağılım olan alfa-çarpık hiperbolik sekant dağılımının çekiciliğini göstermektedir. Birinci 

bölümde, kümülatif dağılım fonksiyonu, modalite, merkezi olmayan momentler, çarpıklık, 

basıklık, moment üreten fonksiyon ve karakteristik fonksiyon dahil olmak üzere ana özellikleri 

belirlenmiştir. Kalan kısım, istatistiksel bağlamda modelin uygulanabilirliğine ayrılmıştır. İlk 

adım olarak, parametreler en çok olabilirlik tahminleriyle tahmin edilmiştir. Daha sonra, bir 

veri uygulaması gerçekleştirilmiş ve Akaike ve Bayesian bilgi kriterlerinin değerlerini diğer 

bazı benzer dağılımların değerleriyle karşılaştırılmıştır. Alfa-çarpık tekniğine dayanan 

astronomik bir veri seti ve rakipler göz önüne alındığında, alfa-çarpık hiperbolik sekant 

dağılımının en iyisi olduğu ortaya çıkmıştır. 

Anahtar Kelimeler: Çarpık dağılım, Hiperbolik secant dağılımı, İki modluluk, Parametrik 

tahmin, Veri analizi 

 

1.  INTRODUCTION 

Many random events in nature can not be explained by simple unimodal distributons, 

such as the normal, Laplace and logistic distributions. Asymmetry and bimodality behaviors 

can be observed in a variety of distributions of data. For example, the time between geyser 

eruptions, the age of onset of certain pathogens or even the growth estimates of fish species, 

etc. Therefore, several distributions have been created to allow for the most accurate analysis 

of these data. For instance, Azzalini (1985) proposed a thorough skewed version of the normal 

distribution, called the asymmetric normal (AN) distribution.  It is defined with the following 

probability density function (PDF): 

𝑓𝐴𝑁(𝑥; 𝜆) = 2𝜙(𝑥)Φ(𝜆𝑥),          𝑥 ∈ 𝑅              (1) 

where 𝜙(𝑥) and Φ(𝑥) are the PDF and cumulative distribution function (CDF) of a standard 

normal variable, respectively, i.e., 𝜙(𝑥) = (2𝜋)−1/2𝑒−𝑥2/2 and Φ(𝑥) = ∫ 𝜙(𝑡)𝑑𝑡
𝑥

−∞
, and 𝜆 ∈

𝑅. It is clear that 𝑓𝐴𝑁(𝑥; 0) = 𝜙(𝑥). The additional parameter 𝜆 is introduce to produced 
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asymmetrical shapes based on the symmetrical structure of the normal distribution; if the sign 

of 𝜆 changes, the PDF is reflected on the opposite side of the vertical axis, and thus the bell 

shape of the related model can be skewed to a maximum to accommodate some skewed data. 

For more technical information and applications, we refer to Gómez et al. (2006) and Capitanio 

(2014). 

Motivated by the high level of applicability of the AN distribution, numerous skewed 

versions of symmetric distributions have been proposed and investigated. See, for example, 

those in Kim (2005), Elal-Olivero (2010), Asgharzadeh et al. (2016), Chesneau et al. (2020) 

and Bakouch et al. (2021). In this study, we provide some contributions to the development of 

the alpha-skew technique as proposed by Elal-Olivero (2010). Thus, a retrospective on this 

technique is necessary. To begin, the alpha-skew technique was first employed by Elal-Olivero 

(2010) to create the alpha-skew normal (ASN) distribution defined by the following PDF:and 

𝑓𝐴𝑆𝑁(𝑥; 𝛼) =
(1−𝛼𝑥)2+1

2+𝛼2 𝜙(𝑥),        𝑥, 𝛼 ∈ 𝑅,                                                                 (2) 

with 𝛼 ∈ 𝑅. It can also be written as 𝑓𝐴𝑆𝑁(𝑥; 𝛼) = 𝑐𝛼𝑤(𝑥; 𝛼)𝜙(𝑥), where 𝑐𝛼 = 1/(2 +

𝛼2) and 𝑤(𝑥; 𝛼) = (1 − 𝛼𝑥)2 + 1. The weight function 𝑤(𝑥; 𝛼) characterizes the alpha-

skewed technique; it modulates the functionalities of the pdf 𝜙(𝑥) thanks to 𝛼, which itself 

modulates the effect of the polynomial term in this weight function. It is worth noting that 

𝑤(𝑥; 0) = 2. The constant 𝑐𝛼 is just a "normalization constant" which is evaluated to make the 

integral of 𝑐𝛼𝑤(𝑥; 𝛼)𝜙(𝑥) over 𝑅 equal to one. The main advantage of the ASN distribution is 

that it has both unimodal and bimodal behavior, contrary to the AN distribution, for instance.  

