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Abstract

Consider the tri-harmonic differential expression Lyu = (V*V)S u + Vu, on sections of a
hermitian vector bundle over a complete Riemannian manifold (M, g) with metric g, where
V is a metric covariant derivative on bundle E over complete Riemannian manifold, VT
is the formal adjoint of V and V is a self adjoint bundle on E. We will give conditions for
LY to be essential self-adjoint in L? (E) . Additionally, we provide sufficient conditions for
Lg to be separated in L? (E). According to Everitt and Giertz, the differential operator
LY is said to be separated in L? (E) if for all u € L? (E) such that LYu € L? (F), we have
Vue L*(E).
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1. Introduction

Assume that (M, g) be a smooth Riemannian manifold without boundary and dimM =
n, let M is connected, with metric g, and with Riemannian volume element d,. Assume
that E be a vector bundle over M. The study of essential self-adjointness for differential
operators on R™ has been the central theme of numerous studies, such as [11] and [30].
Gaffney studied essential self-adjointness for differential operators on Riemannian mani-
folds in [15]. This problem has lead to many works, such as [4,5,10,17,18,21,25]. The
study of the separation property for Schrodinger operators on R™ was studied through
Everitt and Giertz, see [15]. The operator —A+V in LP (R") is separated if the following
condition is satisfied for all w € LP (R™) such that (A+V)u € LP(R"™), we have that
Au € LP (R") and Vu € LP (R"). For the separation problem of second and higher order
differential operators, see [1,2,6,7,9,13,27,28]. The separation problem of the differential
operator Ay + V on L? (M) where M is a non-compact Riemannian manifold, Ay is
the scalar laplacian on M and V € C! (M), was studied in [23]. Milatovic was stud-
ied the separation property for Ay + V in LP (M) in [24]. The separation problem for
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Schrodinger operators on R™ goes back to the work of Everitt and Giertz in [14]. Some
authors have studied the separation problem for differential operators on Riemannian man-
ifolds, see [2,24,25]. The separation property is linked to the self adjointness in L? (M),
see [26]. Separation problem of differential operators has strong links with the essential
self-adjointness of the underlying operator. In this article, we will give the conditions
for essentially self-adjointness of A% + V on C° (M), where A3 be the (non-negative)
magnetic tri-Laplacian (with a smooth magnetic field A) on a geodescially complete Rie-
mannian manifold M and 0 <V € C? (M). Additionally, we provide sufficient conditions
for Ly to be separated in L? (E).

2. General notations

In this article we consider the differential operator (V+V)3 u~+ Vu, where V is a metric
covariant derivative on a hermitian bundle E over a Riemannian manifold M, VT its
formal adjoint and V' is a linear self-adjoint bundle map over E. In general, the symbols
C*® (E) and C° (E) and Q! (M) denote sections of E and compactly supported sections
of E, and complex-valued smooth 1-forms on M respectively. We call LP (E), 1 < p < oo,
indicates the space of p-integrable sections of E with the norm [[ul, :=(fy, [u ()" d,u)l/p .
In the special case p = 2, we have the Hilbert space L? (E) and we use (.,.) to denote the
corresponding inner product in L? (M) and the pairing (linear in the first and anti-linear in
the second slot) between LP (M) and L? (M) with 1/p+1/q = 1. For local Sobolev spaces of
sections we use the notation Wl]:’;’cp (E), with p and k indicating the corresponding LP spaces
and the highest order of derivatives, respectively. For k = 0 we use L} (E). In the case
E = M x C, we denote the corresponding function spaces by C*° (M), C° (M), LP (M),
LP (M) and WP (M). In this paper, V : C® (E) — C* (T*M © E) stands for a smooth
metric covariant derivative on F, and V' : C® (T*M ® E) — C* (E) indicates the formal
adjoint of V with respect to (.,.). The covariant derivative V on E induces the covariant
derivative VE™? on the bundle of endomorphisms End E, making VE"V a section of the
bundle T* M ®(End E). Working in the space L? (E) only, we find it convenient to indicate
by (.,.) and ||.|| the inner product and the norm in the spaces L? (E) and L? (T*M ® E) .
We study the separation property on L? (E) that can be seen as an extension of the work

