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Abstract
In the present work, using statistical convergence with respect to power series methods,
we obtain various Korovkin-type approximation theorems for linear operators defined on
derivatives of functions. Then we give an example satisfying our approximation theorem.
We study certain rate of convergence related to this method. In the final section we
summarize these results to emphasize the importance of the study.

Mathematics Subject Classification (2020). 40A35, 40G10, 47B38

Keywords. Korovkin type approximation, statistical convergence with respect to power
series method, rate of convergence, linear operators

1. Introduction
Statistical convergence which is a regular non-matrix summability method is effective

in “summing” non-convergent sequences ([12,23]). Recently, its use in approximation the-
ory has been considered in [13]. Gadjiev and Orhan proved a Korovkin type theorem by
considering statistical convergence instead of ordinary convergence in that work. By relax-
ing the positivity condition on linear operators, various approximation theorems have also
been obtained. For instance, Duman and Anastassiou [2,3] relaxed the positivity condition
of linear operators in the Korovkin-type approximation theory via the concept of statisti-
cal convergence. Following these studies many authors have given several approximation
results via summability theory and convergence methods (see, e.g., [4,5,9–11,17,18,28,29]).

Korovkin type approximation theory deals with the convergence of the sequences of the
linear operators to the identity operator ([1, 14]). If the classical and some other conver-
gence methods do not work, then it would be beneficial to use P−statistical convergence.
Ünver and Orhan [30] have been investigated the relationship not only between these
concepts but also between the concepts of statistical convergence defined by power se-
ries methods and defined by classical methods and showed that P−statistical convergence
methods and statistical convergence are imcompatible (see, also [6–8,16,20,21,24]).

In the present work the main aim is to study some Korovkin-type approximation theo-
rems for linear operators defined on derivatives of functions via P−statistical convergence
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method. By giving an appropriate application, we provide some graphs in order to illus-
trate the efficiency of our result when it is compared with other results in the literature.
It should also be noted that we study the rate of convergence. In the final section we
summarize the results obtained in present paper.

We pause to collect some basic concepts and notations:

Definition 1.1. Let (pj) be a non-negative real sequence such that p0 > 0 and the
corresponding power series

p (t) :=
∞∑

j=0
pjtj

has radius of convergence R with 0 < R ≤ ∞. If the limit

lim
0<t→R−

1
p (t)

∞∑
j=0

pjtjxj = L

exists then we say that x = (xj) is convergent in the sense of power series method ([15,22]).

It is worthwhile to point out that the method is regular if and only if lim
0<t→R−

pjtj

p (t)
= 0

for every j.
This convergence method is a general version of Abel and Borel summability methods.

Korovkin type theorems related to these methods can be found in [19,25–27].

Definition 1.2. [30] Let P be a regular power series method and let E ⊂ N0. If the limit

δP (E) := lim
0<t→R−

1
p (t)

∑
j∈E

pjtj

exists then δP (E) is called the P−density of E.
Note that from the definitions of power series method and P−density it is obvious that

0 ≤ δP (E) ≤ 1 whenever it exists (see also [30]).

Definition 1.3. [30] Let x = (xj) be a real sequence and let P be a regular power series
method. Then x is said to be P−statistically convergent to L if for any ε > 0

lim
0<t→R−

1
p (t)

∑
j∈Eε

pjtj = 0

where Eε = {j ∈ N0 : |xj − L| ≥ ε} that is, δP (Eε) = 0 for any ε > 0. In this case we
write stP − lim x = L.

2. Approximation properties via P−statistical convergence
Let k be a nonnegative integer. By Ck[0, 1], we denote the space of the k−times contin-

uously differentiable functions on [0, 1] endowed with the sup-norm ∥.∥ . Then throughout
the paper we consider the following function spaces:

C1
+ =

{
f ∈ C1[0, 1] : f

′ ≥ 0
}

C+ = {f ∈ C[0, 1] : f ≥ 0}
C2

+ =
{

f ∈ C2[0, 1] : f
′′ ≥ 0

}
C+,1 =

{
f ∈ C1[0, 1] : f ≥ 0

}
C1

− =
{

f ∈ C1[0, 1] : f
′ ≤ 0

}
C+,2 =

{
f ∈ C2[0, 1] : f ≥ 0

}
C2

− =
{

f ∈ C2[0, 1] : f
′′ ≤ 0

}
We assume here and throughout the paper that the power series method is regular and
the test functions are

fi (x) = xi, i = 0, 1, 2, 3, 4.

