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Abstract

We employing a minimization arguments on appropriate Nehari manifolds, we obtain ground state solutions
for a non-local elliptic system driven by the fractional a(.)-Laplacian operator, with Dirichlet boundary
conditions type.
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1. Introduction

The aim of this paper is to study the existence of ground state solutions for the following non-local
problem 

(−∆)sa1(.)u = Hu(x, u, v) inΩ,

(−∆)sa2(.)v = Hv(x, u, v) inΩ,

u = v = 0 on RN\Ω,
(1)

where Ω ⊂ RN is bounded open subset with Lipschitz boundary ∂Ω, s ∈ (0, 1), Hu, Hv denote the partial
derivatives of H with respect to the second variable and the third variable and (−∆)sai(.) represents the

non-local fractional ai(.)-Laplacian operator of elliptic type introduced in [12] and defined as,

(−∆)sai(.)u(x) = P.V

∫
RN

ai

(
|u(x)− u(y)|

|x− y|s

)
u(x)− u(y)

|x− y|s
dy

|x− y|N
, (2)
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for all x ∈ RN , where P.V is the principal value and ai=1,2 : R+ → R+ are two functions given later.
We recall that a1(t) = |t|p−2t, a2(t) = |t|q−2t (for 1 < q ≤ p < N , N > ps, t > 0), satisfies (ϕ1)-(ϕ2)
in hypothesis, and the operator (2) is reduced to the well know non-local fractional p-Laplacian operator.
Moreover, for the variable exponent case, we find the fractional p(x, .)-Laplacian operator which is given by

(−∆)sp(.)u(x) = lim
ϵ→0

∫
RN\Bϵ

|u(x)− u(y)|p(x)−2(u(x)− u(y))

|x− y|N+sp(x,y)
dy for x ∈ RN ,

and the system (1) reduces to the fractional (p(.), q(.))-Laplacian system studied in [9] and given as:
(−∆)sp(.)u = Hu(x, u, v) inΩ,

(−∆)sq(.)v = Hv(x, u, v) inΩ,

u = v = 0 on RN\Ω.
(3)

There has also been a great deal of interest in the existence of solutions for systems like (3). For this reason,
we have many researchers in the litterature who studied this type of systems by using some important
methods, such as variational method, Nehari manifolds and fibering method, three critical points theorem
(see for instance [2, 3, 13]). In addition, this type of operator can be used for many purposes., such as,
phase transition phenomena, population dynamics, continuum mechanics, see for example [19, 17, 16]. The
fractional operator (−∆)sai(.) have also been employed in a number of problems, like, a non-local Kirchhoff

problem (see [6]):K
(∫

Ω×Ω
A
( |u(x)− u(y)|

|x− y|s
) dsdy

|x− y|N
)
(−∆)sa(.)u = Hu(x, u) inΩ,

u = 0 on RN\Ω,

where K is the Kirchhoff function and A is an N -function. As well Azroul et al in [5], by means of
Ekeland’s variational principal and direct variational approach, they investigate the existence of nontrivial
weak solutions for the following non-local problems:{

(−∆)sa(.)u+ a(|u|)u = λh(x, u) inΩ,

u = 0 on RN\Ω.

In [20] we studied the fractional A-Kirchhoff system type, we used the Mountain pass theorem to get a weak
solution to the following system

K1

[
F1(u)

]
(−∆)sa1(.)

u = Hu(x, u, v) inΩ,

K2

[
F2(v)

]
(−∆)sa2(.)

v = Hu(x, u, v) inΩ,

u = v = 0 on RN\Ω,

where the functional Fi=1,2 : X
s,Ai
0 (Ω) → R is defined by

Fi(u) =

∫
Ω2

Ai

(
|u(x)− u(y)|

|x− y|s

)
dxdy

|x− y|N
, (4)

where the space Xs,Ai
0 (Ω) is defined as follows

Xs,Ai
0 (Ω) =

{
u ∈ Xs,Ai(RN ) : u = 0 a.e RN \ Ω

}
,

which equipped by the Gagliardo semi-norm [.]s,Ai , given by

[u]s,Ai = inf

{
λ > 0 :

∫
Ω

∫
Ω
Ai

(
|u(x)− u(y)|
λ|x− y|s

)
|x− y|−Ndxdy ≤ 1

}
,
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and Xs,Ai(Ω) is the fractional Orlicz-Sobolev spaces (see [12]) defined by

Xs,Ai(Ω) =

{
u ∈ LAi(Ω) :

∫
Ω

∫
Ω
Ai

(
λ|u(x)− u(y)|

|x− y|s

)
|x− y|−Ndxdy <∞

}
.

This space is equipped with the norm,

||u||s,Ai = ||u||Ai + [u]s,Ai ,

where LA(Ω) is the Orlicz space given by

LA(Ω) =
{
u : Ω → Rmesurable function such that

∫
Ω
A
(
λ|u(x)|)

)
dx < +∞, λ > 0

}
,

equipped with the usual norm ∥u∥A = inf
{
λ > 0 :

∫
Ω
A
( |u(x)|

λ

)
dx ≤ 1

}
.

In this paper, we use the fibering map analysis and the Nehari manifold approach to solve problem (1).
The approach is not new but the obtained results are. Our work is motivated by the work of Corrêa et al
[15]. The main difficulty in this work arises from the non-homogonitie of the operator (2).

This work is structured as follows. In Section. 2 we briefly recall some properties of Orlicz and fractional
Orlicz Sobolev spaces. Section. 3 is devoted to specify the assumptions on data and showing our existence
results of problem (1) and its proof.

2. Some preliminary results

The reader is refered to [1, 4, 10, 12, 21] for more details on Orlicz and fractional Orlicz-Sobolev space.

Let’s A : R+ → R+ be an N -function, i.e. A is a convex even function and is represented as follows:

A(t) =

∫ t

0
a(r) dr,

where a : R+ → R+ is satisfies:

a(t) > 0 for t > 0, lim
t→∞

a(t) = ∞, a(0) = 0, (5)

and is a non-decreasing and right continuous function.
Let’s remember that an N -function A is satisfied a ∆2-condition (A ∈ ∆2), if for some constant k > 0,

A(2t) ≤ k A(t) for every t > 0. (6)

Let A and B be two N -functions. The notation B ≪ A means that, for each ε > 0,

B(t)

A(εt)
→ 0 as t→ ∞.

Recall that, the Hölder inequality holds∫
Ω
|u(x)v(x)|dx ≤ ||u||A||v||(A) for all u ∈ LA(Ω) and v ∈ LA(Ω),

where A is the complementary function of A and given by this relationship

A(t) := sup
r≥0

{tr −A(r)}.
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The Young inequality reads as follows:

st ≤ A(s) +A(t) for all t, s ≥ 0. (7)

The fact that, A ∈ ∆2 implies that

uk → u in LA(Ω) ⇔
∫
Ω
A(uk − u)dx→ 0. (8)

We assume that

(H0)

∫ 1

0

A−1
i (t)

t1+
s
N

dt <∞ and (H∞)

∫ +∞

1

A−1
i (t)

t1+
s
N

dt = +∞ for s ∈(0,1 ).

