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Abstract. In this article, spatial quaternionic Bertrand curve pairs in the 3-dimensional Euclidean space are
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1. Introduction

Quaternions are a four-dimensional number system defined by Sir William Rowan Hamilton in 1843 based on the
idea of generalizing complex numbers [6]. Hamilton firstly tried to identify the three-dimensional complex numbers.
However, it has noticed that this set of numbers does not have a closed property relative to the multiplication process.
In this way, realizing that a 3-dimensional number system cannot exist Hamilton described a four-dimensional number
system known as quaternions. Later, the set of quaternions find its place in many fields such as geometry, physics,
kinematics, mechanics, vector analysis, computer, animation and robotics technology [5, 7, 10].

Curves and curve pairs often have been studied differential geometry. The first curve pair that comes to mind when
talking about curve pair is a Bertrand curve pair. These curve pairs have been studied by many authors in different
spaces. By C. Bioche obtained a Bertrand curve pair using C1 and C2 curves in 3-dimensional Euclidean space in
1888 [2]. Afterward, in 1960, J.F. Burke gave a new theorem about Biocheı́s theorem on Bertrand curves. In [3], it
is studied. Serret-Frenet formulas for quaternionic curves in R3 are firstly described by K. Bharathi and M. Nagaraj
in 1987. Then, they obtained the Serret-Frenet formulas for the quaternionic curves in R3 and R4 by using these
formulas, [1]. Later, many studies based on these mentioned studies are published. One of these studies is some
characterizations of a quaternionic curve in the semi-Euclidean space E4

2 obtained by A.C. Çöken and A. Tuna [4, 9].
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2. Preliminaries

In this section, basic definitions and theorems on quaternions, spatial quaternionic curves and quaternionic curves
will be given. In general, the real quaternion q is of the form:

q = ae1 + be2 + ce3 + de4,

where a, b, c, d are real numbers and ei, (1 ≤ i ≤ 4) are quaternionic units which satisfy the non-commutative multipli-
cation rules

e4 = 1, e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3,

e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

If we denote S q = d and Vq = ae1 + be2 + ce3, we can rewrite a real quaternion as follows q = S q + Vq where is S q
and Vq are the scalar part and vectorial part of q, respectively. So, we can show the product of two quaternions as:

p × q = S pS q − ⟨V p,Vq⟩ + S pVq + S qV p + V p ∧ Vq,

where ⟨, ⟩ and ∧ are inner product and cross product in E3, respectively. The conjugate of q is denoted by γq and
defined as:

γq = −ae1 − be2 − ce3 + de4

which is called the ”Hamilton conjugation”. This defines bilinear form h as follows

h(p, q) =
1
2

[p × γq + q × γq]

which is called the quaternion inner product. The norm of q is given by

∥q∥2 = h(q, q) = q × γq = γq × q = a2 + b2 + c2 + d2.

If ∥q∥2 = 1, then q is called unit quaternion. Also, q is called a spatial quaternion whenever q + γq = 0 and called a
temporal quaternion whenever q − γq = 0.

Theorem 2.1. Space of spatial quaternions in three dimensional Euclidean space, it is clearly is identified as {p ∈ QH

| p + γp = 0}. Let I = (0, 1) indicate the unit spacing in the real line R. Let

α : I ⊂ R −→ QH

s −→ α(s) :
3∑

i=1

αi(s)ei (1 ≤ i ≤ 3)

be a curve with nonzero curvatures {k(s), r(s)} and {t(s), n(s), b(s)} denote the Frenet frame of the curve, [1]. Then, t′(s)
n′(s)
b′(s)

 =
 0 k(s) 0
−k(s) 0 r(s)

0 −r(s) 0


 t(s)

n(s)
b(s)

 .
Definition 2.2. Let α(s) and β(s∗) be quaternionic curves in E3 with parameter s and s∗, respectively. Let {t(s), n(s), b(s)}
and {t∗(s∗), n∗(s∗), b∗(s∗)} be Frenet frames of α and β, respectively. If {α, β} are the Bertrand curve pair, n(s) and n∗(s∗)
are linearly dependent [8]. We can write

