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Abstract

In [11], Sarikaya and Ertugral described a new left-sided and right-sided generalized fractional integrals. The goal of this study obtain the
new Hermite-Hadamard-Fejér inequality for the this generalized fractional integrals. New results obtained from the this study are supported
from previous works.
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1. Introduction

The subject of fractional calculus (integrals and derivatives) has gained considerable importance. The importance of this subject, whose
popularity has increased over the past decades, is that it has various applications in many branches such as mathematics and engineering. It
has extensions and generalizations in more variants as well as applications for various problems involving special functions of mathematical
science. This issue it is still extensively studied by many authors, see for example ([3], [7],[9],[10],[12],[14]). One of the important
applications of fractional integrals is the Hermite-Hadamard inequality, see Ref ([3], [6],[10],[11]). The classical Hermite-Hadamard
inequality is as follows:

h(“;b)gbla/zh(x)dxgw (1.1)

where h : [ — R is a convex mapping defined on the interval / C R and a,b € I, with a < b.

Within years Hermite-Hadamard type inequalities and fractional integrals became a very attractive subject to mathematicians due to
widespread use, and many different forms of Hermite-Hadamard inequalities involving fractional (i.e., noninteger) operators were introduced
for different classes of functions; see ([3], [9],[10]).

The best-known inequalities about the integral mean of a convex function are the Hermite Hadamard inequalities or their weighted versions,
called the Hermite-Hadamard-Fejér inequalities (see, (1.1) and (1.2) in the references ([1],[2],[41,[5], [71,[8],[12]-[18]). In [5], Fejer obtained
a downward inequality for the Hermite-Hadamard inequality (1.1) in weighted generalization as the following:

Theorem 1.1. Let h: [a,b] — R be a convex function. So the following inequality

h(a;rb)/ig(x)dxg b—ia/:h(x)g(x)dxé M/Zg(x)dx (1.2)

is valid when g : [a,b] — R is non-negative, symmetric to (a+b)/2 (i.e. g(x) = g(a+b—x)), and integrable.

In [11], Sarikaya and Ertugral described a new left-sided and right-sided generalized fractional integrals as the following:-
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Definition 1.2. Let h € L{a,b|. The Generalized Fractional integrals ,+Iph and - Ioh with a > 0 are defined by

X —
o Toh () =/ q)(xitt)h(z)dz, x>a (1.3)
a X—
Po(t—x)
bfl(ph(x):/ ﬁh(l)dl,x<b, (14)
where @ : [0,00) — [0,00) a function which satisfies the following conditions:
1
/ ) 4 < oo, (1.5)
o t
196 Los
A S(p(r)SAlfOVZSrSZ (1.6)
0 e
r s
e(r) _¢0) @) . 1 _s
- < - ~<i< :
2o | SAslr—sl Tyt for 5 <2 <2 (1.8)
¢ (r)

where A1,Az,A3 > 0 are independent of r,s > 0. If @ (r) r® is increasing for some o > 0 and is decreasing for some 3 > 0, then ¢

satisfies (1.5-1.8), see [11].

B

Furthermore, they noticed that these generalized fractional integrals may contain some types of fractional integrals such as Riemann-Liouville
fractional integral, k—Riemann-Liouville fractional integral, Katugampola fractional integral, conformable fractional integral, etc., with
some special choices.

In [11], for this new generalized fractional integral defined by Sarikaya and Ertugral, let’s recall the basic lemma of the Hermite-Hadamard
inequality given by them.

Theorem 1.3. Given a positive function h : [a,b) — R mapping on (a,b) with a < b and h € L]a,b]. If h is a convex function on [a,b], then
we get the following expression

h (a;b) = %(1) [a+gh (b) +p- Iph(a)] < h(a)+h(D), "

where A(1) = /(]) M(h.

Meanwhile, the following basic lemma, which was used to obtain some Hermite-Hadamard inequalities, was obtained by Sarikaya et. al in
[11].
Lemma 1.4. Given a differentiable h : |a,b] — R mapping on (a,b) with a < b. If /' € L|a,b], then the below expression fot the generalized
fractional integrals holds:

h(a)+h(b) 1

“ A () [a+Ioh (b) +- 1ph(a)] (1.10)

2
- ;A;(f)/;[/\(l_’)_A(’)]hl(ta-i-(1—t)b)dz,

where A (1) = /:) Mdl.

Theorem 1.5. Given a differentiable h : [a,b] — R mapping on (a,b) with a < b. If |i| is a convex function on [a,b), then, then the below
expression fot the generalized fractional integrals holds:

’h(a)Jrh(b) 1
2 C2A(1)

[a+Iph (D) +p- Iph(a)] ' (1.11)

b—a

2A(1) (/;t|A(1—t)—A(t)\dl> (|1 (a)| + | (B)]] .