Under (H0) and (H∞), we introduce the conjugate N -function, denoted A∗, given by the following expression
of its inverse in R+:

(A∗
i )

−1(t) =

∫ t

0

A−1
i (r)

r
N+s
N

dr for t ≥ 0. (9)

Now, we set some propriaties on the fractional Orlicz-Sobolev spaces.

Theorem 2.1 (Generalized Poincaré inequality). [7] Let Ai be an N -function. Then there exists a positive
constant M such that,

||u||Ai ≤M [u]s,Ai ∀u ∈ Xs,Ai
0 (Ω). (10)

Remark 1. If Ω is bounded and Ai be an N -function, then [u]s,Ai is a norm of Xs,Ai
0 (Ω) equivalent to

||u||s,Ai . Moreover, (Xs,Ai
0 (Ω), [u]s,Ai) is a separable, reflexive Banach space, if and only if Ai ∈ ∆2 and

Ai ∈ ∆2 (see [12]). Furthermore if Ai(
√
t) is convex, then the space (Xs,Ai

0 (Ω), [u]s,Ai) is uniformly convex.

Theorem 2.2. ([7]) Let Ω be a bounded open set in RN , and C0,1−regularity with bounded boundary. If
(H0), (H∞) and (50) (in appendix) hold true, then the embedding Xs,Ai(Ω) ↪→ LA∗

i
(Ω) is continuous, and

the embedding Xs,Ai(Ω) ↪→ LB(Ω) is compact for any N-function B ≪ A∗
i .

Remark 2. By Lemma 3.12, Lemma 3.14 and (50), we show that Ai, Ai ∈ ∆2.

Remark 3. Under hypotheses (H1) and by Theorem 2.2 the following embeddings Xs,Ai
0 (Ω) ↪→ LΨi(Ω) and

Xs,Ai
0 (Ω) ↪→ LΨi(Ω) are compact.

Remark 4. Based on the Young’s inequality ( 7 ), H(x, 0, 0) = 0 and the fact

H(x, u, v) =

∫ u

0
Hr(x, r, v)dr +

∫ v

0
Ht(x, 0, t)dt ∀(x, u, v) ∈ Ω× R× R. (11)

By (14) and Lemma 3.12 (in appendix), there exists a constant c4 > 0 such that

|H(x, u, v)| ≤ c4(Ψ1(u) + Ψ2(v)), ∀(x, u, v) ∈ Ω× R× R. (12)

We have now all the required tools to examine our problem (1). To do this, we will need to define our
work space X := Xs,A1

0 (Ω)×Xs,A2
0 (Ω) under the norm

||(u, v)|| := [u]s,A1 + [v]s,A2

≃ ||u||s,A1 + ||v||s,A2

By Remark (1), we can show that X is a separable and reflexive Banach space.
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3. Hypothesis and Nehari manifolds approach.

To state our result, we assume the following condition on the function ai and H:
The functions ai : R+ → R+ are of class C2 and satisfies the following conditions:
(ϕ1) lim

t→0
tai(t) = 0, and lim

t→∞
tai(t) = ∞.

(ϕ2) t→ tai(t) is strictly increasing.
(ϕ3):

−1 < li − 2 := inf
t>0

(tai(t))
′′t

(tai(t))′
≤ sup

t>0

(tai(t))
′′t

(tai(t))′
:= ni − 2 ≤min{N − 2, lΨi − 2, lΨi

− 2}.

It’s pretty obviously if we applying arguments as in [14], we show easily that (ϕ3) implies the following
condition:

(ϕ3)
′: 1 < li := inf

t>0

t2ai(t)

Ai(t)
≤ sup

t>0

t2ai(t)

Ai(t)
:= ni < min{N, lΨi , lΨi

}.

and H satisfies:
(H0): H : Ω× R× R → R is a C1 function such that H(x, 0, 0) = 0 for all x ∈ Ω.
(H1): There exists a complementary functions (Ψi,Ψi) increasing essentially more slowly than A∗

i=1,2 near
infinity such that

ni < lΨi ≤ inf
t>0

tψi(t)

Ψi(t)
≤ sup

t>0

tψi(t)

Ψi(t)
:= nΨi <∞, (13)

where Ψi(t) :=

∫ |t|

0
ψi(r)dr, Ψi(t) :=

∫ |t|

0
ψi(r)dr for all t ∈ R. Moreover,{

|Hu(x, u, v)| ≤ c1(ψ1(|u|) + Ψ
−1
1 (Ψ2(v))),

|Hv(x, u, v)| ≤ c1(ψ2(|v|) + Ψ
−1
2 (Ψ1(u))),

(14)

for all (x, u, v) ∈ Ω× R× R, where c1 > 0.

(H2): lim
|(u,v)|→+∞

H(x, u, v)

|u|n1 + |v|n2
= +∞, uniformly for all x in Ω.

(H3): The function

(u, v) 7→ min{Hu(x, u, v), Hv(x, u, v)}
|u|n1−2u+ |v|n2−2v

is increasing on R2\{(0, 0)}.
Let Fi=1;2. be the function defined in (4), then we have the following Lemmas:

Lemma 3.1. ([10] Lemma 4.1 ) The following properties hold true:
1)

Fi

(
u

[u]s,Ai

)
≤ 1, for all u ∈ Xs,Ai

0 \ {0},

2)
ξ0([u]s,Ai) ≤ F (u) ≤ ξ1([u]s,Ai), for all u ∈ Xs,Ai

0 .

Lemma 3.2. [7] The functional Fi is weak lower semi-continuous.

At that point the fractional ai(.)-Laplacian operator defined in (2) is well defined between Xs,Ai
0 (Ω) and

its dual Space (Xs,Ai
0 (Ω))∗. In fact, in ([12], Theorem 6.12) the following representation formula is provided

⟨F ′
i (u), v⟩ =

∫
Ω

∫
Ω
ai

(
|u(x)− u(y)|

|x− y|s

)
(u(x)− u(y))(v(x)− v(y))

|x− y|2s
dxdy

|x− y|N
= ⟨(−∆)saiu, v⟩,

(15)

for all u, v ∈ Xs,Ai
0 (Ω).
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Lemma 3.3. [11] Suppose that Ai(
√
t) is convex. Moreover, we assume that the sequence (wk) converges

weakly to w in Xs,Ai
0 (Ω) and

lim sup⟨F ′
i (wk), wk − w⟩ ≤ 0. (16)

Then (wk) converge strongly to w ∈ Xs,Ai
0 (Ω).