mentioned in [23]. We define a set DY := {u € L?(E) : LYu € L?(E}, it is not true that
for all u € DY, we have (VTV)’u € L2 (E) and Vu € L2 (E) simultaneously, using the
terminology of Everitt and Giertz [15] we will say that Ly, = (V*V)S +V is separated in
L? (E) when the following statement holds true for all u € D3, we have Vu € L? (E), to
make the notations less cumbersome, the symbols (.,.) and || . ||,will also be used when
referring to LP (AIT*M ), the space of p-integrable 1-forms on M, we only consider the
space L? (M), we will use || . || instead of || . ||zto indicate the norm. In a magnetic field
A € QY (M), where A be real-valued form, the operator dq : C(M) — Q!(M) stands
for the magnetic differential where dau = du + iu A where d : C®°(M) — QY(M) be
the standard differential and i = v/—1. We denote the formal adjoint of d4 with respect
to (-,-) by dj, the (non-negative) magnetic Laplacian on M by A, := d}da, and the
magnetic tri-Laplacian by A3 := (djd A)S. We start recalling some abstract terminology
concerning m-accretive operators on Banach spaces. A linear operator S on a Banach
space s is called accretive if [|(§ + S)u|,, > £||ull,,, for all £ > 0 and all u € Dom (5).
In [12], a densely defined accretive operator S is close and its closure S™ is also accretive.
An operator S on s is called m-accretive if it is accretive and £ + S is surjective for all
& > 0. An operator S on s is named essentially m-accretive if it is accretive and S™ is
m-accretive. We use the relation between m-accretivity and self-adjointness of operators
on Hilbert spaces which stated in the paper [22] that the operator S is a self-adjoint and
non-negative operator if and only if S is symmetric, closed and m-accretive. We mentioned
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some results on the essential m-accretivity of operators in L? (E) used in this paper with
LY with 0 < V € L (End E) and 0 < v € LS, (M), we define an operator Hy,, as

HY u = Lyu with ltoﬁe domain Dy := {u € LZQOEE) : LYu € L*(E} and an operator
HY, as H u = S%u for all u € DY, where DY := {u € L?(M): St € L2 (M)} Atia
was studied the separation problem of bi-harmonic differential operators on Riemannian
manifolds in [3,4].

3. Essential self-adjointness result for a perturbation of A3

Let p(t,z,y) be the heat kernel of M. For a Borel function f : M — R, define

FO) = sup [ [ ..l 5 @)lduty)ds,

xeM
where f € D (M) if there exists ¢ > 0 such that F(t) < 1. We say that f belongs to the
Kato class K(M) of M if F(t) -+ 0ast — 0+. So K(M) C D(M), see Theorem 7.13 in
[16].

Now, we remind our main result, in this section.

Theorem 3.1. Let M is a geodesically complete connected Riemannian manifold. Let
U=U+Us with0< Uy € L2 (M) and 0 < Uy € L?, (M) N D(M). Furthermore, let

loc loc

W e W22 (M) and W > 0. Also there exist constants ¢1 > 0 and co > 0 such that
loc
\dW(ac)|2 < e+ oW (z), (3.1)
for all almost x € M. Then Ai’x + U — W is essentially self-adjoint on C° (M).

Now, we explain some notations used in subsequent results.
We define operators T’ ép ) and T in LP (M) where 1 < p < oo by the formulas

A A3
T u:= Aqu, u € Dom (ng) ={u€ L(M): Aque LP (M)}, (3:2)
and
ngu = A3u, u € Dom <TX§> = {u € LP(M): AducLP (M)} (3.3)

We now state the result of Okazawa, see [29)].

Lemma 3.2. Let S and G be nonnegative symmetric operators in a Hilbert space H with

inner product (.,.)y and norm || . ||g. We assume D be a linear subspace of H on which
S+ G is essentially self-adjoint. Assume that the following inequalities hold for allu € D :
[Sully + 1Gully < axflully + a2 [I(S + G)ull (3-4)

and )
[T (Gu, Su) | < ar[lully + a2 |(S + G) ull g [lull g (3.5)

where a1, as, ay and az > 0 are constants. Then S — G is essentially self-adjoint on D.

The following lemma is a direct consequence of Lemma V1.7 in [20] and Corollary 2.5
in [19]:

Lemma 3.3. Let M be a geodesically complete connected Riemannian manifold with Rie-
mannian volume element du. Let 0 > Uy € L2 (M)ND(M). Then, there exist constants
0<d<1and& >0 such that

[ (sl <6 [ (daufd+ €l (36)
M M

for allu Wi’2 (M).

We will introduce the following lemma which will be used in the proof of the main
theorem in this section,
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Lemma 3.4. Let M be a geodesically complete connected Riemannian manifold with Rie-

mannian volume element dy. Let U = Uy + Us with 0 < Uy € L2, (M) and 0 > Us €
L . (M)ND(M). Additionally, let 0 < W € VVI?;CZ (M) is a function satisfying (3.1). Then
we have
2
2Re (T + 1) u, (Tas +Tu +€) u) > —cs||dhdau]| (3.7)

for allu € C* (M), where £ is as in (3.6) and c3 := (c1 + ¢2) /2.