Also, we denote the value of T (f) at a point x ∈ [0, 1] by T (f(y); x) or, briefly, T (f ; x).
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Theorem 2.1. Let (Tj) be a sequence of linear operators from C2[0, 1] into itself. Assume
that

δP

({
j ∈ N0 : Tj

(
C+,2 ∩ C2

+

)
⊂ C+,2

})
= 1. (2.1)

Then
stP − lim ∥Tj (fi) − fi∥ = 0 for i = 0, 1, 2 (2.2)

if and only if
stP − lim ∥Tj (f) − f∥ = 0 for all f ∈ C2[0, 1]. (2.3)

Proof. First we assume that Tj (f) is P -statistically convergent to f for every f ∈ C2[0, 1].
Since fi ∈ C2[0, 1], i = 0, 1, 2, Tj (fi) is P -statistically convergent to fi for each i = 0, 1, 2.
Therefore, only the sufficiency part does really require a proof. Let x ∈ [0, 1] be fixed and
let f ∈ C2[0, 1]. Since f is bounded and uniformly continuous on [0, 1], for every ε > 0,
there exists a δ > 0 such that

− ε − 2M1β

δ2 φx (y) ≤ f (y) − f (x) ≤ ε + 2M1β

δ2 φx (y) (2.4)

holds for all y ∈ [0, 1] and for any β ≥ 1 where M1 = ∥f∥ and φx (y) = (y − x)2 .
Then by (2.4) we get that

h1,β (y) := ε + 2M1β

δ2 φx (y) + f (y) − f (x) ≥ 0, (2.5)

h2,β (y) := ε + 2M1β

δ2 φx (y) − f (y) + f (x) ≥ 0. (2.6)

Also, for all y ∈ [0, 1],

h
′′
1,β (y) := 4M1β

δ2 + f
′′ (y) and h

′′
2,β (y) := 4M1β

δ2 − f
′′ (y) .

Because of f
′′ is bounded on [0, 1], we can choose β ≥ 1 so that h

′′
1,β (y) ≥ 0, h

′′
2,β (y) ≥ 0,

for each y ∈ [0, 1]. Hence h1,β, h2,β ∈ C+,2 ∩ C2
+ and let

E1 :=
{

j ∈ N0 : Tj

(
C+,2 ∩ C2

+

)
⊂ C+,2

}
.

By (2.1) it is clear that δP (E1) = 1 and so δP (N0 \ E1) = 0. Then we can write

Tj (hi,β; x) ≥ 0, for every j ∈ E1, i = 1, 2. (2.7)

From (2.5) − (2.7) and by using similar arguments as in the proof of Theorem 2.1 in [2];
for every ε>0, we get

∥Tj (f) − f∥ ≤ ε + A1

2∑
i=0

∥Tj(fi) − fi∥ (2.8)

where A1 = max
{

ε + M1 + 2M1β

δ2 ,
4M2β

δ2

}
. Now for a given r > 0, choose an ε > 0 such

that ε < r, and consider the following sets:

F := {j ∈ N0 : ∥Tj (f) − f∥ ≥ r} ,

Fi :=
{

j ∈ N0 : ∥Tj (fi) − fi∥ ≥ r − ε

3A1

}
, i = 0, 1, 2.