β(s∗) = α(s) + λ1n(s), (2.1)

and
α(s) = β(s∗) + λ2n∗(s). (2.2)

Corollary 2.3 ( [8]). Let α(s) and β(s∗) be quaternionic curves in E3. If {α, β} are the Bertrand curve pair, the following
equations are easily visible;

t∗(s∗) = cos θt(s) + sin θb(s),
n∗(s∗) = n(s), (2.3)
b∗(s∗) = − sin θt(s) + cos θb(s).
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Corollary 2.4 ( [8]). Let α(s) and β(s∗) be quaternionic curves in E3. If {α, β} are the Bertrand curve pair, we can
write the following equations;

k∗ = k cos θ − r sin θ, (2.4)
r∗ = k sin θ + r cos θ.

3. Main Results

In this section, some of the known results about Bertrand curve pairs in 3-dimensional Euclidean space were ob-
tained using quaternonic properties. Then, many new and useful characterizations were obtained thanks to the quater-
nonic interior product in bertrand curves.

Theorem 3.1. Let α(s) be a spatial quaternionic curve in three-dimensional Euclidean space E3 with arc-length
parameter s and β(s∗) be the Bertrand curve pair of α(s) with arc-length parameter s∗. Then, the distance between
mutual points is fixed for each s ∈ I.

Proof. Suppose that α : I −→ E3 is a given spatial quaternionic curve. Taking the derivative of equation (2.1) according
to s and apply Frenet formulas following equations;

dβ
ds∗

ds∗

ds
= α′ + λ′1n + λ1n′,

t∗
ds∗

ds
= (1 − λ1k)t + λ′1n + λ1rb.

If the quaternionic internal product is performed with n both sides of the equation, the following result is obtained

ds∗

ds
h(t∗, n) = h((1 − λ1k)t + λ′1n(s) + λ1rb, n).

If the left side of the above equation is calculated, we have

ds∗

ds
h(t∗, n) =

1
2

[
t∗

ds∗

ds
× γn + n × γ(t∗

ds∗

ds
)
]
,

=
1
2

[
−

ds∗

ds
(t∗ × n) − (n × t∗)

ds∗

ds

]
.

Since n(s) and n∗(s∗) are linear dependents, the following result can be written.

1
2

ds∗

ds
[
−(t∗ × n∗) − (n∗ × t∗)

]
= 0. (3.1)

Now, if the right side of the same equation is calculated,

h((1 − λ1k)t + λ′1n + λ1rb, n) =
1
2

[−(1 − λ1k)(t × n) − λ′1(n × n) − λ1r(b × n) − (1 − λ1k)(n × t) − λ′1(n × n) (3.2)

result is reached. Finally, the result of is reached as it can be easily seen from equations (3.1) and (3.2),

λ′1 = 0, λ1 = c, c ∈ R.

□

Theorem 3.2. The α curve is a spatial quaternionic curve in 3-dimensional Euclidean space, and the β curve is the
Bertrand curve pair of the α curve. In that case, the angle between the tangent vectors of the α and β curves is constant.

Proof. The α(s) and β(s∗) curves are a Bertrand curve pair in 3-dimensional Euclidean space. Suppose the angle
between the tangent vectors of the α and β(s∗) curve is θ. Then, the following equation can be written,

h(t, t∗) = cos θ.

If the derivative of the above equation is obtained according to s,

d
ds

h(t, t∗) = h(kn, t∗) + h(t, k∗n∗
ds∗

ds
)
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result is obtained. If the necessary adjustments are made to this equation, we get

=
1
2

[
kn × γt∗ + t∗ × γ(kn)

]
+

1
2

ds∗

ds
[
t × γ(k∗n∗) + k∗n∗ × γt

]
=

1
2

[
−k(n × t∗) − k(t∗ × n)

]
+

1
2

ds∗

ds
[
−k∗(t × n∗) − k∗(n∗ × t)

]
= 0.

As can be easily seen from this equation, the result below can be written
d
ds

h(t, t∗) =
d
ds

cos θ = 0,

cos θ = c, c ∈ R.