Thus, it is more appropriate for data whose distribution presents such characteristics. By 

applying this alpha-skew  technique to the Laplace distribution, Harandi and Alamatsaz (2013) 

proposed the alpha-skew Laplace (ASLa) distribution. It is defined by the PDF given as 

𝑓𝐴𝑆𝐿𝑎(𝑥; 𝛼) =
(1−𝛼𝑥)2+1

2+2𝛼2 𝜓(𝑥),        𝑥, 𝛼 ∈ 𝑅,                                                                 (3) 

where 𝜓(𝑥) denotes the PDF of the Laplace distribution, i.e., 𝜓(𝑥) = 2−1𝑒−|𝑥|. It is worth 

noting that 𝑓𝐴𝑆𝐿𝑎(𝑥; 𝛼) = 𝑑𝛼𝑤(𝑥; 𝛼)𝜓(𝑥), where 𝑑𝛼 = 1/(2 + 2𝛼2) is the normalization 

constant adjusted to the Laplace distribution under consideration. In practice, the ASLa 

distribution reveals itself to be a suitable alternative to the ASN distribution, presenting 

differences mainly in the kurtosis and tails features. Similarly, Hazarika and Chakraborty 
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(2014) has developed the alpha-skew logistic (ASLo) distribution, which consists of applying 

the alpha-skew technique to the logistic distribution. It is defined by the following PDF: 

𝑓𝐴𝑆𝐿𝑜(𝑥; 𝛼) = 3
(1−𝛼𝑥)2+1

6+𝜋2𝛼2 𝜐(𝑥),        𝑥, 𝛼 ∈ 𝑅                                                                (4) 

where 𝜐(𝑥) denotes the PDF of the logistic distribution, i.e., 𝜐(𝑥) = 𝑒−𝑥/(1 + 𝑒−𝑥)2. It has 

proved to be an interesting competitor to the ASN and ASLa distributions. Previous research 

has demonstrated that the alpha-skew technique is ideal for introducing a manageable unimodal 

or bimodal skewed effect in any symmetric distribution defined by 𝑅.  

On the topic of the alpha-skew technique, there are, however, some unexplored 

directions of research on this topic. In particular, to the best our knowledge, its application  to 

the famous  hyperbolic secant (HS) distribution has never been explored. This work aims to fill 

this gap. To begin, the HS distribution is a symmetric distribution defined on 𝑅, and introduced 

by Baten (1934) and Talacko (1956). It is defined by the following PDF: 

𝑓𝐻𝑆(𝑥) =
1

2
sech (

𝜋𝑥

2
) ,        𝑥 ∈ 𝑅                                                                  (5) 

where "sech" denotes the hyperbolic secant function defined by sech(𝑥) = 1/cosh(𝑥) =

2/(𝑒𝑥 + 𝑒−𝑥).  Among its properties,  it exhibits far greater leptokurtosis than the normal and 

logistic distributions. Furthermore, moments of all order exist, as well as the function that 

generates them, exist. As a matter of fact, if f𝐻𝑆(𝑥) is properly weighted, we can modify its 

symmetric shapes on the real line (i.e., add the skewness and increase or decrease the kurtosis). 

Generalizations of the hyperbolic secant distribution can be found in the book by Fischer 

(2013). They are quite competitive with the existing distribution on the modeling plan.  Based 

on previous research, the goal of this paper is to combine the alpha-skew technique with the 

hyperbolic secant distribution to create a new “R distribution” that can accommodate both 

unimodal and bimodal forms.  It is naturally called the alpha-skew hyperbolic secant (ASHS) 

distribution. We highlight its main theoretical features and show how it can outperform the 

ASN, ASLa and ASLo distributions in concrete data analysis scenarios. An astronomical 

dataset is considered in this regard. 

The paper will be structured as follows. We characterize the ASHS distribution in 

Section 2 and present several interesting moment properties in Section 3. In Section 4, we will 

present our parametric estimation technique, and the results of our study on a real dataset. 

Finally, Section 6 will conclude the paper. 
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2.  ASHS DISTRIBUTION 

The ASHS distribution is presented in this section, along with the shape properties of 

the related PDF. 