We can see that the energy functional I on X corresponding to system (1) is as follows

I(u, v) := F1(u) + F2(v)−Υ(u, v), for all (u, v) ∈ X,

where Υ(u, v) =

∫
Ω
H(x, u, v)dx. Under the assumptions (50) and (H1), by similar arguments as ([8], lemma

3.2 ;[12], Theorem 6.12) we can prove that I is well-defined and of class C1(X,R) and

⟨I ′(u, v), (u, v)⟩ =

∫
Ω×Ω

a1(|hu|)huhudµ+

∫
Ω×Ω

a2(|hv|)hvhvdµ

−
∫
Ω
Hu(x, u, v)udx−

∫
Ω
Hv(x, u, v)vdx,

(17)

for all (u, v) ∈ X, where hu = u(x)−u(y)
|x−y|s and dµ = dxdy

|x−y|N . Then, the critical points of I on X are weak

solutions of system (1). However, the energy function I is not bounded below on the whole space X. In
fact, using (12) and when ||(v, u)|| > 1 by Lemma 3.1 and Poincaré’s inequality we infer that

I(u, v) ≥ min{||u||l1s,A1
, ||u||n1

s,A1
}+min{||v||l2s,A2

, ||v||n2
s,A2

}

− c4

∫
Ω
Ψ1(v)dx− c4

∫
Ω
Ψ2(v)dx

≥ ||u||l1s,A1
+ ||v||l2s,A2

− c4max{||u||lΨ1
Ψ1

; ||u||nΨ1
Ψ1

} − c4max{||v||lΨ2
Ψ2

; ||v||nΨ2
Ψ2

}
≥ ||u||l1s,A1

+ ||v||l2s,A2
− c4||u||

nΨ1
Ψ1

− c4||v||
nΨ2
Ψ2

≥ ||u||l1s,A1
+ ||v||l2s,A2

− c5||u||
nΨ1
s,A1

− c5||v||
nΨ2
s,A2

.

Since 1 < li < nΨi , then I is not bounded below on the whole space X. But is bounded below on an
appropriate subset N of X. For that we will minimize the energy functional I on the constraint of Nehari
manifold

N =
{
(u, v) ∈ X\{0, 0} : ⟨I ′(u, v), (u, v)⟩ = 0

}
.

Main result.

The main result of this section is:

Theorem 3.4. Assume that (ϕ1)-(ϕ3) and (H0)-(H3) hold. Then the system (1) possesses a nontrivial
ground state solution (u, v) in the sense that there is (u, v) ∈ N such that∫

Ω×Ω
a1(|hu|)huhudµ+

∫
Ω×Ω

a2(|hv|)hvhvdµ =

∫
Ω
Hu(x, u, v)udx+

∫
Ω
Hv(x, u, v)vdx,

I(u, v) = inf
(û,v̂)∈N

I(û, v̂).

In order to prove Theorem 3.4, we require the following Lemmas

Lemma 3.5. Suppose that (50) and (H1) holds then we have

(i)

∫
Ω
Hu(x, uk, vk)(uk − u)dx→ 0 and (ii)

∫
Ω
Hv(x, uk, vk)(vk − v)dx→ 0.
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Proof. Let {(uk, vk)} be sequence in X, such that (uk, vk)⇀ (u, v), by Remark 3 we infer that:
(∗) uk ⇀ u in Xs,A1

0 (Ω), uk → u in LΨ1(Ω), uk → u a.e Ω and uk ≤ h1 for some h1 ∈ LΨ1(Ω),

(∗∗) vk ⇀ v in Xs,A2
0 (Ω), vk → v in LΨ2(Ω), vk → v a.e Ω and uk ≤ h2 for some h2 ∈ LΨ1(Ω).

Then we have by (H1) and Höder’s inequality∣∣∣∣ ∫
Ω
Hu(x, uk, vk)(uk − u)dx

∣∣∣∣ ≤ 2c1||ψ1(|uk|) + Ψ
−1
1 (Ψ2(vk))||Ψ1

||uk − u||Ψ1 . (18)

Assumption (H1) shows that the complement (Ψ1,Ψ1) ∈ ∆2, which together with the convexity of N -
function, (54), Remark 3, (∗) and (∗∗) implies that∫

Ω
Ψ1(ψ1(|uk|) + Ψ

−1
1 (Ψ2(|vk|)))dx ≤ C,

which, together with (54) again, shows that

||ψ1(|uk|) + Ψ
−1
1 (Ψ2(vk))||Ψ1

≤ C, (19)

for some C > 0. Moreover, (∗) and (8) shows that

||uk − u||Ψ1 → 0.

Then, combining (19), (40) and (47) (see appendix), we get the item (i). Similarly, we proof item (ii).

Lemma 3.6. Assume that (H3) is hold, then the functions r 7→ 1
GHr(x, r, z)r − Hr(x, r, z) and z 7→

1
GHz(x, r, z)z − Hz(x, 0, z) are increasing in (0;∞) for each x ∈ Ω, where Hr(x, r, z) =

∫ r

0
Hp(x, p, z)dp,

Hz(x, 0, z) =

∫ z

0
Hq(x, 0, q)dq and G = min{n1, n2}.

Proof. By using (H3) we have

d

dr

(
1

G
Hr(x, r, z)r −Hr(x, r, z)

)
=
tG

G

d

dr

(
Hr(x, r, z)

rG−1

)
≥ tG

G

d

dr

(
Hr(x, r, z)

rG−1 + zG−1

)
> 0, (20)

for all r > 0 and x ∈ Ω. Similary,

d

dz

(
1

G
Hz(x, r, z)z −Hz(x, 0, z)

)
=
tG

G

d

dz

(
Hz(x, 0, z)

zG−1

)
> 0, z > 0, x ∈ Ω, (21)

At this point, aiming to determited the behavior of I on N we introduce the fibering map Φu,v : R+ → R
associated to the Nehari manifold given by

Φu,v(t) = I(tu, tv), for all (u, v) ∈ X.

Then we get the following properties:

Proposition 5. Suppose that (ϕ1)− (ϕ3) and (H0)− (H3) hold. Then

Φu,v(t)

tn1 + tn2
> 0 as t→ 0 and

Φu,v(t)

tn1 + tn2
= −∞ as t→ ∞.
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Proof. Let’s claim the first limit. By equation (12) there exists c4 > 0 such that

|H(x, u, v)| ≤ c4(Ψ1(u) + Ψ2(v)),

for a given ϵ, t ∈ (0, 1). By using Lemma 3.1, Lemma 2.3 in [6] and (51) (in appendix), we infer

Φu,v(t) >
tn1ϵ

λ1

∫
Ω
A1(|u|)dx+

tn2ϵ

λ2

∫
Ω
A2(|v|)dx− c4(t

lΨ1 + tlΨ2 )

× max

{∫
Ω
Ψ1(u)dx,

∫
Ω
Ψ2(v)dx

}
.

By the arguments above, we have for all (u, v) ∈ X\{0, 0}

Φu,v(t)

tn1 + tn2
> min

{
ϵ

λ1

∫
Ω
A1(|u|)dx,

ϵ

λ2

∫
Ω
A2(|v|)dx

}
− c4

tlΨ1 + tlΨ2

tn1 + tn2

× max

{∫
Ω
Ψ1(u)dx,

∫
Ω
Ψ2(v)dx

}
.

Using the fact that ni < lΨi , then the last inequality rewrites as

Φu,v(t)

tn1 + tn2
> min

{
ϵ

λ1

∫
Ω
A1(|u|)dx,

ϵ

λ2

∫
Ω
A2(|v|)dx

}
+ o(1).

Hence

lim
t→0

Φu,v(t)

tn1 + tn2
> min

{
ϵ

λ1

∫
Ω
A1(|u|)dx,

ϵ

λ2

∫
Ω
A2(|v|)dx

}
≥ 0.