□

Theorem 3.3. The α(s) be a spatial quaternionic curve in 3-dimensional Euclidean space and β(s∗) curve is the
Bertrand curve pair of the α(s) curve. k, r and k(s∗), r(s∗) with curvature and torsion of the α(s) and β(s∗) curves,
respectively. In this case, the following equations are available

k∗ = k cos θ − r sin θ, (3.3)
r∗ = k sin θ + r cos θ.

Proof. As is known from the definition of curvature and torsion, there is equality of,

k∗ = h((t∗)
′

, n∗), (3.4)
r∗ = h((n∗)′, b∗),

and

t∗ = cos θt + sin θb,
n∗ = n, (3.5)
b∗ = − sin θt + cos θn.

If the equation (3.4) is used in the equation (3.5),

k∗ = h((cos θt + sin θb)′, n),

=
1
2

[(− sin θ
dθ
ds

t + (k cos θ − r sin θ)n + cos θ
dθ
ds

b) × γn

+n × γ(− sin θ
dθ
ds

t + (k cos θ − r sin θ)n + cos θ
dθ
ds

b)]

=
1
2

[sin θ
dθ
ds

(t × n) + (k cos θ − r sin θ)(n × n) − cos θ
dθ
ds

(b × n)

+ sin θ
dθ
ds

(n × t) + (r sin θ − k cos θ)(n × n) − cos θ
dθ
ds

(n × b)]

= k cos θ − r sin θ.

On the other hand, if the necessary adjustments are made, the torsion of the β curve is obtained as follows.

r∗ = h((−kt + rb), (− sin θt + cos θb))

=
1
2

[
(−kt + rb) × γ(− sin θt + cos θb) + (cos θb − sin θt) × γ(rb − kt)

]
=

1
2

[−k sin θ(t × t) + k cos θ(t × b) + r sin θ(b × t) − r cos θ(b × b)]

−k sin θ(t × t) + r sin θ(t × b) + k cos θ(b × t) − r cos θ(b × b)

=
1
2

[2k sin θ − k cos θn + r sin θn + 2r cos θ − k sin θn + k cos θn]

= k sin θ + r cos θ.

□
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Theorem 3.4. The α(s) be a spatial quaternionic curve in 3-dimensional Euclidean space and β(s∗) curve is the
Bertrand curve pair of the α(s) curve. k, r with curvature and torsion of the α(s) curves, respectively. In this case, the
following equations are available

r =
(
k −

1
λ1

tan θ
)
.

Proof. If we take the derivative of the equation (2.1) according to s, we get the following

t∗
ds∗

ds
= (1 − λ1k)t + λ′1n + λ1rb. (3.6)

If quaternionic internal product is performed with b∗ on both sides of the above equality
ds∗

ds
h(b∗, t∗) = ((1 − λ1k)h(b∗ × t) + λ′1h(b∗ × n) + λ1rh(b∗ × b))

result is reached. If the left side of the equation is calculated, the following result is reached;

ds∗

ds
h(b∗, t∗) =

1
2

[
b∗ × γt∗

ds∗

ds
+ t∗

ds∗

ds
× γb∗

]
= 0,

and if the necessary calculations are made on the right side of the equation, the following result is reached;

((1 − λ1k)h(b∗ × t) + λ′1h(b∗ × n) + λ1rh(b∗ × b)) = (1 − λ1k) sin θ + λ1r cos θ.

So, we can easily see from the above equations;

r =
(
k −

1
λ1

tan θ
)

result is obtained and proof is completed. □

Theorem 3.5. Let α(s) be a spatial quaternionic curves in Euclidean space E3 and β(s∗) be the Bertrand curve pair
of α(s). r and r∗ torsions of the curve α(s) and β(s∗), respectively. r and r∗ are the same marked and r.r∗ product is
constant.

Proof. If equation (3.5) is used in equation (3.6), then

(cos θt − sin θb)
ds∗

ds
= (1 − λ1k)t + λ′1n + λ1rb.

If equations are synchronized mutually,

cos θ = (1 − λ1k)
ds
ds∗
,

sin θ = (−λ1r)
ds
ds∗
,

and

cos θ = (1 − λ1k∗)
ds∗

ds
,

sin θ = (−λ1r∗)
ds∗

ds
.