Proof. We will use the integration by parts and the product rule
da(fv) = fdav+ (df)v

where f and v are functions on M, also we define

wis (M) = {u € L*(M):dsue L? (AlT*M)}
Re(TAiu, (Tw + 1)u) = Re(A%u, (W 4 1)u)
= Re((d;dA) u, (W + 1)u)
da (dida) u,da (VW +TVW + Tu

2

( )
— Re (dA (djdAfu, VW Tda (VIV + 1u)>

4 Re (dA () . (VW 1) (VIV T 1u)>

_ Re< W+ 1da (d;dA)Zu,dA ( W+ 1u)>

dy <¢W (djdA)2u>
(V) ) s (ST
+ %Re <dA (djgdA)z " qu>
— Re (dA (\/W (djdA)2u> .da (m@)
~Re (4 (VITHT) (@) woda (VITH 1) )
T %Re <dA (djgdA)Q u, qu>
~ Re (W (@5da) w.dida (Wu))
~Re (NCéVLH (djdA)2u,dA (mu))
+ %Re (dA (djgdA)z u, qu>
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— VI TRe (1, (a5da) (VITH 1) )
. %Re <dW (djldA)Q u (W + 1)71/2 ,da (\/W——i—lu>>

+ %Re <dA (d5da) . qu>

—Re ((a5a) " (VT 1w, (d5d) " (VP Tu)
- % Re (dW () w (W + 172 VT Tdau+ dmu)
+ %Re <dA (djdAf u, qu>

(a0 ()

- %Re (dW (d;alA)2 w(W+1)"2 (W + 1)/ dAu)
- % Re <dW (d;dA)2 w(W +1)"Y2, qu)

+ %Re (dA (djdA)Q u, qu>

- | i)™ ()|

_ %Re <dW (d;dA)2 ", dAu>

- %Re (dW (dj;olA)2 w(W +1)"12, 2CVZVW+1u>

T éRe <dA (djdA)Q u, qu>

(a0 ()

- %Re <dW (d;dAf u, dAu>

W+1 VW+1

+ %Re (dA (djdAf ", qu>

1 |dhdan]

4 M W+1
1 2
~ ;Re <dW (d;dA) u, dAu>

2

(djdA)?)/ ’ (VW +1u)

2
AW [* dp

+ %Re (dA (dj,dA)Q u, qu)

/2 2

- /M ‘djdAur AW [ dp.

(dXdA)g 4 W+1

(VI +Tu)
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We use our assumptions on W, we get (\/W + 1u> € Wj’2 (M), we combine the last
equality, (3.1) and (3.6) we get
Re ((TW +1)u, (TA?A + TU> u)
= Re ((TW +1) u,TA:;,\u> +Re((Tw + 1) u, Tyu)
2
= Re (TAiu, (Tw +1) u) + Re/ Ui ‘u\/W + 1‘ du
M

+Re/M Uy ‘u\/W + I‘Qdu

> H(dXdA)w (VIV T 1u) . i ; w AW 2 dy
o | (aga)”* (V)| - e v
= (1-90) H(djdA)3/2 (VI +T1u) g i ; w AW |2 du
e’
SN S
So we proved the lemma. O

3.1. Proof of theorem 3.1

We assume that the hypotheses of Theorem 3.1 are satisfied, we assume that M is a
geodesically complete connected Riemannian manifold with Riemannian volume element
dy. Let U=U;+Us with0< Uy € L2, (M) and 0 > Us € L} (M)ND (M), let 0 < W €

VVZ?;C? (M) is a function satisfying (3.1). We get (TAZ + Ty + §) oo () is a non-negative

symmetric operator. By the assumptions on W, it follows that (Ty + 1)000( M) is a non-
negative symmetric operator. Since 0 < (Uy + W) € L2 (M) also Uy € L? . (M)N D (M)

loc loc

by using Theorem X.1 in [21] to conclude that the operator (TA‘"A +Ty+Tw +1+ f) is
essentially self-adjoint on C2° (M). By using (3.7) we get

|, + T+ T+ 1+ ] + s ol

= ((TA?A—i—TU—I—Tw—i-l—i-f)u,(TAi+TU+TW+1+§)U)