Definition 2.1 A random variable X is said to follow the ASHS distribution with skewness 

parameter α ∈ R, if its PDF is 

𝑓𝐴𝑆𝐻𝑆(𝑥; 𝛼) =
(1−𝛼𝑥)2+1

2+𝛼2 fHS(𝑥),        𝑥 ∈ 𝑅                                                                 (6) 

with fHS(𝑥) = (1/2) sech(𝜋𝑥/2). That is, 

𝑓𝐴𝑆𝐻𝑆(𝑥; 𝛼) =
1

2

(1−𝛼𝑥)2+1

2+𝛼2 sech (
𝜋𝑥

2
) ,        𝑥 ∈ 𝑅                                                                (7) 

 In the definition above, the alpha-skew technique is applied to the HS 

distribution in the following sense: we have weighted  the PDF of the HS distribution by the 

alpha-skew weight function 𝑤(𝑥; 𝛼) = (1 − 𝛼𝑥)2 + 1, in such as way that 𝑓𝐴𝑆𝐻𝑆(𝑥; 𝛼) =

𝑒𝛼𝑤(𝑥; 𝛼)𝑓𝐻𝑆(𝑥), where 𝑒𝛼 = 1/(2 + 𝛼2) is the normalization constant, i.e., such  that 

∫ 𝑓𝐴𝑆𝐻𝑆(𝑥)𝑑𝑥 = 1
+∞

−∞
. This constant has been calculated by using the following well-known 

integral results: ∫ 𝑥𝑓𝐻𝑆(𝑥)𝑑𝑥 = 0
+∞

−∞
 and ∫ 𝑥2𝑓𝐻𝑆(𝑥)𝑑𝑥 = 1

+∞

−∞
. Note that this normalizaton 

constant corresponds to the one of the ASN distribution.  

The elements of the set 𝑀 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝑅𝑓𝐴𝑆𝐻𝑆(𝑥; 𝛼) are the modes of the ASHS 

distribution. They can be determined via the study of the derivative of 𝑓𝐴𝑆𝐻𝑆(𝑥; 𝛼) given by  

𝑓′𝐴𝑆𝐻𝑆(𝑥; 𝛼) = −
𝜋(𝛼2𝑥2−2𝛼𝑥+2) tanh(𝜋𝑥/2)+4𝛼(1−𝛼𝑥)

4(2+𝛼2)
sech (

𝜋𝑥

2
)                                         (8) 

As a result, we have 𝑀 ∈ {0, 𝑥1, 𝑥2}, where 𝑥1 and 𝑥2 are possible roots of the following 

equation: 𝜋(𝛼2𝑥2 − 2𝛼𝑥 + 2) tanh(𝜋𝑥/2) + 4𝛼(1 − 𝛼𝑥) = 0. There is no analytical 

expression for 𝑥1 and 𝑥2; we need to determine them numerically, but, clearly, the unimodality 

and bimodality of the ASHS distribution depend on the choice of 𝛼.  For this reason, we chose 

to complete our mode analysis by a graphical study. 

Figures 1 and 2 show some plots of 𝑓𝐴𝑆𝐻𝑆(𝑥; 𝛼) for different choices of the parameter 

𝛼; Figure 1 considers the unimodal case, whereas Figure 2 considers the bimodal cases, with 

the determination of 𝑥1 and 𝑥2 (and 𝑥 = 0 becomes a minimum point). 
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Figure 1. Some unimodal shapes of the PDF of the ASHS distribution for small values of 𝛼 

In Figure 1, shows how, as 𝛼 approaches zero, the ASHS distribution becomes 

unimodal. Furthermore, the tails of distributions are thicker and decrease more abruptly. When 

𝛼 < 0, the bell shape spreads to the left and spreads to the right when 𝛼 > 0. Therefore, the 

ASHS model can serve to analyze data with such skewness properties in their distribution.  

 

Figure 2. Some bimodal shapes of the PDF of the ASHS distribution for large values of 𝛼 
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In Figure 2, for some large values of 𝛼, we observe that the ASHS distribution has the 

two modes 𝑥1 and 𝑥2. Thus, the ASHS model is ideal for the analysis of bimodal  distribution-

type data,  which are often encountered in applications.  

3.  MOMENT ANALYSIS 

A moment analysis of the ASHS distribution is now performed. Hereafter, we designate 

by 𝑋 a random variable with the ASHS distribution as described in Definition 2.1. 