Now for the second limit. By using (51), we have

Φu,v(t)

tn1 + tn2
≤ max

{∫
Ω
A1(|u|)dx,

∫
Ω
A2(|v|)dx

}
−
∫
Ω

H(x, tu, tv)

tn1 + tn2
dx. (22)

Moreover, we can see that∫
Ω

H(x, tu, tv)

tn1 + tn2
dx ≥

∫
Ω

H(x, tu, tv)

|tu|n1 + |tv|n2
×min{|u|n1 + |v|n2}dx→ +∞. (23)

In fact that condition (H3) and (23) we infer that∫
Ω

H(x, tu, tv)

tn1 + tn2
dx→ +∞. (24)

Combining (24) in (22) we proof the second limit.

We have already seen that I is of class C1(X,R), then by using (17), the first derivative of the map Φu,v

is given by

Φ′
u,v(t) = ⟨I ′(tu, tv), (u, v)⟩

=

∫
Ω×Ω

ta1(|thu|)h2udµ+

∫
Ω×Ω

ta2(|thv|)h2vdµ

−
∫
Ω
Hu(x, tu, tv)udx−

∫
Ω
Hv(x, tu, tv)vdx for all t > 0.

(25)

Then we have the following properties:
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Proposition 6. Suppose that (ϕ1)− (ϕ3) and (H0)− (H3) hold. Then

Φ′
u,v(t)

tn1 + tn2
> 0 as t→ 0 and

Φ′
u,v(t)

tn1 + tn2
= −∞ as t→ ∞.

Proof. For the first limit, let’s first show that, by equation (12) there exists c1 > 0 such that∫
Ω
|Hu(x, tu, tv)||u|dx+

∫
Ω
|Hv(x, tu, tv)||v|dx ≤ c1

∫
Ω

(
ψ1(|tu|) + Ψ

−1
1 (Ψ2(tv))

)
|u|dx

+c1

∫
Ω

(
ψ2(|tv|) + Ψ

−1
2 (Ψ1(tu)

)
|v|dx,

(26)

using Hölder inequality for right side integral we have that,∫
Ω

(
ψ1(|tu|) + Ψ

−1
1 (Ψ2(|tv|))

)
udx ≤ 1

t

∫
Ω

(
Ψ1(ψ1(|tu|)) + Ψ1(|tu|) + Ψ2(|tv|) + Ψ1(|tu|)

≤ 1

t

∫
Ω

(
(nΨ1 − 1)Ψ1(|tu|) + Ψ1(|tu|) + Ψ2(|tv|) + Ψ1(|tu|)

≤ 1

t

∫
Ω

(
nΨ1Ψ1(|tu|) + Ψ1(|tu|) + Ψ2(|tv|)

)
dx,

for 0 < t < 1 and by applying (51), we infer that∫
Ω

(
ψ1(|tu|) +Ψ

−1
1 (Ψ2(|tv|))

)
|u|dx ≤ nΨ1t

lΨ1
−1

∫
Ω
Ψ1(|u|)dx+ t

lΨ1
−1

∫
Ω
Ψ1(|u|)

+tlΨ2
−1

∫
Ω
Ψ2(|v|)dx.

(27)

By same argument above we have∫
Ω

(
ψ2(|tv|) +Ψ

−1
2 (Ψ1(|tu|))

)
|v|dx ≤ nΨ2t

lΨ2
−1

∫
Ω
Ψ2(|v|)dx+ t

lΨ2
−1

∫
Ω
Ψ2(|v|)

+tlΨ1
−1

∫
Ω
Ψ1(|u|)dx.

(28)

Combining (27) and (28) in (26) we get that∫
Ω
|Hu(x, tu, tv)||u|dx +

∫
Ω
|Hv(x, tu, tv)||v|dx ≤ c1(t

lΨ1
−1 + tlΨ2

−1)

×max
{
(nΨ1 + 1)

∫
Ω
Ψ1(|u|)dx, (nΨ2 + 1)

∫
Ω
Ψ2(|v|)dx

}
+c1(t

lΨ1
−1

+ t
lΨ2

−1
)max

{∫
Ω
Ψ1(|u|)dx,

∫
Ω
Ψ2(|v|)dx

}
.

(29)

Now using (ϕ3)
′ and (29) in (25) we have

Φ′
u,v(t) ≥

l1
t

∫
Ω×Ω

A1(|thu|)dµ+
l2
t

∫
Ω×Ω

A2(|thv|)dµ− c1(t
lΨ1

−1 + tlΨ2
−1)

×max
{
(nΨ1 + 1)

∫
Ω
Ψ1(|u|)dx, (nΨ2 + 1)

∫
Ω
Ψ2(|v|)dx

}
− c1(t

lΨ1
−1

+ t
lΨ2

−1
)max

{∫
Ω
Ψ1(|u|)dx,

∫
Ω
Ψ2(|v|)dx

}
.
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Now using Lemma 2.3 in [6] and (51), we infer that

Φ′
u,v(t) ≥

l1t
n1−1

λ1

∫
Ω
A1(|u|)dx+

l2t
n2−1

λ2

∫
Ω
A2(|v|)dx− c1(t

lΨ1
−1 + tlΨ2

−1)

×max
{
(nΨ1 + 1)

∫
Ω
Ψ1(|u|)dx, (nΨ2 + 1)

∫
Ω
Ψ2(|v|)dx

}
− c1(t

lΨ1
−1

+ t
lΨ2

−1
)max

{∫
Ω
Ψ1(|u|)dx,

∫
Ω
Ψ2(|v|)dx

}
.

then,

Φ′
u,v(t)

tn1−1 + tn2−1
≥ min

{ l1
λ1

∫
Ω
A1(|u|)dx,

l2
λ2

∫
Ω
A2(|v|)dx

}
− c1(t

lΨ1
−1 + tlΨ2

−1)

tn1−1 + tn2−1

×max
{
(nΨ1 + 1)

∫
Ω
Ψ1(|u|)dx, (nΨ2 + 1)

∫
Ω
Ψ2(|v|)dx

}
− c1(t

lΨ1
−1

+ t
lΨ2

−1
)

tn1−1 + tn2−1
max

{∫
Ω
Ψ1(|u|)dx,

∫
Ω
Ψ2(|v|)dx

}
,

the fact that ni < min{lΨi , lΨi
} we conclude the result for the first limit. For the second limit, we have

Φ′
u,v(t)

tn1−1 + tn2−1
≤ max

{
n1

∫
Ω×Ω

A1(|hu|)dµ, n2
∫
Ω×Ω

A2(|hv|)dµ
}

−
∫
Ω

Hu(x, tu, tv)|u|
tn1−1 + tn2−1

dx−
∫
Ω

Hv(x, tu, tv)|v|
tn1−1 + tn2−1

dx.

(30)

Using (11) we have

H(x, u, v)

|u|n1 + |v|n2
=

∫ u

0

Hr(x, r, v)

|u|n1 + |v|n2
dr +

∫ v

0

Hz(x, 0, z)

|u|n1 + |v|n2
dr

≤
∫ u

0

Hr(x, r, v)

|r|n1−1 + |v|n2−1
× |r|n1−1 + |v|n2−1

|r|n1 + |v|n2
dr

+

∫ v

0

Hz(x, 0, z)

|z|n2−1
× |u|n1−1 + |z|n2−1

|u|n1 + |z|n2
dz.