+ s |l

= [[(7as + 7o+ €) ]+ 2Re (@ + D, (Tas + T +6) )
+ (T + L)ull” + e3 |l

> ||(Tag + T+ €) )+ 1T + Vyul?,

for all u € C2° (M). Applying hypothesis (3.4) of Lemma 3.2 is satisfied
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with S = TA‘Z +Ty+&G=Tw+1and D = C® (M), we will use the integration by
parts and the product rule, for all u € C2° (M) we have

Im (Twu, TA;Z“) =Im <Wu, (djldA>3 u)

2
A(Wu), da (dhda) u)

Im (WdAu + dWu,da (djdA) u)
2
=Im <WdAu dA d+dA> u) +1Im (qu, da (djgdA) u>
=Im (qu dA dAdA> u) . (3.8)
From (3.1) and (3.8) we obtain

’Im (TWU,TNAUN = ‘Im (qu,dA (djldA)2 u)

dAdA u du

2

| /\

g2, €2 2 1 +7 )2
2l + 2 /MW|u\ dﬂ+2 da(dida) u

IN

€1 2, C2 1
5 HUH + 5 (u, Twu) + 5 (U,TAE‘U)

< %1 ull® + 022“ (u, (Tas, + T ) u)

For all u € C° (M) we get
’Im (Twu, (TA?4 + Ty + §) u) ‘ = ‘Im (Twu, TAi“)‘

< %1 ul® + 022“ (u, (Tas, + Tw ) u). (3.9)

From (3.6) we obtain
(u, Tyu) = (u, (Ur + Us) u) = (u, Uzu)
> =6 (u, Agu) = & ||ul]?,

for all u € C° (M) we get

(. (Tag, + T ) ) + € fJuf?

u, Tz u (u, Tyu) + € ||ul)?

)+
u, Tas u) + & ull® + (u, Uu)
)

(
(1T
(
(

Y

wTog) + €l =6 [ |daul = € Jul®

u, T'As u) (u, (djdA) u)
(1) (u, Tazu), (3.10)

for all u € C° (M) from (3.9), (3.10) and since

Tm (u (TA:@,A Ty + g) u) — 0.



1328 H.A. Atia, H H. Emam

We get

’Im ((TW +1)u, (TNA Ty + 5) u)‘ - ’Im (TWu (TN, Ty + 5) u)’

C2+1

< S llul* + =2 (u, (Ta, + Tw) )
C

= 2 luf? +L“ (u, Tw) + 2 (u, Tas )
C2+1

< S llul* + = (u Tvw)

(3 () (e

—i—%(u, (TAZ—l-TU-FTW‘f‘l‘f‘f)U)-

Hence the assumptions of (3.5) of Lemma 3.2 is satisfied with S = Tas +Ty + ¢ and G =
Tw+1and D = C° (M), Thus by Lemma 3.2 it follows that S—G = Tas +Tu+E—Tw -1

is essentially self-adjoint on C2° (M), since £ —1 is a constant, then A3 +U W is essentially
self-adjoint on C° (M) .

4. The separation problem result

We will introduce our main theorem in this section.

Theorem 4.1. Let (M, g) be a complete connected Riemannian manifold without bound-
ary, let E be a vector bundle over M with a metric covariant derivative V. We assume
V e CY(End E), V (x) >0, for all z € M, where the inequality is understood in the sense
of linear operators E, — E, and

(VY ()| <o (v (2)*?, 0<o<1. (4.1)
Then
H (v+v)3u

for allu € DQV, where C' > 0 be a constant, that is L‘V/ is separated in L? (E) .

+[vul < ¢ [|L¥u] + ] (4.2)

Lemma 4.2. Under the hypothesis of the Theorem 8.1, then the following inequalities are
valid for all uw € CX (E),

H(v+v)3u

+[Vull < 1 ||L¥u

(4.3)

and

HV1/2 (v+v)3/ u (4.4)

<C; HLXU )

where V2 is the square root of the operator V (z) : E, — E, and Cy is a constant
depending on n =dim M, m = dim E, and o.
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Proof. By the definition of LY, for all § > 0 and all u € C° (E) we obtain

o = [(779) s v

= ((v+v) u+ Vu, (V+V)3u + Vu)

= |Vu|?+ H (V+V)3u " 9Re <(v+v)3u, Vu)

2

— |[Vull? + H (VF9) © 2R ((V+V>3u, Vu) +0 H (Vo9)

-4 H(V*V)gu i

2 2

— [Vul? + 5 H(v v)'u

L (1—0) H(v+v)3u

+2Re<(V V>3u,Vu>
= |Vul® +4 (V+V Y 2+(1—5) Re (v+v) u, LYu — V)
3

1 2Re (v+v) u, V)
= [Vul* +5 | (vV) u -8 Re (Vo) w, LY )