Then it follows from (2.8) that

F ∩ E1 ⊂
2∪

i=0
(Fi ∩ E1) ,
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which gives that

1
p (t)

∑
j∈F ∩E1

pjtj ≤ 1
p (t)

2∑
i=0

 ∑
j∈Fi∩E1

pjtj

 ≤ 1
p (t)

2∑
i=0

∑
j∈Fi

pjtj

 . (2.9)

Now letting 0 < t → R− in the both sides of (2.9) and using (2.2) , we immediately get
that

lim
0<t→R−

1
p (t)

∑
j∈F ∩E1

pjtj = 0. (2.10)

Furthermore since
1

p (t)
∑
j∈F

pjtj = 1
p (t)

∑
j∈F ∩E1

pjtj + 1
p (t)

∑
j∈F ∩(N0\E1)

pjtj

≤ 1
p (t)

∑
j∈F ∩E1

pjtj + 1
p (t)

∑
j∈(N0\E1)

pjtj

holds for every j ∈ N0, taking again limit 0 < t → R− in the last inequality and hence it
follows from hypothesis and the inequailty (2.10) that

stP − lim ∥Tj (f) − f∥ = 0.

�

Theorem 2.2. Let (Tj) be a sequence of linear operators from C2[0, 1] into itself. Assume
that

δP

({
j ∈ N0 : Tj

(
C+,2 ∩ C2

−

)
⊂ C2

−

})
= 1. (2.11)

Then
stP − lim

∥∥∥[Tj (fi)]
′′

− f
′′
i

∥∥∥ = 0, for i = 0, 1, 2, 3, 4 (2.12)
if and only if

stP − lim
∥∥∥[Tj (f)]

′′
− f

′′
∥∥∥ = 0, for all f ∈ C2[0, 1]. (2.13)

Proof. It is obvious that (2.13) implies that (2.12) . Let f ∈ C2[0, 1] and x ∈ [0, 1] be
fixed. Based on the proof of Theorem 2.1, this can be found as follows:

For every ε > 0, there exists a δ > 0 such that

− ε − 2Mβ

δ2 σ
′′
x (y) ≤ f

′′ (y) − f
′′ (x) ≤ ε + 2Mβ

δ2 σ
′′
x (y) (2.14)

holds for all y ∈ [0, 1] and for any β ≥ 1 where M2 =
∥∥∥f ′′

∥∥∥ and σx (y) = −(y − x)4

12
+ 1.

Consider the following functions on [0, 1] :

u1,β (y) := 2M2β

δ2 σx (y) + f (y) − ε

2
y2 − f

′′ (y)
2

y
′′ ≥ 0,

u2,β (y) := 2M2β

δ2 σx (y) − f (y) − ε

2
y2 + f

′′ (y)
2

y
′′ ≥ 0.

Also then by (2.14) and for all y ∈ [0, 1],

u
′′
1,β (y) ≤ 0 and u

′′
2,β (y) ≤ 0,

which gives u1,β, u2,β ∈ C2
− and observe that σx (y) ≥ 11

12
for all y ∈ [0, 1]. Then inequality(

±f (y) + ε
2 ± f

′′ (x)
2 y2

)
δ2

2M2σx (y)
≤ (M1 + M2 + ε) δ2

M2
(2.15)
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holds for all y ∈ [0, 1], where M1 = ∥f∥ and M2 =
∥∥∥f ′′

∥∥∥ as mentioned before. As we know,
we can choose β ≥ 1 such that u1,β (y) ≥ 0, u2,β (y) ≥ 0, for each y ∈ [0, 1] and hence u1,β,
u2,β ∈ C+,2 ∩ C2

−. Then let

E2 :=
{

j ∈ N0 : Tj

(
C+,2 ∩ C2

−

)
⊂ C2

−

}
.

By (2.11) it is clear that δP (E2) = 1 and so δP (N0 \ E2) = 0. Then we can write

[Tj (ui,β; x)]
′′

≤ 0, for every j ∈ E2 and i = 1, 2.

Then we get

2M2β

δ2 [Tj (σx; x)]
′′

+ [Tj (f ; x)]
′′

− ε

2
[Tj (f2; x)]

′′
− f

′′ (x)
2

[Tj (f2; x)]
′′

≤ 0,

2M2β

δ2 [Tj (σx; x)]
′′

− [Tj (f ; x)]
′′

− ε

2
[Tj (f2; x)]

′′
+ f

′′ (x)
2

[Tj (f2; x)]
′′

≤ 0.