(31)

We can easly see that
|u|n1−1 + |z|n2−1

|u|n1 + |z|n2
≤ 1 and

|r|n1−1 + |v|n2−1

|r|n1 + |v|n2
≤ 1. (32)

As a conseqence of (H3) we infer that

Hz(x, 0, z)

|z|n2−1
≤ Hv(x, u, v)

|u|n1−1 + |v|n2−1
and

Hr(x, r, v)

|r|n1−1 + |v|n2−1
≤ Hu(x, u, v)

|u|n1−1 + |v|n2−1
. (33)

It follows using (33), (32) and inequalities (31) that

H(x, u, v)

|u|n1 + |v|n2
≤

∫ u

0

Hu(x, u, v)

|u|n1−1 + |v|n2−1
dr +

∫ v

0

Hv(x, u, v)

|u|n1−1 + |v|n2−1
dz

=
Hu(x, u, v)u

|u|n1−1 + |v|n2−1
+

Hv(x, u, v)v

|u|n1−1 + |v|n2−1
.

(34)

Using (H2) we conclude that

Hu(x, u, v)u

|u|n1−1 + |v|n2−1
+

Hv(x, u, v)v

|u|n1−1 + |v|n2−1
→ +∞ when (u, v) → +∞.

At that point, last limit just above and (30) give the result of the second limit.
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Lemma 3.7. Assume that (ϕ3), (H3) and (25), then t 7→
Φ′
u,v(t)

tK−1
is a decreasing function, where K =

max{n1, n2}.

Proof. Let’s claim that

d

dt

[Φ′
u,v(t)

tK−1

]
< 0.

Using (25) then we have that,

d

dt

[Φ′
u,v(t)

tK−1

]
=

∫
Ω×Ω

d

dt

[ ta1(|thu|)h2u + ta2(|thv|)h2v
tK−1

]
dµ

−
∫
Ω

d

dt

[Hu(x, tu, tv)u+Hv(x, tu, tv)v

tK−1

]
dx.

(35)

Also,

d

dt

[ ta1(|thu|)h2u + ta2(|thv|)h2v
tK−1

]
=
h2u

(
a′1(thu)thu − (K − 2)a1(thu)

)
tK−3

t2K−4

+
h2v

(
a′2(thv)thv − (K − 2)a2(thv)

)
tK−3

t2K−4
.

(36)

We remark that (ϕ3) implies
ta′i(t)

ai(t)
≤ K − 2 for all t > 0,

which implies that,
ta′i(t)− (K − 2)ai(t) ≤ 0. (37)

Using inequality (37), we infer that

d

dt

[ ta1(|thu|)h2u + ta2(|thv|)h2v
tK−1

]
≤ 0.

Hence

d

dt

[Φ′
u,v(t)

tK−1

]
≤ −

∫
Ω

d

dt

[Hu(x, tu, tv)u+Hv(x, tu, tv)v

tK−1

]
dx. (38)

Wee can see that

Hu(x, tu, tv)u+Hv(x, tu, tv)v

tK−1
≥ Hu(x, tu, tv)u+Hv(x, tu, tv)v

tn1−1 + tn2−1

≥ min{Hu(x, tu, tv), Hu(x, tu, tv)}
|ut|n1−2tu+ |vt|n2−2tv

×min{2|u|n1−2v2, 2|v|n2 , 2|u|n1 , 2|v|n2−2u2}.

(39)

According to (H3) and (38) we get

d

dt

[Φ′
u,v(t)

tK−1

]
< 0.

Lemma 3.8. Assume (ϕ1)− (ϕ3), (H0)− (H3). Then the function Ji : X
s,Ai
0 → R, given by

Ji(w) =

∫
Ω×Ω

ai(|hw|)|hw|2dµ for all w ∈ Xs,Ai
0

is C1(Xs,Ai
0 ,R) and

⟨J ′
i(w), v⟩ =

∫
Ω×Ω

(
2ai(|hw|) + a′i(hw)|hw|

)
hwhvdµ for all w, v ∈ Xs,Ai

0 . (40)
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Proof. The proof is similar to that given in [Proposition 3.5, [15]].

Lemma 3.9. Assume (ϕ1)-(ϕ3), (H1)-(H3). Then for each (u, v) ∈ X\{(0, 0)}, there exists an only t =
t(u, v) > 0 such that (tu, tv) ∈ N . Moreover, I(u, v) > 0 for each (u, v) ∈ N .

Proof. Let (u, v) ∈ X\{(0, 0)}, by the definition of I we have that Φu,v ∈ C1(Xs,Ai
0 ,R). Furthermore, by

proposition 6 we have for a small t that Φ′
u,v(t) > 0 and for a large t that Φ′

u,v(t) < 0. On the other hand, the
map t 7→ Φ′

u,v(t) is continuous, then there exists at least one number t ∈ (0,∞) such that Φ′
u,v(t) = 0. Which

means that (tu, tv) ∈ N . Let’s see there is only one t = t(u, v) such that Φ′
u,v(t) = 0. By Lemma 3.7 we have

that, t 7→
Φ′
u,v(t)

tK−1
is a decreasing function that vanishes once in (0,∞) so that there is an only t = t(u, v) > 0

such that
Φ′
u,v(t)

tK−1
= 0. Hence the function Φu,v admits an only critical point namely t = t(u, v) > 0 and

(tu, tv) ∈ N . Moreover it follows by Proposition 5 that t(u, v) is a maximum point of Φu,v on (0,∞). In
the proof of Proposition 5, we infer that Φu,v(t(u, v)) > 0, which implies that I(t(u, v)u, t(u, v)v) > 0. The
arguments above also show that Φ′′

u,v(t) < 0 for each (u, v) ∈ X\{(0, 0)}. Finally, since (u, v) ∈ N if only
if t(u, v) = 1, we deduce that I(u, v) > 0 for each (u, v) ∈ N . This completes the proof.

Lemma 3.10. Let (uk, vk) ∈ N be a minimizing sequence of I over the Nehari manifold N . Assume that
(ϕ1)− (ϕ3), (H0)− (H3) hold true. Then (uk, vk) is bounded in X.

Proof. Let (uk, vk) ∈ N be a minimizing sequence that is (uk, vk) ∈ N and I(uk, vk) → CN . In order
to demonstrate the boundedness of (uk, vk), we argue by contradiction. Let us suppose that there exists a
subsequence of (uk, vk), always denoted (uk, vk), such that ||(uk, vk)|| → +∞. We discussed the problem in
two cases.
Case1 : Suppose that ||uk||s,A1 → +∞ and also ||vk||s,A2 → +∞. Let uk = uk||uk||−1

s,A1
and vk = vk||vk||−1

s,A2
.