The following results can be written considering the equations above,

r =
sin θ
−λ1

ds∗

ds
,

r∗ =
sin θ
−λ1

ds
ds∗
,

finally, the result is obtained below,

r.r∗ =
sin2 θ

λ2
1

.
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1
λ2

1
= µ multiplied by r.r∗ can be written as follows,

r.r∗ = µ sin2 θ = c, c ∈ R.

As a result, because of µ sin2 θ ≥ 0, r and r∗ are the same marked. □

Theorem 3.6. Let α(s) be a spatial quaternionic curves in Euclidean space E3 and β(s∗) be the Bertrand curve pair
of α(s). The following results are available

i.
ds
ds∗
= cos θ − λ2k,

ii. r = −
sin θ
λ2
,

iii. tan θ =
−λ2r∗

1 − λ2k∗
.

Proof. i. If both sides of the (2.2) equation receive derivatives according to s∗,

dα(s)
ds
.

ds
ds∗

= t∗ + λ′2n∗ + λ2(n∗)
′

,

t
ds
ds∗

= (1 − λ2k∗)t∗ + λ′2n∗ + λ2r∗b∗. (3.7)

result is obtained. If the equation (3.5) is used in the (3.7) equation,

t
ds
ds∗

= (1 − λ2k∗)(cos θt + sin θb) + λ′2n + λ2r∗(− sin θt + cos θb) (3.8)

= [(cos θ − λ2k∗ cos θ − λ2r∗ sin θ)t + λ′2n(sin θ − λ2k∗ sin θ + λ2r∗ cos θ)b]

equality is achieved. If quaternionic inner product is performed with t on both sides of the equality,

h(t, t)
ds
ds∗

= (cos θ − λ2k∗ cos θ − λ2r∗ sin θ)h(t, t)

+λ′2h(t, n) + (sin θ − λ2k∗ sin θ + λ2r∗ cos θ)h(t, b)

and
ds
ds∗
= cos θ − λ2k∗ cos θ − λ2r∗ sin θ. (3.9)

If the equation (3.3) is used in equation (3.9), the first equation is proven.

ds
ds∗

= cos θ − λ2(k cos θ − r sin θ) cos θ − λ2(k sin θ + r cos θ) sin θ

= cos θ − λ2k. (3.10)

ii. If both sides of the equality (3.7) are made the quaternionic inner product with b∗, we have

h(b∗, t)
ds
ds∗
= (1 − λ2k∗)h(b∗, t∗) + λ′2h(b∗, n∗) + λ2r∗h(b∗, b∗).

As can be easily seen from the equation above,

− sin θ
ds
ds∗

= λ2r∗

= λ2(k sin θ + r cos θ)

and
ds
ds∗
= −λ2k − λ2r cot θ. (3.11)

Using equations (3.10) and (3.11), the following result is easily achieved,

r = −
sin θ
λ2
.

Thus, it is proven in the second equality.
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iii. If both sides of the equation (3.8) are made the quaternionic inner product with t∗,

h(t∗, t)
ds
ds∗

= (cos θ − λ2k∗ cos θ − λ2r∗ sin θ)h(t∗, t)

+λ′2h(t∗, n) + (sin θ − λ2k∗ sin θ + λ2r∗ cos θ)h(t∗, b),

cos θ
ds
ds∗

= (cos θ − λ2k∗ cos θ − λ2r∗ sin θ) cos θ,

and
ds
ds∗
= cos θ(1 − λ2k∗) − λ2r∗ sin θ

result is reached. On the other hand, if quaternionic inner product is performed with b on both sides of equation (3.8),

h(b, t)
ds
ds∗

= (cos θ − λ2k∗ cos θ − λ2r∗ sin θ)h(b, t)

+λ′2h(b, n) + (sin θ − λ2k∗ sin θ + λ2r∗ cos θ)h(b, b),

sin θ − λ2k∗ sin θ + λ2r∗ cos θ = 0
obtain. Finally, the following result can be written from the above equation,

tan θ =
−λ2r∗

1 − λ2k∗
.