Observe that in view of σx ∈ C+,2 ∩ C2
−, then we can get Tj (σx; x) ≤ 0 and using this∣∣∣[Tj (f ; x)]

′′
− f

′′ (x)
∣∣∣ ≤ − 2M2β

δ2 [Tj (σx; x)]
′′

+ ε

2
[Tj (f2; x)]

′′

+

∣∣∣f ′′ (x)
∣∣∣

2

∣∣∣[Tj (f2; x)]
′′

− 2
∣∣∣ .

Thus ∣∣∣[Tj (f ; x)]
′′

− f
′′ (x)

∣∣∣ ≤ ε +
ε +

∣∣∣f ′′ (x)
∣∣∣

2

∣∣∣[Tj (f2; x)]
′′

− f
′′
2 (x)

∣∣∣
+ 2M2β

δ2 [Tj (−σx; x)]
′′

. (2.16)

Now we compute the quantity Tj (−σx; x) inequality (2.16) . To see this observe that

[Tj (−σx; x)]
′′

=
[
Tj

(
(y − x)4

12
− 1; x

)]′′

≤ 1
12

[Tj (f4; x)]
′′

− x

3
[Tj (f3; x)]

′′
+ x2

2
[Tj (f2; x)]

′′
− x3

3
[Tj (f1; x)]

′′

+
(

x4

12
− 1

)
[Tj (f0; x)]

′′

= 1
12

{
[Tj (f4; x)]

′′
− f

′′
4 (x)

}
− x

3

{
[Tj (f3; x)]

′′
− f

′′
3 (x)

}
+ x2

2

{
[Tj (f2; x)]

′′
− f

′′
2 (x)

}
− x3

3

{
[Tj (f1; x)]

′′
− f

′′
1 (x)

}
+
(

x4

12
− 1

){
[Tj (f0; x)]

′′
− f

′′
0 (x)

}
.

(2.17)

Combining this with (2.12) and following the same steps as in the proof of Theorem 2.2
in [2]; for every ε > 0, we get

∥∥∥[Tj (f)]
′′

− f
′′
∥∥∥ ≤ ε + A2

4∑
i=0

∥∥∥[Tjfi]
′′

− f
′′
i

∥∥∥ (2.18)
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where A2 =
{

ε + M2
2

+ M2β

δ

}
and M2 =

∥∥∥f ′′
∥∥∥ as stated before. Now for a given r > 0,

choose an ε > 0 such that ε < r, and define the following sets:

G :=
{

j ∈ N0 :
∥∥∥[Tj (f)]

′′
− f

′′
∥∥∥ ≥ r

}
,

Gi :=
{

j ∈ N0 :
∥∥∥[Tj (fi)]

′′
− f

′′
i

∥∥∥ ≥ r − ε

5A2

}
, i = 0, 1, 2, 3, 4.

In this case, by (2.18) ,

G ∩ E2 ⊂
4∪

i=0
(Gi ∩ E2) ,

which gives for every j ∈ N0, that

1
p (t)

∑
j∈G∩E2

pjtj ≤ 1
p (t)

4∑
i=0

 ∑
j∈Gi∩E2

pjtj

 ≤ 1
p (t)

4∑
i=0

∑
j∈Gi

pjtj

 . (2.19)

Now letting 0 < t → R− in the both sides of (2.19) and using (2.8) , we immediately get
that

lim
0<t→R−

1
p (t)

∑
j∈G∩E2

pjtj = 0. (2.20)

Furthermore since
1

p (t)
∑
j∈G

pjtj = 1
p (t)

∑
j∈G∩E2

pjtj + 1
p (t)

∑
j∈G∩(N0\E2)

pjtj

≤ 1
p (t)

∑
j∈G∩E2

pjtj + 1
p (t)

∑
j∈(N0\E2)

pjtj

holds for every j ∈ N0, taking again limit 0 < t → R− in the last inequality, it follows
from hypothesis and the inequailty (2.20) that

stP − lim
∥∥∥[Tj (f)]

′′
− f

′′
∥∥∥ = 0.