Then the sequence (uk, vk) is bounded in separable, reflexive Banach space X. By Remark 3, there exists a
point (u, v) ∈ X such that:
(a) uk → u in LΨ1(Ω) and uk → u in a.e in Ω.
(b) vk → v in LΨ2(Ω) and vn → v in a.e in Ω.
We claim that [u ̸= 0] := [x ∈ Ω : u(x) ̸= 0] ̸= 0 and [v ̸= 0] := [x ∈ Ω : v(x) ̸= 0] ̸= 0. Firstly, assume by
the way of contradiction that [u ̸= 0] = 0 and [v ̸= 0] = 0, that is u = 0 in Xs,A1

0 (Ω) and v = 0 in Xs,A2
0 (Ω).

Now using the continuity of the function H, (a) and (b), we infer that∫
Ω
H(x, uk, vk)dx→ 0 x ∈ Ω. (41)

Since (uk, vk) ∈ N then
I(uk, vk) = max

t>0
I(tuk, tvk) for each k.

Hence there exists a constant K > 0 such that,

CN + ok(1) = I(uk, vk)

≥ I(Kuk,Kvk) =

∫
Ω×Ω

A1

(
Khuk

)
dµ+

∫
Ω×Ω

A2

(
Khvk

)
dµ

−
∫
Ω
H(x,Kuk,Kvk)dx.

(42)

Combining (41), (42) and using Lemma 3.1 we get

CN + ok(1) ≥ 2ξ0(K) + ok(1). (43)

Passing to the limit in (43) we get

CN ≥ 2ξ0(K) > 0, K > 0.
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which is impossible. Therfore [u ̸= 0] ̸= 0 and [v ̸= 0] ̸= 0. Remember we are assuming that ||(uk, vk)|| →
+∞ and I(uk, vk) → CN . Hence

I(uk, vk)

||uk||n1
s,A1

+ ||vk||n2
s,A2

= ok(1).

which implies that,∫
Ω

H(x, uk, vk)

||uk||n1
s,A1

+ ||vk||n2
s,A2

dx =
1

||uk||n1
s,A1

+ ||vk||n2
s,A2

∫
Ω×Ω

A1

(
huk

)
dµ

+
1

||uk||n1
s,A1

+ ||vk||n2
s,A2

∫
Ω×Ω

A2

(
hvk

)
dµ+ ok(1).

Then by applying Lemma 3.12, we have∫
Ω

H(x, uk, vk)

||uk||n1
s,A1

+ ||vk||n2
s,A2

dx ≤
||uk||n1

s,A1

||uk||n1
s,A1

+ ||vk||n2
s,A2

+
||vk||n2

s,A2

||uk||n1
s,A1

+ ||vk||n2
s,A2

+ ok(1)

= 1 + ok(1).

Going to the limit of the last inequality, we deduce that

lim
k→∞

sup

∫
Ω

H(x, uk, vk)

||uk||n1
s,A1

+ ||vk||n2
s,A2

dx ≤ 1.

On the other hand, applying Fatou’s Lemma and the fact that [u ̸= 0] ̸= 0 and [v ̸= 0] ̸= 0, we have

lim
k→∞

inf

∫
Ω

H(x, uk, vk)

||uk||n1
s,A1

+ ||vk||n2
s,A2

dx ≥
∫
Ω

lim
k→∞

inf

{
H(x, uk, vk)

||uk||n1
s,A1

+ ||vk||n2
s,A2

}
dx

≥
∫
Ω

lim
k→∞

inf

{
H(x, uk, vk)

|uk|n1 + |vk|n2
× |uk|n1 |vk|n2

max{|uk|n1 , |vk|n2}

}
dx.

It’s clair that
|uk|n1 |vk|n2

max{|uk|n1 , |vk|n2}
→ min{|u|n1 , |v|n2} ≠ 0 when k → +∞. Then by using (H2) and last

inequalities just above we conclude

lim
k→∞

inf

∫
Ω

H(x, uk, vk)

||uk||n1
s,A1

+ ||vk||n2
s,A2

dx = +∞,

which is impossible.
Case2 . Suppose that ||uk||s,A1 ≤ C or ||vk||s,A2 ≤ C for some C > 0 and all k ∈ N. Without loss of
generality, we assume that ||uk||s,A1 → +∞ and ||vk||s,A2 ≤ C, for some C > 0 and for all k ∈ N. Let
uk = uk||uk||−1

s,A1
and vk = vk||uk||−1

s,A1
then ||vk||s,A2 → 0 and ||uk||s,A1 → 1. By Remark 3, there exists a

point (u, v) ∈ X such that:
(c) uk ⇀ u in Xs,A1

0 (Ω) and uk → u in a.e in Ω,

(d) vk ⇀ v in Xs,A2
0 (Ω); and vk → v in a.e in Ω.

By similar argument in Case 1, we prove that [u ̸= 0] ̸= 0. Hence ||(uk, vk)|| → +∞ and I(uk, vk) → CN .
Then

I(uk, vk)

||uk||n1
s,A1

+ Cn1
= ok(1).

Applying Lemma 3.12, we get∫
Ω

H(x, uk, vk)

||uk||n1
s,A1

+ Cn1
dx ≤ 1 + ok(1).

Passing to the limit in the last inequalities we have

lim
k→∞

sup

∫
Ω

H(x, uk, vk)

||uk||n1
s,A1

+ Cn2
dx ≤ 1.
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In other way, using Fatou’s Lemma and the fact [u ̸= 0] ̸= 0, we have

lim
k→∞

inf

∫
Ω

H(x, uk, vk)

||uk||n1
s,A1

+ Cn2
dx ≥

∫
Ω

lim
k→∞

inf

{
H(x, uk, vk)

|uk|n1 + |vk|n2

×
||uk||n2

s,A1
|uk|n1 |vk|n2

max{||uk||n2
s,A1

|vk|n2 , Cn2 |uk|n1}

}
dx.

We can see that, when k is large enough we have
• If max{||uk||n2

s,A1
|vk|n2 , Cn2 |uk|n1} = ||uk||n2

s,A1
|vk|n2 , then

||uk||n2
s,A1

|uk|n1 |vk|n2

max{||uk||n2
s,A1

|vk|n2 , Cn2 |uk|n1}
= |uk|n1 ̸= 0. (44)

• If max{||uk||n2
s,A1

|vk|n2 , Cn2 |uk|n1} = Cn2 |uk|n1 , remembre that |vk| = |vk||uk||s,A1 and ||uk||s,A1 → 1 then
we have

||uk||n2
s,A1

|uk|n1 |vk|n2

max{||uk||n2
s,A1

|vk|n2 , Cn2 |uk|n1}
=

||uk||n2
s,A1

|vk|n2

Cn2
=

||uk||n2+1
s,A1

|vk|n2

Cn2
→ |v|n2

Cn2
for k → +∞. (45)

According to (H2), (44), (45) and last inequalitities just above we conclude

lim
k→∞

inf

∫
Ω

H(x, uk, vk)

||uk||n1
s,A1

+ Cn2
dx = +∞.

which is impossible. Thus (uk, vk) is bounded in X. The proof is complete.

Proposition 7. Assume (ϕ1) − (ϕ3), (H0) − (H3). Then N is a C1-submanifold of X. i.e, any critical
point of I/N is a critical point of I.

Proof. Consider the functional Jt :W → R defined by

Jt(u, v) = It(u, v)−
∫
Ω
Hu(x, tu, tv)udx−

∫
Ω
Hv(x, tu, tv)vdx,

where

It(u, v) =

∫
Ω×Ω

ta1(thu)h
2
udµ+

∫
Ω×Ω

ta2(thv)h
2
vdµ.