Lo((b—a)t
where A(1) = / Mdt.
J o
On the other hand, let’s remind the following inequality that we used in our main results.
Lemma 1.6. ([15, 17]) For0 < a <1 and 0 <a < b, we have
% %] < (b—a)®

Firstly the purpose of this paper is to give the Hermite-Hadamard-Fejer inequality using a general class of this generalized fractional integral
operator, which is the predominant generalization of the Hermite-Hadamard inequality (1.9). We will then obtain new inequalities for
generalized fractional integrals related to the right hand side of Hermite-Hadamard-Fejér type integral inequality.
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2. MAIN RESULTS

Before we get our next result in this section, we need the following lemma:

a+b

Lemma 2.1. If g : [a,b] — R is integrable and symmetric to with a < b, then

atlog (b) =p- log (a) = % [a+1<pg (b) +5- log (a)] .

Proof. Since g is symmetric to (a+b) /2, we have g(a+b—x) = g(x) , for all x € [a,b]. Hence, in the following integral setting
x=tb+(1—t)aand dx = (b—a)dr gives

wlost®) = [P g ryar

= /i %g(cﬂrbfx)dx

= /i %g(x)dx =p lpg(a).

Thus, the desired result of the lemma is obtained. O

T (o)

b
Theorem 2.3. Given a h:[a,b] = R convex function and h € L]a,b]. If g : [a,b] — R is nonnegative, integrable and symmetric to a—; ,

Remark 2.2. Under the hypotheses of Lemma 3, if we choose @ (x) = , then we get the expression of Lemma 3 in [7].

then the below expression for the generalized fractional integrals holds:

h (#) lat1pg (b) +p- Ipg (a)] 2D
< arlp (hg) (b) +4- I (hg) (a)]
< MO g ) 41 g (@)

Proof. Since h is a convex function on [a, b], we have for all 7 € [0, 1]

P (a—;b) _ (ta+(1—t)b+tb+(1 —t)a>

2
2.2)
< h(ta4+(1—1)b)+h(tb+(1—1)a)
< > .
Multiolvi . ¢((b—a)t) . . o I
ultiplying both sides of (2.2) by 2 ; g(tb+ (1 —1t)a) then integrating the resulting inequality with respect to ¢ over [0, 1], we

obtain

Zh(a;b)/(‘)¢((bt—a)t)g(tb+(1—t)a)df

/;fﬁégﬁﬂlm@a+<1_nb>+hab+(1—wangab+<1—ﬂaﬁh
_ /;Mh(m_g_(l—t)b)g(tb+(l—t)a)dt
+/;Mwb+(1—t)a)g(zb+(1—t)a)dt~

Choosing x =tb+ (1 —t)a, we get

(242) [ S
a)

b g(x—a) G
[y Harb-0s s [ FRh@s s

IN

B b o (b—x) Lo(x—a)
- /{@:Sh@gww—ﬂM+/{§:;M@ﬁﬂﬂ

 rhe(b—x) lo(x—a)
= [ 5 wa e [ S Shems s

Therefore, by Lemma 2.1 we have

! (#) [aLp8 (b) +p- Log (a)] < [a+1p(h8) (b) +p-Ip(hg) ()]



82 Konuralp Journal of Mathematics

and the first inequality is proved.
For the proof of the second inequality in (2.1) we first note that if 4 is a convex function, then, for all # € [0, 1], it yields
h(ta+(1—1t)b)+h(tb+ (1 —1)a) < h(a)+h(D). (2.3)

b—a)t
Then multiplying both sides of (2.3) by M

obtain

g(tb+ (1 —1t)a) and integrating the resulting inequality with respect to ¢ over [0, 1], we

/.1Mh(ta_i_(]_t)b)g([b—i—(l—l)d)dt
+ [ OO (1 g (1 a)a

< [h(a)—i—h(b)}/owg(tlﬂ-(l—t)a)dz

ie.

h(a)+h(b
o To00) 8) - Tg(h) @) < ("2 ) oty 4) 4 sl
The proof is completed. O

N1

L(a)
Remark 2.5. Under the hypotheses of Theorem 4, if we choose @ (x) = x, then the inequality (2.1) becomes the inequality (1.2).
a

Remark 2.4. Under the hypotheses of Theorem 4, if we choose @ (x) = then we get the expression of Theorem 4 in [7].