□

Thus, the proof of the theorem is completed by proving it in the final equality.

Theorem 3.7. Let α(s) be a spatial quaternionic curves in Euclidean space E3 and β(s∗) be the Bertrand curve pair
of α(s). The following equality exists

λ1r∗ + λ2r = 0.

Proof. Suppose that α : I −→ E3 be a quaternionic curve. Taking the derivative of equation (2.1) according to s, we
have

t∗
ds∗

ds
= (1 − λ1k)t + λ′1n + λrb. (3.12)

If we use the equation (2.3) on the right side of the above equation, we obtain

t∗
ds∗

ds
= (1 − λ1k)(cos θt∗ − sin θb∗) + λ′1n∗ + λr(sin θt∗ + cos θb∗)

and
t∗

ds∗

ds
= (cos θ − λ1k cos θ + λ1r sin θ)t∗ + λ′1n∗ + (− sin θ + λ1k sin θ + λ1r cos θ)b∗.

If quaternonic internal product is performed with b∗ on both sides of the equality, the following result can be written,

sin θ = λ1k sin θ + λ1r cos θ.

If the equation (2.4) is used in the equation above, the following result is obtained,

λ1 =
sin θ
r∗
. (3.13)

On the other hand, taking the derivative of equation (2.2) according to s∗,

t
ds
ds∗
= (1 − λ2k∗)t∗ + λ′2n∗ + λ2r∗b∗. (3.14)

If we use equation (2.3) on the right side of the above equation, we have

t
ds
ds∗
= (1 − λ2k∗)(cos θt + sin θb) + λ′2n + λr∗(− sin θt + cos θb)

and
t

ds
ds∗
= (cos θ − λ2k∗ cos θ − λ2r∗ sin θ)t + λ′2n + (sin θ − λ2k∗ sin θ + λ2r∗ cos θ)b.

If both sides of the equality are made the quaternionic inner product with b, we obtain

sin θ = λ2k∗ sin θ − λ2r∗ cos θ.
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On the other hand, if we use equation (2.4) in above equation, the following equation find as

λ2 = −
sin θ

r
.

Finally, if we write the equation (3.12) in equation (3.13), we complete the proof as

λ1r∗ + λ2r = 0.

□

Theorem 3.8. Let α(s) be a spatial quaternionic curves in Euclidean space E3 and β(s∗) be the Bertrand curve pair
of α(s). Then, there is equality below;

s∗ =
∫
λ1r
sin θ

ds and s = −
∫
λ2r∗

sin θ
ds∗.

Proof. If both sides of the equation (3.12) are made the quaternionic inner product with b, we can easily see that

h(b, t∗)
ds∗

ds
= λ1r,

ds∗

ds
=
λ1r
sin θ
,

s∗ =
∫
λ1r
sin θ

ds.

On the other hand, if both sides of the equation (3.12) are made the quaternionic inner product with b∗, we can write

h(t, b∗)
ds
ds∗

= λ2r∗,

ds
ds∗

= −
λ2r∗

sin θ
,

s = −

∫
λ2r∗

sin θ
ds.

□

Theorem 3.9. Let α(s) be a spatial quaternionic curves in Euclidean space E3 and β(s∗) be the Bertrand curve pair
of α(s). The following equality exists

s∗ = s + c, c ∈ R.

Proof. The following equation can be typed because the β(s∗) curve is the Bertrand curve pair of the α(s) curve;

n(s) = n∗(s∗).

If both sides of the above equality are derivative according to s
dn
ds

=
dn∗

ds∗
.
ds∗

ds
,

−kt + rb = (−k∗t∗ + rb∗)
ds∗

ds
result is reached. If quaternonic internal product with t is performed on both sides of this result,

−kh(t, t) + rh(t, b) = (−k∗h(t, t∗) + rh(t, b∗))
ds∗

ds
,

−k = −(k∗ cos θ + r∗ sin θ)
ds∗

ds
.