According to the Lemma 3.8 we can see that It ∈ C1 and by using equation (40) we show that

⟨I ′t(u, v), (u, v)⟩ =

∫
Ω×Ω

(
2a1(|thu|) + a′1(|thu|)|thu|

)
huhudµ

+

∫
Ω×Ω

(
2a2(|thv|) + a′2(|thv|)|thu|

)
hvhvdµ, u, v ∈ X, t ∈ R.

One also shows that

Φ′′
u,v(t) =

∫
Ω×Ω

[(
a1(|thu|) + a′1(|thu|)|thu|

)
h2u +

(
a2(|thv|) + a′2(|thv|)|thv|

)
h2v

]
dµ

−
∫
Ω
(Hu(x, tu, tv))

′udx−
∫
Ω
(Hv(x, tu, tv))

′vdx.
(46)

Now set
B(u, v) = ⟨I ′(u, v), (u, v)⟩ (u, v) ∈ X.

By using Lemma 3.8, it follows that B ∈ C1. Furthermore Proposition 5 infer that t = 1 is the global
maximum of Φu,v, also in the prove of Lemma 3.9 we see that

⟨B′(u, v), (u, v)⟩ = Φ′′
u,v(1) < 0, (u, v) ∈ N . (47)
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Using the fact that N = B−1(0) and 0 is a regular value for B, the set N is a C1-submanifold of X. Now
assume that (u, v) ∈ N is a critical point of I/N . According to Theorem of Lagrange multiplier, there exist
a real constant λ such that

I ′(u, v) = λB′(u, v),

⟨I ′(u, v), (u, v)⟩ = λ⟨B′(u, v), (u, v)⟩ = 0.

Using (47) we infer that λ = 0. Therefore I(u, v) ≡ 0, so that (u, v) is a free critical point of I. This
completes the proof.

Lemma 3.11. Assume that (ϕ1)-(ϕ3), (H0)-(H3). Then there exists (u, v) ∈ N such that

CN = I(u, v) > 0.

Proof. Let (uk, vk) ∈ N be a minimizing sequence of I over the Nehari manifold N . By Lemma 3.10, there
exists (u, v) ∈ X such that
(c) uk ⇀ u in Xs,A1

0 (Ω) and vk ⇀ v in Xs,A2
0 (Ω).

• We claim that (u, v) ̸= (0, 0). Assume on the contrary that (u, v) = (0, 0). The fact that (uk, vk) ∈ N
and by using (ϕ3)

′ we have

0 ≤
∫
Ω×Ω

A1(huk
)dµ+

∫
Ω×Ω

A1(huk
)dµ

≤ 1

l1

∫
Ω×Ω

a1(huk
)h2uk

dµ+
1

l2

∫
Ω×Ω

a2(hvk)h
2
vk
dµ

≤ max
{ 1

l1
,
1

l2

}∫
Ω
(Hu(x, uk, vk)uk +Hv(x, uk, vk)vk)dx.

(48)

Applying Lemma 3.5, we get ∫
Ω
(Hu(x, uk, vk)uk +Hv(x, uk, vk)vk)dx = ok(1).

As a consequence of Lemma 3.1, ||uk, vk|| → 0 which contradicting Lemma 3.15. So the claim is proven.
According to the Lemma 3.8 we have (u, v) ∈ X 7→ ⟨I ′(u, v), (u, v)⟩ is weakly lower continuous. Hence

⟨I ′(u, v), (u, v)⟩ ≤ lim inf
k→+∞

⟨I ′(uk, vk), (uk, vk)⟩ = 0.

Recall that Φ′
u,v(1) = ⟨I ′(u, v), (u, v)⟩ ≤ 0. By Lemma 3.9 there is t ∈ (0,∞) such that Φ′

u,v(tu, tv) = 0.
Hence (tu, tv) ∈ N .
• Claim that t = 1 so that (u, v) is in N .
Furthermore, by contrary we assume that t ∈ (0; 1). Then

CN ≤ I(tu, tv) = I(tu, tv)− 1

G
⟨I ′(tu, tv), (tu, tv)⟩

=

∫
Ω×Ω

(
A1(thu)−

1

G
a1(thu)(thu)

2
)
dµ+

∫
Ω×Ω

(
A2(thv)−

1

G
a2(thv)(thv)

2
)
dµ

+

∫
Ω

( 1
G
Hu(x, tu, tv)tu−Hu(x, tu, tv)

)
dx+

∫
Ω

( 1
G
Hv(x, tu, tv)tv −Hv(x, 0, tv)

)
dx,

(49)

where Hu and Hv is given in Lemma 3.6. The fact that, the functions

t 7→ Ai(t)−
1

G
ai(|t|)t2 are increasing in (0;∞),

and by using Lemma 3.6, we conclude that

CN <

∫
Ω×Ω

(
A1(hu)−

1

G
a1(hu)(hu)

2
)
dµ+

∫
Ω×Ω

(
A2(hv)−

1

G
a2(hv)(hv)

2
)
dµ

+

∫
Ω

( 1
G
Hu(x, u, v)u−Hu(x, u, v)

)
dx+

∫
Ω

( 1
G
Hv(x, u, v)v −Hv(x, 0, v)

)
dx.
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Now using the weak lower continuity of the functions

u 7→
∫
Ω×Ω

(
Ai(hu)−

1

K
ai(hu)(hu)

2

)
dµ

and (H0) we infer that

CN < lim inf
k→+∞

[ ∫
Ω×Ω

(
A1(huk

)− 1

G
a1(huk

)(huk
)2
)
dµ+

∫
Ω×Ω

(
A2(hvk)−

1

G
a2(hvk)(hvk)

2
)
dµ

+

∫
Ω

(1
Hu(x, uk, vk)uk −Hu(x, uk, vk)

)
dx+

∫
Ω

( 1
G
Hv(x, uk, vk)vk −Hv(x, 0, vk)

)
dx

]
= lim

k→∞

(
I(uk, vk)−

1

G
⟨I ′(uk, vk), (uk, vk)⟩

)
= CN .

Which impossible. Thus t = 1, then (u, v) ∈ N . This finishes the proof. Now we have all tools to prove
our Theorem 3.4.

Proof of Theorem 3.4

Let (uk, vk) ∈ N be a minimizing sequence for I over N . By the proof of Lemma 3.10 there is
(u, v) ∈ N ⊂W such that

uk ⇀ u in Xs,A1
0 (Ω) and vk ⇀ v in Xs,A2

0 (Ω).

Applying Lemma 3.3 we get

uk → u in Xs,A1
0 (Ω) and vk → v in Xs,A2

0 (Ω).

Since I ∈ C1(X,R), it follows that I ′(uk, vk) → I ′(u, v). By Lemma 3.11, (u, v) ∈ N and

CN = I(u, v) = min
N

I > 0.

By Proposition 7 the set N is a C1-submanifold of X so that (u, v) is a critical point of I/N . Again, the
proposition 7 shows that (u, v) is a critical point of I.

Appendix.