['(a)

Remark 2.6. Under the hypotheses of Theorem 4, if we choose ¢ (x) =
is found in [10];

, 8 (x) = 1, then the inequality (2.1) becomes as follow which

atb\ _ T(a+1) 3 h(a) +h(b)
< v < —"
h( 5 ) <20 _a) [J% h(b)+ ¥ h(a)] < 5 ,
with @ > 0.
Corollary 2.7. In Theorem 4, if we take ¢ (x) = erz 7 then the inequality (2.1) becomes as follow;
k

h (a;b) [Igﬂ 8B+ e (a)]

< [18 09 )+ I 4 (1) ()]
< MO o e by 1 4s@)].

Lemma 2.8. Givenah: [a,b] — R differentiable mapping on (a,b) witha < b and ' € L{a,b]. If g : |a,b] — R is integrable and symmetric

b
to %, then the below expression for the generalized fractional integrals holds:

<M) o Tog (0) +o- Tpg ()] — 4 Ip(hg) (b) +5- Io(hg) (a)] @24

o[ S Detoas— [ 2 yas] i yar

Proof. It suffices to note that, we get the following expression

' - /‘i{/:ﬁé‘: o= | S|
_ /(/ o (b )h’ dt—l—/ ( / ‘)’)g(s)ds)h’(z)dz

= L+5h.

By integration by parts and Lemma 2.1, we get
b o(b—t
2D iy

N (/at q)([(]b_—s;)g(s)ds>h(f) « (b—1)

bob—s b oo(h_
= ([ e0as) o) [ 2D wa

= [1(b)yr lpg (b) =4t Ip(hg) (b)]

- {@ [a+1og (b) +- Ipg (a)] —a+ Ip(hg) (b)]
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and similarly

Yh(t)dt

(/z“’(f_’a‘)‘)g<s>ds>h<a> / "’(( ))< Q0

= {% la+ 198 (b) +u- Ipg (a)] —p- 1 (hg) (“)} :

=

Thus, we can write

I = L+
h(a)+h(b
= (M) Lt )41t @] Ty ) 0) - () @]}
Thus we obtain (2.4) which completes the proof. O
(02
Remark 2.9. Under the hypotheses of Lemma 4, if we choose @ (x) = %, then we get the expression of Lemma 4 in [7].

Remark 2.10. Under the hypotheses of Lemma 4, if we choose @ (x) = x, then we get the following;
b b
(h(a)+h (b)) / g(t)dr —2 / h(1) g(t)dr
a a

/i [/ut (p(ébiis;)g(s)ds— /t.b (P(iii;)l)g(s)ds} W (t)dr.

Moreover this result is same Lemma 2.6 in [5]

o
Remark 2.11. Under the hypotheses of Lemma 4, if we choose @ (x) = F)EOC)’ g (x) = 1, then inequality (2.4) becomes as follow which is
found in [10];
h(a)+h(b b—a (!
(%) —[VEF ) +IE f(a)] = 7/ [(1=0)% =t K (ta+ (1 —1)b)dt.
%
Corollary 2.12. In Lemma 4, if we take @ (x) = i ( )’ then the inequality (2.4) becomes as follow;
k
h(a)+h(
(MO it )18 @] [1c0h0) (0415 00 @) s

& 4.
k b (s—a)k

b ( ) /
N /a /aT()g(S)ds_/t Wg(s)ds K (t)dr.

Theorem 2.13. Let h: I C R — R be a diferentiable mapping on I° and h' € L{a,b] with a < b, and also |I| is convex on |a,b] and
g [a,b] = R is continuous and symetric with respect to %. The following holds for the generalized fractional integrals;

‘ <M> [arTog (0) +1- Tog ()] = [a+ o (hg) (b) 5 Tp(hg) (a)] 26)

where

by
Mj =
a a+b—t

Proof. From Lemma 2.8, we have

@(b—s)
(b—s)

¢b-
(bf

oo [ 1

ds] dt.

2.7)

(M5 [t 01 - Tpa@)] = oo To ) 8) - i) @)
</ ’

/at (P(éb__sj) g(s)ds— /rb 7(1)(?__5) g(s)ds

W ()] dt.
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Since || is convex on [a,b], we know that for 7 € [a, b]

—t t— b—t t—a
(ftar =) < =t @l =2 o) @8)

and since g:[a,b] — R is symmetric to (a+ b) /2 we write

R R = P = T

[ ()] = |I

then we have

’/t (P(bii s)g(s)ds—/tb (p(ébiis;)g(s)ds’ 2.9
_ ‘/a-&-h 0] - g(s)ds
/jer t (P(l(fiis;)g(s) ds ,te€ a,ﬂ

IN

1 —
/ o(b s)g s re a+b

a+b—t (b - S)

A combination of (2.7), (2.8) and (2.9), we get

(M5 oot 01 4 Iy @]~ oo Tol0) )1 o) @]

ds) (2’%; | (a)] + g | (b)|) dt

‘p(l()b__si)g(s) ds) (Z%; 1 (a)] + % | (b)\) dt

%” ra+b—t
< [ (/
a t
b t
gyl
# a+b—t

esssupte a b |g

[|h’ )|+ |K (b)]] M.