If the equation (2.4) is used in the equation above, this can be seen

k = k
ds∗

ds
and

s∗ = s + c, c ∈ R.
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□

Theorem 3.10. Let α(s) be a spatial quaternionic curves in Euclidean space E3 and β(s∗) be the Bertrand curve pair
of α(s). k, r and k∗, r∗ curvature and torsions of α(s) and β(s∗), respectively. The following result is available

λ1 =
k − k∗

k2 − r2 .

Proof. Suppose that α : I −→ E3 be a quaternionic curve. If derivative of the (2.1) equation is taken according to s,

t∗
ds∗

ds
= (1 − λ1k)t + λ

′

1n + λ1rb

the result is reached. If a derivative of this equation is taken according to s once again,

k∗n∗(
ds∗

ds
)2 + t∗

d2s∗

ds2 = (−λ
′

1k − λ1k
′

)t + (1 − λ1k)kn + λ
′′

1n + λ
′

1(−kt + rb) + λ
′

1rb + λ
′

1r
′

b − λ
′

1r2n

= [(λ1k)
′

+ λ
′

1k)]t + (k − λ1k2 − λ1r2)n + [(λ1k)
′

+ λ
′

1r]b.

If both sides of the above equality are made quaternionic inner product by n,

k∗(
ds∗

ds
)2 = k − λ1(k2 − r2).

If the equation
ds∗

ds
= 1, is used in this equation, the following equation is easily visible,

λ1 =
k − k∗

k2 − r2 .

□

Theorem 3.11. Let α(s) be a spatial quaternionic curves in Euclidean space E3 and β(s∗) be the Bertrand curve pair
of α(s). k, r and k∗, r∗ curvature and torsions of α(s) and β(s∗), respectively. The following result is available

λ1

λ2
=

k∗ + r∗ cot θ
k + r cot θ

.

Proof. The following equation is available from the (3.12) equation,

t∗
ds∗

ds
= (1 − λ1k)t + λ

′

1n + λ1rb.

If equations number (2.3) are used in the equation above,

(cos θt + sin θb)
ds∗

ds
= (1 − λ1k)t + λ

′

1n + λ1rb,

1 − λ1k = cos θ
ds∗

ds
,

and

λ1r = sin θ
ds∗

ds
.

From the above two equations, we obtain

λ1 =
1

k + r cot θ
. (3.15)

On the other hand, using the equation (3.14) the following result can be written,

t
ds
ds∗
= (1 − λ2k∗)t∗ + λ′2n∗ + λ2r∗b∗.

If we use equation (2.3) in the above equation,

(cos θt∗ − sin θb∗)
ds
ds∗

= (1 − λ2k∗)t∗ + λ
′

2n∗ + λ2r∗b∗,

1 − λ2k∗ = cos θ
ds
ds∗
,
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and

λ2r∗ = sin θ
ds
ds∗

result is reached. From the above two equations,

λ2 =
1

k∗ + r∗ cot θ
(3.16)

is obtained. Using the equations (3.15) and (3.16), the following equality is easily visible,
λ1

λ2
=

k∗ + r∗ cot θ
k + r cot θ

.

□

Example 3.12. Let α : I ⊂ R→ E3 → and β : I ⊂ R→ E3 be a regular with unit speed quaternionic Bertrand curve
pair in R3 parameterized by

α(s) =
cos

s
5
, sin

s
5
,

√
24
5

s


and Frenet elements of the α curve

t =
−1

5
sin

s
5
,

1
5

cos
s
5
,

√
24
5

 ,
n =

(
−

1
25

cos
s
5
, −

1
25

sin
s
5
, 0

)
,

b =

 √24
125

sin
s
5
, −

√
24

125
cos

s
5
,

1
125


are obtained. Considering the equation number (2.1) here, the Bertrand curve pair of the α curve for λ = 1 is as follows

β(s) =
24

25
cos

s
5
,

24
25

sin
s
5
,

√
24
5

s
 .

The view of the quaternionic Bertrand curve pair below.
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Figure 1. Quaternionic Bertrand curve pair α(s)(Red) and β(s)(Blue)
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4. Conclusion

In this study, some characterizations of Bertrand curve pair, which is one of the most popular curve pairs in differ-
ential geometry, were obtained using quaternionic properties and finally visualized with the help of examples.
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