In this section we give some inequalities which will be used in our proofs. the proof is given in [18].

Lemma 3.12. Let ξ0(t) = min{tli , tni}, ξ1(t) = max{tli , tni} and Ai is an N -function then these assertions
are equivalent:
1)

1 < li := inf
t>0

tai(t)

Ai(t)
≤ sup

t>0

tai(t)

Ai(t)
:= ni < N. (50)

2)
ξ0(t)Ai(ρ) ≤ Ai(ρt) ≤ ξ1(t)Ai(ρ), ∀t, ρ ≥ 0. (51)

3) Ai satisfies a ∆2-condition.

Lemma 3.13. If Ai is an N -function satisfies (50) then we have

ξ0(||u||Ai) ≤
∫
Ω
Ai(|u|)dx ≤ ξ1(||u||Ai), ∀u ∈ LAi(Ω). (52)
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Lemma 3.14. Let Ai be the complement of Ai and ξ2(t) = min{tli , tni}, ξ3(t) = max{tli , tni}, t ≥ 0 where
li =

li
li−1 and ni =

ni
ni−1 , If Ai is an N -function and (50) hold, then Ai satisfies:

1)
ξ2(t)Ai(r) ≤ Ai(rt) ≤ ξ3(t)Ai(r), ∀t, r ≥ 0. (53)

2)

ξ2(||u||Ai
) ≤

∫
Ω
Ai(|u|)dx ≤ ξ3(||u||Ai

), ∀u ∈ LAi
(Ω). (54)

Proposition 8. Assume that (ϕ3)
′ holds. If ||(uk, vk)|| ≤ 1

k with a large k, then we have

lim
k→∞

||uk||
lΨ1
s,A1

+ ||vk||
lΨ2
s,A2

||uk||n1
s,A1

+ ||vk||n2
s,A2

+
||uk||

lΨ1
s,A1

+ ||vk||
lΨ2
s,A2

||uk||n1
s,A1

+ ||vk||n2
s,A2

= 0.

Proof. The fact that ||(uk, vk)|| = ||uk||s,A1 + ||vk||s,A2 ≤ 1
k implies

||uk||
lΨ1
s,A1

+ ||vk||
lΨ2
s,A2

||uk||n1
s,A1

+ ||vk||n2
s,A2

≤

1

klΨ1
+

1

klΨ2

1

kn1
+

1

kn2

=
klΨ1 + klΨ2

kn1 + kn2
× kn1+n2

klΨ1
+lΨ2

(55)

and

||uk||
lΨ1
s,A1

+ ||vk||
lΨ2
s,A2

||uk||n1
s,A1

+ ||vk||n2
s,A2

≤

1

klΨ1

+
1

klΨ2

1

kn1
+

1

kn2

=
klΨ1 + klΨ2

kn1 + kn2
× kn1+n2

klΨ1
+lΨ2

. (56)

Combining (55) and (56) we get

klΨ1 + klΨ2

kn1 + kn2
× kn1+n2

klΨ1
+lΨ2

+
klΨ1 + klΨ2

kn1 + kn2
× kn1+n2

klΨ1
+lΨ2

=
kn1+n2

kn1 + kn2

(klΨ1 + klΨ2

klΨ1
+lΨ2

+
klΨ1 + klΨ2

klΨ1
+lΨ2

)
=

1

k−n1 + k−n2

(
k−lΨ1 + k−lΨ2 + k−lΨ1 + k−lΨ2

)
=

1

klΨ1
−n1 + klΨ1

−n2
+

1

klΨ2
−n1 + klΨ2

−n2
+

1

klΨ1
−n1 + klΨ1

−n2

+
1

klΨ2
−n1 + klΨ2

−n2
.

(57)

The fact that ni < lΨi , lΨi we get the result when k → ∞.

Lemma 3.15. Assume that (ϕ1) − (ϕ3), (H1) − (H3). Then there exists a constant C > 0 such that
||u, v|| ≥ C for each (u, v) ∈ N .

Proof. The prove is arguing by contradiction, suppose that there exists a subsequence denoted by (uk, vk) ∈
N , such that ||(uk, vk)|| ≤ 1

k , for each integer k ≥ 1. Using (29) with t = 1 and (ϕ3)
′ then we have∫

Ω×Ω
A1(|huk

|)dµ +

∫
Ω×Ω

A2(|hvk |)dµ

≤ 1

l1

∫
Ω×Ω

a1(huk
)h2uk

dµ+
1

l2

∫
Ω×Ω

a2(hvk)h
2
vk
dµ

≤ max
{ 1

l1
,
1

l2

}∫
Ω
(Hu(x, uk, vk)uk +Hv(x, uk, vk)vk)dx

≤ c2

[
max{(nΨ1 + 1)ξ1(||uk||Ψ1), (nΨ2 + 1)ξ1(||vk||Ψ2)}

+max{ξ3(||uk||Ψ1
), ξ3(||vk||Ψ2

)}
]
,
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where c2 = 2c1max
{

1
l1
, 1
l2

}
. According to the Lemma 3.12, Remark 3 and last inequality we have for k

large enough

||uk||n1
s,A1

+ ||vk||n2
s,A2

≤ c2max{(nΨ1 + 1)||uk||
lΨ1
Ψ1
, (nΨ2 + 1)||vk||

lΨ2
Ψ2

}

+max{||uk||
lΨ1

Ψ1
, ||vk||

lΨ2

Ψ2
}

≤ c2max{CΨ1(nΨ1 + 1)||uk||
lΨ1
s,A1

, CΨ2(nΨ2 + 1)||vk||
lΨ2
s,A2

}

+max{CΨ1
||uk||

lΨ1
s,A1

, CΨ2
||vk||

lΨ2
s,A2

}.
≤ c2max{CΨ1(nΨ1 + 1), CΨ2(nΨ2 + 1)}

(
||uk||

lΨ1
s,A1

+ ||vk||
lΨ2
s,A2

)
+c2max{CΨ1

, CΨ2
}
(
||uk||

lΨ1
s,A1

+ ||vk||
lΨ2
s,A2

)
.

(58)

Dividing the last expression by ||uk||n1
s,A1

+ ||vk||n2
s,A2

we get to

1 ≤ c3
||uk||

lΨ1
s,A1

+||vk||
lΨ2
s,A2

||uk||
n1
s,A1

+||vk||
n2
s,A2

+ c4
||uk||

lΨ1
s,A1

+||vk||
lΨ2
s,A2

||uk||
n1
s,A1

+||vk||
n2
s,A2

≤ c5

( ||uk||
lΨ1
s,A1

+||vk||
lΨ2
s,A2

||uk||
n1
s,A1

+||vk||
n2
s,A2

+
||uk||

lΨ1
s,A1

+||vk||
lΨ2
s,A2

||uk||
n1
s,A1

+||vk||
n2
s,A2

)
,

(59)

where c3 = c2max{CΨ1(nΨ1 + 1), CΨ2(nΨ2 + 1)}, c4 = c2max{CΨ1
, CΨ2

} and c5 = max{c3, c4}. The fact

that ni < lΨi , lΨi and by applying Proposition 8, we get for a large k,

1 ≤ c5ok(1),

which is a contarduction.
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