Proposition 3.1 The moment generating function of  X is given by 

𝑀(𝑡) = 𝐸(𝑒𝑡𝑋) =
1

2+𝛼2
[2 sec(𝑡) − 2𝛼 tan(𝑡) sec(𝑡) + 𝛼2 sec(𝑡) tan2(𝑡) + 𝛼2 sec3(𝑡)],     |𝑡| < 1,               

where sec(𝑡) = 1/cos(𝑡). 

Proof: To begin, we can decompose 𝑓𝐴𝑆𝐻𝑆(𝑥; 𝛼) as 

𝑓𝐴𝑆𝐻𝑆(𝑥; 𝛼) =
1

2+𝛼2
[2𝑓𝑆𝐻𝑆(𝑥; 𝛼) − 2𝛼𝑥𝑓𝑆𝐻𝑆(𝑥; 𝛼) + 𝛼2𝑥2𝑓𝑆𝐻𝑆(𝑥; 𝛼)].                           

Therefore, by introducing a random variable Y with the HS distribution, we have  

𝑴(𝑡) = ∫ 𝑒𝑡𝑥+∞

−∞
𝑓𝐴𝑆𝐻𝑆(𝑥; 𝛼)𝑑𝑥  

           =
1

2+𝛼2 [2 ∫ 𝑒𝑡𝑥+∞

−∞
𝑓𝑆𝐻𝑆(𝑥; 𝛼)𝑑𝑥 − 2𝛼 ∫ 𝑥𝑒𝑡𝑥𝑓𝑆𝐻𝑆(𝑥; 𝛼)𝑑𝑥

+∞

−∞
+ 𝛼2 ∫ 𝑥2𝑒𝑡𝑥𝑓𝑆𝐻𝑆(𝑥; 𝛼)𝑑𝑥

+∞

−∞
]   

         =
1

2+𝛼2
[2𝐸(𝑒𝑡𝑌) − 2𝛼𝐸(𝑌𝑒𝑡𝑌) + 𝛼2𝐸(𝑌2𝑒𝑡𝑌)].                          

It follows from Fischer (2013) that 𝐸(𝑒𝑡𝑌) = sec(𝑡),    |𝑡| < 1, from which we deduce that 

𝐸(𝑌𝑒𝑡𝑌) =
𝜕𝐸(𝑒𝑡𝑌)

𝜕𝑡
= tan(𝑡) sec(𝑡) 

and  

𝐸(𝑌2𝑒𝑡𝑌) =
𝜕2𝐸(𝑒𝑡𝑌)

𝜕𝑡2
= sec(𝑡) tan2(𝑡) + sec3(𝑡) . 

By substitution, we get 

𝑴(𝑡) =
1

2 + 𝛼2
[2 sec(𝑡) − 2𝛼 tan(𝑡) sec(𝑡) + 𝛼2 sec(𝑡) tan2(𝑡) + 𝛼2 sec3(𝑡)]. 

The stated result is obtained.                □ 

With a similar approach to Proposition 3.1, we can define the characteristic function of 

𝑋. This is formulated in the next result.  
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Proposition 3.2 The characteristic function of 𝑋 is given by 

𝜑(𝑡) = 𝐸(𝑒𝑖𝑡𝑋 ) =
1

2 + 𝛼2
[2 sech(𝑡) − 2𝑖𝛼 tanh(𝑡) sech(𝑡) − 𝛼2 sech(𝑡) tanh2(𝑡) + 𝛼2 sech3(𝑡)], 

where 𝑖 is the complex number such that 𝑖2 = −1, and tanh(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥).  

Proof: To begin, without loss of generality, we can link 𝜑(𝑡) and 𝑴(𝑡) by the following 

equation: 𝜑(𝑡) = 𝑴(𝑖𝑡), 𝑡 ∈ 𝑅. It follows from Proposition 3.1 that 

𝜑(𝑡) = 𝑴(𝑖𝑡) =
1

2 + 𝛼2
[2 sec(𝑖𝑡) − 2𝛼 tan(𝑖𝑡) sec(𝑖𝑡) + 𝛼2 sec(𝑖𝑡) tan2(𝑖𝑡) + 𝛼2 sec3(𝑖𝑡)]. 

Since sec(𝑖𝑡) = sech(𝑡) and tan(𝑖𝑡) = 𝑖𝑡𝑎𝑛ℎ(𝑡), we have  

𝜑(𝑡) =
1

2 + 𝛼2
[2 sech(𝑡) − 2𝑖𝛼 tanh(𝑡) sech(𝑡) − 𝛼2 sech(𝑡) tanh2(𝑡) + 𝛼2 sech3(𝑡)]. 