�
Theorem 2.3. Let (Tj) be a sequence of linear operators from C1[0, 1] into itself. Assume
that

δP

({
j ∈ N0 : Tj

(
C+,1 ∩ C1

+

)
⊂ C1

+

})
= 1. (2.21)

Then
stP − lim

∥∥∥[Tj (fi)]
′
− f

′
i

∥∥∥ = 0, for i = 0, 1, 2, 3 (2.22)
if and only if

stP − lim
∥∥∥[Tj (f)]

′
− f

′
∥∥∥ = 0, for all f ∈ C1[0, 1]. (2.23)

Proof. It is enough to prove the implication (2.22) ⇒ (2.23) . Let f ∈ C1[0, 1] and x ∈
[0, 1] be fixed. Then for every ε > 0, there exists a positive number δ > 0 such that

− ε − 2M3β

δ2 γ
′
x (y) ≤ f

′ (y) − f
′ (x) ≤ ε + 2M3β

δ2 γ
′
x (y) (2.24)

holds for all y ∈ [0, 1] and for any β ≥ 1 where M3 =
∥∥∥f ′
∥∥∥ and γx (y) = (y − x)3

3
+ 1.

Now using the functions defined by

θ1,β (y) := 2M3β

δ2 γx (y) − f (y) + εy + yf
′ (x) ,

θ2,β (y) := 2M3β

δ2 γx (y) + f (y) + εy − yf
′ (x) ,
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we can easily see that θ1,β and θ2,β belong to C1
+ for any β ≥ 1, i.e. θ1,β (y) ≥ 0, θ2,β (y) ≥ 0.

Also observe that γx (y) ≥ 2
3

for all y ∈ [0, 1], then inequality(
±f (y) − εy ± f

′ (x) y
)

δ2

2M3γx (y)
≤ (M1 + M3 + ε) δ2

M3
(2.25)

holds for all y ∈ [0, 1], where M1 = ∥f∥ as mentioned before. Now we can choose β ≥ 1
such a way that θ1,β (y) ≥ 0, θ2,β (y) ≥ 0, for each y ∈ [0, 1] and hence θ1,β, θ2,β ∈ C+,1∩C1

+.
Let

E3 :=
{

j ∈ N0 : Tj

(
C+,1 ∩ C1

+

)
⊂ C1

+

}
.

By (2.21) it is clear that δP (E3) = 1 and so δP (N0 \ E3) = 0. Then we can write
Tj

(
θ

′
i,β; x

)
≥ 0, for every j ∈ E3 and i = 1, 2. Then we get

2M3β

δ2 [Tj (γx; x)]
′
− [Tj (f ; x)]

′
+ εTj (f1; x) + f

′ (x) [Tj (f1; x)]
′

≥ 0,

2M3β

δ2 [Tj (γx; x)]
′
+ [Tj (f ; x)]

′
+ εTj (f1; x) − f

′ (x) [Tj (f1; x)]
′

≥ 0.

Since the function γx ∈ C+,1 ∩ C1
+, we have Tj (γx) ∈ C1

+ and∣∣∣∣[Tj (f ; x)]
′
− f

′
(x)
∣∣∣∣ ≤ ε +

(
ε +

∣∣∣f ′ (x)
∣∣∣) ∣∣∣[Tj (f1; x)]

′
− f

′
1 (x)

∣∣∣
+ 2M3β

δ2 [Tj (γx; x)]
′
, (2.26)

holds. Since

[Tj (γx; x)]
′

=
[
Tj

(
(y − x)3

3
+ 1; x

)]′

≤ 1
3

{
[Tj (f3; x)]

′
− f

′
3 (x)

}
− x

{
[Tj (f2; x)]

′
− f

′
2 (x)

}
+ x2

{
[Tj (f1; x)]

′
− f

′
1 (x)

}
+
(

1 − x3

3

){
[Tj (f0; x)]

′
− f

′

0 (x)
}

, (2.27)

combining this with (2.26), by using similar lines as in the proof of Theorem 2.3 in [2]; for
every ε > 0, we get