+(1+0) Re((v+v)3 u, V).
By the product rule V (Vi) = (VE"V ) u+ VVu, so for all u € C (E), we have
Re((VF9) w. Va) = Re((V*V) u, (VFV) (V)
= Re( (v+v)2 w, VI (VE" IV Yy + VTV V)

= Re((V+V)2 u, VH(VEMY ) 4+ Re((v+v)2 u, VIVVau)
= Re(Z) + W, (4.5)

where Z := ((VFV)?u, VH(VEMV)u) and W = (VI/2 (VV)*2 0, V12 (V0)*20)
then, we obtain

1+ 0)Re((VV) w,Vu) = (1 + ) ReZ + (1+8) W = — (14+8)|Z] + (1L+5) W. (4.6)

By Cauchy-Schwartz 2ab < ka® + k~'b2, where k,a and b are positive real numbers and
the condition (4.1) we obtain

3/2
1Z] < (U+1)/‘(V+V) 2y,
J (T*M®E),

2+(0+1)

3/2
1z <=2 HVW (vv) IVl (4.7)

for all a > 0, we use Cauchy-Schwartz again, we obtain

Re((VF) w2V <| (VFV) w, L¥u) | < S H (v+v)3uH2 + 217 2%
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for all v > 0, we obtain

HLSUHQ > |[Vaul? + 6 H(v+v)3u ;

2 (140) (0 +1)?
a 26
2 |1—5|7H

~ (146)da H
2

V12 (v+v)3/2 [Vul?

2

3/2
+(1+496) HV1/2 (vv) "y v+v u

from this, we obtain
|1—-46| v |12 (1+6) (o +1)° )

(1 R ) |Vl > (1~ S [Vl
+<5—| 5|7)H v+v u

+ ((1+5) - W‘) HVW (viv) " u i

Now the inequalities (4.3) and (4.4) holds if

2

2

|1—5]<2j,6a<2and(1+5)(0+1)2<4. (4.9)

Since, from 0 < o < 1, there exist § > 0, v > 0 and a > 0 such that the inequalities (4.10)
hold. O

4.1. Proof of theorem 4.1
As M be a geodesically complete manifold it is known that (Lﬁl/\ccoo( M)>N in L2 (M),

be m-accretive and it coincides with Hg.v- Also, from the assumption on M, the oper-
ator (L¥|CCOO(E)> in L? (E), is m-accretive and it coincides with Hy,. Both of these
statements are proven in [31]. From the strategy of Milatovic employs in [25], then the
operator L3|030(E) is essentially self-adjoint and <L3|030(E)) = HY\,. We prove (4.3)
and (4.4) for all u € DY = Dom (HQYV), from which (4.2) follows directly. Since Hy;, is

a closed operator, there exists a sequence {uy} in C2° (E) such that uy — uw and LY u, —
Hy\uin L2 (E), by the previous lemma the sequence {uy,} satisfies (4.3) and (4.4), hence

{(VJFV)3 ug}, {Vug} and {V1/2 (VJFV)?’/2 ug} are Cauchy sequences in the space L? (E).
Furthermore, {Vuy} is a Cauchy sequence in L? (T*M ® E) as

IVuil* = (Vur, V) = (V4 Vs ue) < || V5| ]

(79 o (79) )

= <(V+V)3uk,uk> < “(V+V)3uk
3/2

We will prove that (v+v)*w, — (V+V)% u, Vay — Vi, V1/2 (v+v)3/2 up, = V2 (vH9)
Vu, - vu and (v+v)?u, - (vHv)*?
(V+V)3 |coo () we obtain (V“‘V)S/2 up — (V+V)3/2u and (V“‘V)Suk — (V+V)3u in
L2 (E). As {Vuy} is a Cauchy sequences in L? (T*M ® E), it follows that Vuy convergent

and

H (v+v)3/2 u

(g || -

u. As the essential self-adjointness of V+V\Cgo( g) and
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to some elements z € L? (T*M ® E), respectively then for all U € C° (T*M ® E) we have
0= (Vu,¥) — (up, V) = (2,¥) — (u,VTY) = (2,¥) — (Vu, ¥), as Dom <H§V> C
V[/lic2 (E) (see, Lemma 8.8 in [8]). With the convergence relations, we take the limit as
k — oo in all terms in (4.3) and (4.4) with u replaced by wuy then (4.3) and (4.4) hold for
all w € DY = Dom (sz_v).
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