This ends the proof of Proposition 3.2.               □ 

 The function 𝜑(𝑡) caracterizes completely the ASHS distribution, and can be used for 

further distributional developments, such as theorem limits.  

Proposition 3.3 The mean and variance of 𝑋 are specified by  

𝐸(𝑋) = −
2𝛼

2 + 𝛼2
 

and 

𝑉(𝑋) =
5𝛼4 + 8𝛼2 + 4

(2 + 𝛼2)2
, 

respectively.  

Proof: The moments of 𝑋 can be derived from 𝑴(𝑡). More precisely, the 𝑟-th moment of 𝑋 is 

obtained by the following formula: 𝐸(𝑋𝑟) = 𝜕𝑟𝑴(𝑡)/𝜕𝑡𝑟|𝑡=0. By virtue of Proposition 3.1, we 

have  

𝜕𝑴(𝑡)

𝜕𝑡
=

1

2 + 𝛼2
[𝛼 sec3(𝑡)(5𝛼 tan(𝑡) − 2) + tan(𝑡) sec(𝑡)(𝛼 tan(𝑡)(𝛼 tan(𝑡) − 2) + 2)] 

and  

𝜕2𝑴(𝑡)

𝜕𝑡2
=

1

2 + 𝛼2
sec(𝑡) [𝛼2 + 24𝛼2 sec4(𝑡) − 4 sec2(𝑡) (5𝛼2 + 3𝛼 tan(𝑡) − 1) + 2𝛼 tan(𝑡) − 2]. 

Since sec(0) = 1 and tan(0) = 0, we immediately get  
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𝐸(𝑋) =
𝜕𝑴(𝑡)

𝜕𝑡
|
𝑡=0

= −
2𝛼

2 + 𝛼2
 

and  

𝐸(𝑋2) =
𝜕2𝑴(𝑡)

𝜕𝑡2
|
𝑡=0

=
1

2 + 𝛼2
[𝛼2 + 24𝛼2 − 4(5𝛼2 − 1) − 2] =

2 + 5𝛼2

2 + 𝛼2
 

Therefore, 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 =
2 + 5𝛼2

2 + 𝛼2
− (−

2𝛼

2 + 𝛼2
)

2

=
5𝛼4 + 8𝛼2 + 4

(2 + 𝛼2)2
. 

The desired formula is obtained.                □ 

From Proposition 3.3, we remark that  𝐸(𝑋) = 0 when 𝛼 = 0 and 𝐸(𝑋) tends to 0 when 

|𝛼| → +∞. Also, 𝐸(𝑋) is maximal when 𝛼 = −√2 with 𝐸(𝑋) = 1/√2, and minimal when 𝛼 =

√2 with 𝐸(𝑋) = 1/√2. For the variance, we have 𝑉(𝑋) ∈ [1,5[ with 𝑉(𝑋) = 1 if and only if 𝛼 =

0, and 𝑉(𝑋) tends to 5 when |𝛼| → +∞. Also, |𝑉(𝑋)| increases as |𝛼| oncreases. 

Similarly, but with more mathematical efforts, we can express the moment skewness 

and kurtosis of 𝑋, defined by  

𝑆𝐾 = 𝐸 [(
𝑋 − 𝐸(𝑋)

√𝑉(𝑋)
)

3

] 

and  

𝐾𝑈 = 𝐸 [(
𝑋 − 𝐸(𝑋)

√𝑉(𝑋)
)

4

], 

respectively.   Since they are, however, very fastidious to express analytically, we propose to 

analyze them with a numerical approach. 

Table 1 shows the mean, variance, moment skewness and moment kurtosis of 𝑋 for some values 

of the parameter 𝛼. 
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Table 1. The mean, variance, skewness and kurtosis values of 𝑋 for some selected values of 𝛼 

𝛼 𝐸(𝑋) 𝑉(𝑋) 𝑆𝐾 𝐾𝑈 

-5000 0.00004 5 -0.0003577628 2.44 

-25 0.07974482 4.980882 -0.07137116 2.45410

6 
-9 0.2168675 4.856583 -0.1948623 2.54753

1 
-3 0.5454545 3.975207 -0.4971015 3.30519

4 

 

0 0 1 0 5 

1 -0.6666667 1.888889 0.285336 5.71972

3 12 -0.1643836 4.918184 0.1474212 2.50085

6 27 -0.0738714 4.983599 0.06610857 2.45209

7 5000 -0.00004 

4 

5 0.0003577628 2.44 

.  