∥∥∥[Tj (f)]
′
− f

′
∥∥∥ ≤ ε + A3

3∑
i=0

∥∥∥[Tj (fi)]
′
− f

′
i

∥∥∥ (2.28)

where A3 =
{

ε + M3 + 2M3β

δ

}
. Now for a given r > 0, choose an ε > 0 such that ε < r,

and define the following sets:

R :=
{

j ∈ N0 :
∥∥∥[Tj (f)]

′
− f

′
∥∥∥ ≥ r

}
,

Ri :=
{

j ∈ N0 :
∥∥∥[Tj (fi)]

′
− f

′
i

∥∥∥ ≥ r − ε

4A3

}
, i = 0, 1, 2, 3.

In this case, by (2.28) ,

R ∩ E3 ⊂
3∪

i=0
(Ri ∩ E3) ,
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which gives for every j ∈ N0, that

1
p (t)

∑
j∈R∩E3

pjtj ≤ 1
p (t)

3∑
i=0

 ∑
j∈Ri∩E3

pjtj

 ≤ 1
p (t)

3∑
i=0

∑
j∈Ri

pjtj

 . (2.29)

Now letting 0 < t → R− in the both sides of (2.29) and using (2.26) , we immediately get
that

lim
0<t→R−

1
p (t)

∑
j∈R∩E3

pjtj = 0. (2.30)

Furthermore since
1

p (t)
∑
j∈R

pjtj = 1
p (t)

∑
j∈R∩E3

pjtj + 1
p (t)

∑
j∈R∩(N0\E3)

pjtj

≤ 1
p (t)

∑
j∈R∩E3

pjtj + 1
p (t)

∑
j∈(N0\E3)

pjtj

holds for every j ∈ N0.
Thus it follows from hypothesis and the last inequailty that

stP − lim
∥∥∥[Tj (f)]

′
− f

′
∥∥∥ = 0.

�

3. An application
In this section, we give an application showing that in general, our results are stronger

than classical ones and we provide some graphs in order to illustrate the efficiency of our
result when it is compared with other results in the literature.

Example 3.1. We consider the following linear operator on C2[0, 1]

Tj(f ; x) =
{

Lj(f ; x), if j = 2l,
Mj(f ; x), if j = 2l + 1,

(3.1)

where Mj and Lj , j ∈ N0 are defined as follows

Mj(f ; x) =
1∫

0

(1 + j) tjf (tx) dt, x ∈ [0, 1]

and

Lj(f ; x) =
1∫

0

(1 − j) tjf (tx) dt, x ∈ [0, 1].

Also, assume that the power series method is given by

pj =
{

0, if j = 2l,
1, if j = 2l + 1.

It is easy to see that Mj(f0; x) = f0(x), Mj(f1; x) = 1 + j

2 + j
f1 (x) , Mj(f2; x) = 1 + j

3 + j
f2 (x) .

Now, we have

Tj(f0; x) − f0 (x) =
{

−2j
j+1 , if j = 2l,

0, if j = 2l + 1.

Hence, we get
stP − lim ∥Tj (f0) − f0∥ = 0.
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Also, it is clear that

Tj(f1; x) − f1 (x) =
{ −x(1+2j)

j+2 , if j = 2l,
−x
j+2 , if j = 2l + 1,

and we get
stP − lim ∥Tj (f1) − f1∥ = 0.

Finally,

Tj(f2; x) − f2 (x) =


−2x2(1+j)

j+3 , if j = 2l,
−2x2

j+3 , if j = 2l + 1,

and we have
stP − lim ∥Tj (f2) − f2∥ = 0.

Hence we conclude that our operator satisfies all assumptions of Theorem 2.1. Therefore
we obtain

stP − lim ∥Tj (f) − f∥ = 0.