From Table 1, we see that the skewness is negative or positive according to the fact that 

𝛼 is negative or positive, respectively. Thus, the skewness of the ASHS distribution is 

completely modulated by the sign and value of 𝛼. We can see that the kurtosis is mostly in 

[2,5], implying that the ASHS distribution could be platykurtic (corresponding to 𝐾𝑈 < 3), 

almost symmetric (corresponding to 𝐾𝑈 ≈ 3), or leptokurtic (corresponding to 𝐾𝑈 > 3).  

In practice, as with any one parameter continuous distribution, the ASHS distribution is 

not flexible enough to capture all the distributional properties behind the data. For this reason, 

it is natural to consider a scale-location version defined by the distribution of the following 

random variable: 

𝑌 = 𝜇 + 𝜎𝑋                           (9) 

with 𝜇 ∈ 𝑅 and 𝜎 > 0. The related PDF is obtained as 

𝑓𝐴𝑆𝐻𝑆(𝑥; 𝛼, 𝜇, 𝜎) =
1

2𝜎

(1−𝛼(𝑥−𝜇)/𝜎)2+1

2+𝛼2 sech [
𝜋

2
(

𝑥−𝜇

𝜎
)] ,        𝑥 ∈ 𝑅                                              (10) 

It can be considered as the three-parameter version of the ASHS distribution. For the 

sake of continuity, we will, however, keep the name of ASHS distribution. 

4.  ESTIMATION AND APPLICATIONS 

This section is devoted to the practice of the ASHS distribution in statistics. 

4.1.  Estimation 

Based on data and the the three-parameter ASHS distribution, we propose to estimate 

the parameters by the maximum likelihood method. Thus, by denoting 𝑥1, … , 𝑥𝑛 the data, 

assuming that they are all independent realizations of 𝑋, we define the likelihood function as 
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𝐿(𝑥1, … , 𝑥𝑛; 𝛼, 𝜇, 𝜎) = ∏ 𝑓𝐴𝑆𝐻𝑆(𝑥𝑖; 𝛼, 𝜇, 𝜎)𝑛
𝑖=1                                               

                                     = ∏
1

2𝜎

𝑛
𝑖=1

(1−𝛼(𝑥𝑖−𝜇)/𝜎)2+1 

2+𝛼2
sech [

𝜋

2
(

𝑥𝑖−𝜇

𝜎
)].                                            (11)                                              

Then, the maximum likelihood estimates (MLEs) of 𝛼, 𝜇 and 𝜎 are obtained as 

(�̂�, �̂�, �̂�) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝛼,𝜇,𝜎)∈𝑅2 ×(0,+∞)𝐿(𝑥1, … , 𝑥𝑛; 𝛼, 𝜇, 𝜎).                                                     (12)                                              

Instead of the maximum likelihood function, the logarithm transformation of the 

likelihood function can be considered without loss of generality. Due to the complexity of the 

likelihood function, there is no closed form expression for the MLEs. However, as an 

optimisation problem, we can still approximate the values of �̂�, �̂� and �̂� accurately using 

efficient iterative algorithms, such as the Newton-Raphson algorithm or the Gauss-Newton 

algorithm. Under certain regularity assumptions, it can be shown that the underlying random 

estimators are asymptotically efficient, consistent and asymptotically normal. These properties 

make possible the construction of confidence intervals and statistical tests. We may refer to the 

book of Casella and Berger (1990) for more details in this regard. 

4.2.  Methodology 

In order to examine the efficiency of the ASHS distribution's modeling for a given data, 

we will compare it to thee competitors also based on the alpha-skew technique: the three-

parameter ASN distribution by Elal-Olivero (2010), three-parameter ASLa distribution by 

Harandi and Alamatsaz (2013) and three-parameter ASLo distribution by Hazarika and 

Chakraborty (2014). The three-parameter ASN distribution is defined by the following PDF: 

𝑓𝐴𝑆𝑁(𝑥; 𝛼, 𝜇, 𝜎) =
(1−𝛼(𝑥−𝜇)/𝜎)2+1

2+𝛼2

1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 ,            𝑥 ∈ 𝑅,                                                     (13)           

with 𝛼, 𝜇 ∈ 𝑅 and 𝜎 > 0.  

 

The three-parameter ASLa distributon is defined by the following PDF: 

𝑓𝐴𝑆𝐿𝛼
(𝑥; 𝛼, 𝜇, 𝜎) =

(1−𝛼(𝑥−𝜇)/𝜎)2+1

2+2𝛼2

1

2𝜎
𝑒−

|𝑥−𝜇|

𝜎 ,                 𝑥 ∈ 𝑅,                                                     (14)           

with 𝛼, 𝜇 ∈ 𝑅 and 𝜎 > 0.  

The three-parameter ASLo distributon is defined by the following PDF: 

𝑓𝐴𝑆𝐿𝑜
(𝑥; 𝛼, 𝜇, 𝜎) = 3

(1−𝛼(𝑥−𝜇)/𝜎)2+1

6+𝜋2𝛼2

𝑒
−

𝑥−𝜇
𝜎

𝜎(1+𝑒
−

𝑥−𝜇
𝜎 )

2 ,          𝑥 ∈ 𝑅,                                                     (15)           

with 𝛼, 𝜇 ∈ 𝑅 and 𝜎 > 0. 
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The involved parameters are supposed to be unknown; we estimate them by the 

maximum likelihood method. From the obtained estimates, we derive the maximum log-

likelihood value denoted by ℓ̂. Then, we calculate the Akaike information criterion (AIC) and 

the Bayesian information criterion (BIC) for comparison. The technical formulas for the AIC 

and BIC are 𝐴𝐼𝐶 = 2𝑘 − 2ℓ̂ and 𝐵𝐼𝐶 = 𝑘𝑙𝑜𝑔(𝑛) − 2ℓ̂ respectively, where 𝑘 denotes the 

number of parameters to be estimated and ℓ̂ denotes the estimated log-likelihood function.  In 

the case of the ASHS distribution, we have 𝑘 = 3 and ℓ̂ = log[𝐿(𝑥1, … , 𝑥𝑛; �̂�, �̂�, �̂�)]. The 

numerical rule is simple;  the smaller the values of the AIC and BIC are, the better the 

distribution fits the data.  

The codes will be made with the function optim of the R software (see R Development 

Core Team (2005)). 

4.3.  Application to an Astronomical Dataset 

The considered dataset was first described in Roeder (1990). It is made up of the 

velocities of 82 distant galaxies that diverge from our own. The following link contains the 

dataset:  

http://www.stats.bris.ac.uk/peter/mixdata  

 

The data are: (9.172, 9.350, 9.483, 9.558, 9.775, 10.227, 10.406, 16.084, 16.170, 18.419, 

18.552, 18.600, 18.927, 19.052, 19.070, 19.330, 19.343, 19.349, 19.440, 19.473, 19.529, 

19.541, 19.547, 19.663, 19.846, 19.856, 19.863, 19.914, 19.918, 19.973, 19.989, 20.166, 

20.175, 20.179, 20.196, 20.215, 20.221, 20.415, 20.629, 20.795, 20.821, 20.846, 20.875, 

20.986, 21.137, 21.492, 21.701, 21.814, 21.921, 21.960, 22.185, 22.209, 22.242, 22.249, 

22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241, 23.263, 23.484, 

23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285, 24.289, 24.366, 24.717, 24.990, 

25.633, 26.960, 26.995, 32.065, 32.789, 34.279) 

The descriptive statistics of this dataset are described in Table 2. 

values of the parameters of the TSGHS distribution. We fixed 𝜇 = 0and 𝜎 = 1 

Table 2. Descriptive statistics of the astronomical data 

Mean Median Standard deviation Variance Skewness Kurtosis Minimum Maximum 

20.83146 20.8335 4.568135 20.86785 -0.4309618 5.259059 9.172 34.279 
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From Table 2, we see that the data are left-skewed and leptokurtic with a variance of 

20.86. These distributional data properties are covered by the functional capability of the ASHS 

distribution. Table 3 shows the estimation and criterion results for the considered distributions. 

Table 3. MLEs, ℓ̂, AIC and BIC related to the considered distributions for the astronomical 

data 

 ASHS ASN ASLa ASLo 

�̂� -1.375106 0.8475302 0.5950219 0.4970658 

�̂� 18.97209 23.80885 22.888 23.21376 

�̂� 2.712994 4.391553 2.250925 1.849911 

ℓ̂ -223.3841 -239.6859 -227.9634 -230.0986 

AIC 452.7681 485.3719 461.9268 466.1973 

BIC 459.9883 492.5921 469.1469 473.4175 

Based on the AIC and BIC, Table 3 indicates  that  the ASHS distribution is better than 

the ASN, ASLa and ASLo distributions, with 𝐴𝐼𝐶 = 452.7681 and 𝐵𝐼𝐶 = 459.9883. 