However it can be easily seen that (Tj(f0)) is not convergent and statistically convergent
to f0. Hence, these show that Proposition 1 of [9] and statistical Korovkin theorem ([3]) do
not work for our operators Tj defined by (3.1) (It is illustrated for the function f(x) = x3+1
in Figure 1).
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Figure 1. (Left) The function f and operators Tj(f ; x) for j = 5, 15, 25, 55, 95;
(Right) the operators Tj(f ; x) for j = 4, 16, 26, 50, 90 where f(x) = x3 + 1.

4. Rate of convergence
In this section, we prove some results which give the degree of approximation by means

of linear operators.
The modulus of continuity, denoted by ω (f, δ) is defined by

ω(f, δ) = sup
|y−x|≤δ

|f(y) − f(x)|

where δ is a positive constant, f ∈ C[a, b]. It is easy to see that, for any c > 0 and all

ω(f ; δ) ≤ (1 + [c])ω(f ; δ)
where [c] is defined to be the greatest integer less than or equal to c.

Now we present some estimates of rates of power series method for Korovkin-type
theorems.
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Theorem 4.1. Let (Tj) be a sequence of linear operators from C2[0, 1] into itself and
Tj
(
C+,2 ∩ C2

+
)

⊂ C+,2 , for all j ∈ N0. Assume that the following conditions hold:

stP − lim ∥Tj (f0) − f0∥ = 0 (4.1)

and
stP − lim ω (f, δj) = 0 (4.2)

where δj :=
√

∥Tjφx∥ and φx (y) = (y − x)2 , then we have, for all f ∈ C2[0, 1]

stP − lim ∥Tj (f) − f∥ = 0.

Proof. Let x ∈ [0, 1] be fixed and let f ∈ C2[0, 1]. We can write that

−
(

1 + β

δ2 φx (y)
)

ω (f, δ) ≤ f (y) − f (x) ≤
(

1 + β

δ2 φx (y)
)

ω (f, δ) (4.3)

for all y ∈ [0, 1] and for any β ≥ 1 where φx (y) = (y − x)2 . Then by (4.3) we get that

g1,β (y) :=
(

1 + β

δ2 φx (y)
)

ω (f, δ) + f (y) − f (x) ≥ 0, (4.4)

g2,β (y) :=
(

1 + β

δ2 φx (y)
)

ω (f, δ) − f (y) + f (x) ≥ 0. (4.5)

Also for all y ∈ [0, 1],

g
′′
1,β (y) := 2β

δ2 ω (f, δ) + f
′′ (y) and g

′′
2,β (y) := 2β

δ2 ω (f, δ) − f
′′ (y) .

Because of f
′′ is bounded on [0, 1] we can choose β ≥ 1 such a way that g

′′
1,β (y) ≥ 0,

g
′′
2,β (y) ≥ 0, for each y ∈ [0, 1]. Hence g1,β, g2,β ∈ C+,2 ∩ C2

+ and then by the hypothesis

Tj (gi,β; x) ≥ 0, for all j ∈ N0, x ∈ [0, 1] and i = 1, 2 (4.6)

and hence
Tj (gi,β; x) ≥ 0, for t ∈ (0, R) , x ∈ [0, 1] and i = 1, 2.

From (4.4) − (4.6) and the linearity of (Tj) we get

Tj (f0; x) ω (f, δ) + βω (f, δ)
δ2 Tj (φx; x) + Tj (f ; x) − f (x) Tj (f0; x) ≥ 0,

Tj (f0; x) ω (f, δ) + βω (f, δ)
δ2 Tj (φx; x) − Tj (f ; x) + f (x) Tj (f0; x) ≥ 0,

thus

−Tj (f0; x) ω (f, δ) − βω (f, δ)
δ2 Tj (φx; x) ≤ f (x) Tj (f0; x) − Tj (f ; x)

≤ Tj (f0; x) ω (f, δ) + βω (f, δ)
δ2 Tj (φx; x) .

Then we obtain

|Tj (f ; x) − f (x)| ≤ ω (f, δ) + (ω (f, δ) + |f (x)|) |Tj (f0; x) − f0 (x)| + βω (f, δ)
δ2 Tj (φx; x) .