Figure 3 illustrates that by showing the graphical representations of thee estimated PDFs 

of the distributions over the histogram of the data.   

 

Figure 3. The estimated PDFs of the considered distributions in color over the histogram for 

the astronomical data 
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The ASHS distribution matches the data better than the ASN, ASLa and ASLo 

distributions in Figure 3. In comparison to rival models, fitting with ASHS contains more 

information, especially on the skewness to the left and the considerations of the tails. 

5.  CONCLUSION 

In this paper, the alpha-skew hyperbolic secant (ASHS) distribution is introduced. It has 

the advantage of presenting both unimodal and bimodal behavior, as well as various kurtosis 

levels. Various of its properties are investigated, including characteristic function, moments, 

and other basic properties. An application of the ASHS distribution to an astronomical dataset 

is provided to illustrate that this distribution may give a better fit than the alpha-skew normal, 

alpha-skew-Laplace and alpha-skew logistic distributions in terms of standard criteria. 

Multivariate versions of this distribution, regression-type models or clustering methods are 

possible perspectives of this work. 
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In the writing process of the study titled “The Alpha-Skew Hyperbolic Secant 

Distribution With Applications to an Astronomical Dataset”, there were followed the scientific, 

ethical and the citation rules; was not made any falsification on the collected data and this study 

was not sent to any other academic media for evaluation. 

 

REFERENCES 

Asgharzadeh, A., Esmaeili, L. and Nadarajah, S. (2016), Balakrishnan skew logistic 

distribution, Communication in Statistics- Theory and Methods, 45(2), 444-464.  

Azzalini, A. A. (1985), Class of distributions which includes the normal ones, Scandinavian 

Journal of Statistics, 12, 171-178. 

Azzalini, A. and Capitanio, A. (2014), The Skew-Normal and related families, IMS 

monographs, Cambridge University Press, Cambridge, UK. 

Bakouch, H. S., Salinas, H. S., Mamode Khan, N. and Chesneau, C. (2021), A new family of 

skewed distributions with application to some daily closing prices,  Computational and 

Mathematical Methods, 3(4), e1154. 



Nicel Bilimler Dergisi / Cilt: 4, Sayı: 1, Haziran 2022 

Journal of Quantitative Sciences / Volume: 4, Issue: 1, June 2022 

 

  
 

 

84 

Baten, W.D. (1934), The probability law for the sum of n independent variables, each subject 

to the law, Bulletin of the American MathematicalSociety, 40, 284-290. 

Casella, G. and Berger, R. L. (1990), Statistical inference, Brooks/Cole Publishing Company, 

California.  

Chesneau, C., Okorie, I. E. and Bakouch, H. S. (2020), A skewed Nadarajah-Haghighi 

distribution with some applications, Journal of the Indian Society for Probability and 

Statistics, 21, 225-245.  

Elal-Olivero, D. (2010), Alpha-skew-normal distribution, Proyecciones (Antofagasta), 29 224-

240. 

Fischer, M. J. (2013), Generalized Hyperbolic Secant distributions: With applications to 

Finance, Springer, Berlin, Germany. 

Gómez, H. S., Salinas, H. S. and Bolfarine, H. (2006), Generalized skew-normal models: 

properties and inference, Statistics, 40(6), 495-505. 

Harandi, S. S. and Alamatsaz, M. H. (2013), Alpha-skew-Laplace distribution, Statistics and 

Probability Letters, 83(3), 774-782. 

Hazarika, P. and Chakraborty, S. (2014), Alpha-skew-logistic distribution, IOSR Journal of 

Mathematics, 10(4), 36-46. 

Kim, H.-J. (2005), On a class of two-piece skew-normal distributions, Statistics, 39(6), 537-

553.  

R Core Team (2005), R: A language and environment for statistical computing, R Foundation 

for Statistical Computing, Vienna, Austria. 

Roeder, K. (1990), Density estimation with confidence sets exemplified by superclusters and 

voids in galaxies, Journal of the American Statistical Association, 85, 617-624. 

Talacko, J. (1956), Perks' distributions and their role in the theory of Wiener's stochastic 

variables, Trabajos de Estadistica, 7, 159-174. 

 

 

 