If we take δ := δj :=
√

∥Tj (φx; x)∥, M1 = ∥f (x)∥ and taking supremum x, y ∈ [0, 1], then
we get

∥Tj (f) − f∥ ≤ (1 + β) ω (f, δj) + (ω (f, δ) + M1) ∥Tj (f0) − f0∥ . (4.7)



1118 N. Şahin Bayram, S. Yıldız

Given ε > 0 define the following set

S : = {j : ∥Tj (f) − f∥ ≥ ε} ,

S1 : =
{

j : ω (f, δj) ≥ ε

3M1

}
,

S2 : =
{

j : ∥ω (f, δj) Tj (f0) − f0∥ ≥ ε

3M1

}
,

S3 : =
{

j : ∥Tj (f0) − f0∥ ≥ ε

3M1

}
.

Then we easily see that S ⊂ S1 ∪ S2 ∪ S3 and also defining

S
′
2 : =

{
j : ∥ω (f, δj)∥ ≥

√
ε

3M1

}
,

S
′′
2 : =

{
j : ∥Tj (f0) − f0∥ ≥

√
ε

3M1

}
,

one can deduce that S2 ⊂ S
′
2 ∪ S

′′
2 . Hence we get S ⊂ S1 ∪ S

′
2 ∪ S

′′
2 ∪ S3, So we get that

1
p (t)

∑
j∈S

pjtj ≤ 1
p (t)

∑
j∈S1

pjtj + 1
p (t)

∑
j∈S

′
2

pjtj

+ 1
p (t)

∑
j∈S

′′
2

pjtj + 1
p (t)

∑
j∈S3

pjtj

from the hypothesis and the last inequailty we obtain that

stP − lim ∥Tj (f) − f∥ = 0,

that is, the assertion. �

Note that the following theorems may be proved as in Theorem 4.1. So we omit their
proofs.

Theorem 4.2. Let (Tj) be a sequence of linear operators from C2[0, 1] into itself and
Tj
(
C+,2 ∩ C2

−
)

⊂ C2
−, for all j ∈ N0. Assume that the following conditions hold:

stP − lim
∥∥∥[Tj (f0)]

′′
− f

′′
0

∥∥∥ = 0 (4.8)

and
stP − lim ω

(
f

′′
, δj

)
= 0 (4.9)

where δj :=
√

∥Tj (−σx)∥ and σx (y) = −(y − x)4

12
+ 1, then we have, for all f ∈ C2[0, 1]

stP − lim
∥∥∥[Tj (f)]

′′
− f

′′
∥∥∥ = 0.

Theorem 4.3. Let (Tj) be a sequence of linear operators from C1[0, 1] into itself and
Tj
(
C+,1 ∩ C1

+
)

⊂ C1
+, for all j ∈ N0. Assume that the following conditions hold:

stP − lim
∥∥∥[Tj (f0)]

′
− f

′
0

∥∥∥ = 0 (4.10)

and
stP − lim ω

(
f

′
, δj

)
= 0 (4.11)

where δj :=
√

∥Tjγx∥ and γx (y) = (y − x)3

3
+ 1, then we have, for all f ∈ C1[0, 1]

stP − lim
∥∥∥[Tj (f)]

′
− f

′
∥∥∥ = 0.
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5. Conclusions
Finally we give the following concluding remarks.
3 Let (Tj) be a sequence of linear operators from C[0, 1] into itself and Tj (C+) ⊂ C+,

for all j ∈ N0. Then for all f ∈ C[0, 1],

stP − lim ∥Tj (f) − f∥ = 0 (5.1)

if and only if
stP − lim ∥Tj (fi) − fi∥ = 0, i = 0, 1, 2 (see [30]). (5.2)

3 We remark that all our theorems also work on any compact subset of R instead of
the unit interval [0, 1].

3 Theorem 2.3 works if we replace the condition Tj
(
C+,1 ∩ C1

+
)

⊂ C1
+ by Tj

(
C+,1 ∩ C1

−
)

⊂

C1
−. To prove this, it is enough to consider the function µx (y) = −(y − x)3

3
+ 1 instead of

γx (y) defined in the proof of Theorem 2.3.
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