- (b—a)
We obtain the desired result. This completes the proof. O
xoc
Remark 2.14. Under the hypotheses of Theorem 5, if we choose @ (x) = m, then we get the expression of Theorem 5 in [7].

Remark 2.15. Under the hypotheses of Theorem 5, if we choose @ (x) = x, then we get the following expression;

‘(h(a)—i—h(b))/:g(t)dz—Z/Zh(t)g(t)dz

(b—a)
< T2l [ @]+ @]
N7
Remark 2.16. Under the hypotheses of Theorem 5, if we choose ¢ (x) = m, g(x) = 1, then inequality (2.6) becomes as follow which is

found in [10];

‘(h(a)-i—h(b)) ~T(a+1)

! IO 0)

b—a 1 , ,
@il (1 _Ta) [|H (a)|+|K (b)]] -

Corollary 2.17. Under the hypotheses of Theorem 5, if we choose @ (x) = kl"xjkwc)’ then the inequality (2.6) becomes as follow;
k
h(a)+h(b
(MO 12 01 1 get)] = [ 4000) 0) 12 c(h) ]| 2.10)

—-1

/ / b ¢ b—s k
< e @)+ Gl [, |
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Theorem 2.18. Let h: I C R — R be a diferentiable mapping on I° and h' € La,b] with a < b, and also |I| is convex on [a,b] and

g [a,b] — R is continuous and symetric with respect to # The following holds for the generalized fractional integrals;

2

< _2llsll. /*b U“*’H
T oo S U
ath
2

STl A
esllw,

\(fﬂ@flfl@ﬁ?l) (o Tpg (6) - Tpg (@) — [u+ T (hg) (0) 5 Io(hg) (a)]

b ot
ds} dt -‘r/ {/
ath a+b—t

2

P (b—ys)
(b—s)

¢ (b—s)
(b—s)

1-1/q
ds} dt}

o (b—ys)
(b—s)

9 (b—ys)
(b—s)

dﬁ(@—ﬂﬁ%@ﬁ+a—anwwn%m

1/q
dﬁ(w—ﬂw%wv+0—aﬂﬁwﬂﬂd% ,

where g > 1.

Proof. Using Lemma 2.8, Holder’s inequality, (2.9) and the convexity of | /|7, it follows that

‘(Zﬂ@zzgiﬁﬁéz) [alog (b) - Ipg (@)] — [a+lp(hg) (B) +1- Iy (k) (a)]
<UiﬂwtﬁiskwﬂﬁrIMUiﬂMtﬁﬁgkmﬁMWerm
ST [ () S| a)a]
e L o]
ot (oo £ (L [ )]

a+b
2

A0
oL,

Hence, we obtain the desired result. This completes the proof.

p(b-ys)
(b—s)

ds> ((b=1)|W (@)|"+ (t—a) | (b)|)dt

o (b—s) /e

(b—s)

ds> ((b=1) | (@)|"+ (t—a)|K (b)|7) dt}

o

Remark 2.19. Under the hypotheses of Theorem 6, if we choose @ (x) = T@)
We can express another inequality for g > 1 as follows:

Theorem 2.20. Let h: 1 C R — R be a diferentiable mapping on I° and h' € La,b] with a < b, and also |W
g [a,b] — R is continuous and symetric with respect to # The following holds for the generalized fractional integrals;

(M5O ot 01 - T @)] = oo Tol) 4) - i) @)
ath T bt g p . i 1/p
< U R e L e )

I (@) + 1 (b))
X{gggzgggf} .

1,1 _
whereEJrg—l.

, then we get the expression of Theorem 6 in [7].

@2.11)

(2.12)

9, g > 1is convex on [a,b] and

2.13)
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Proof. Using Lemma 2.8, Holder’s inequality, (2.9) and the convexity of |4’

Remark 2.21. Under the hypotheses of Theorem 7, if we choose @ (x) =

4, it follows that

(M) ot 81 - I @]~ oo Tolh) 6) - o) @)
< (Lo g ] [ el
< essg;{)})}k@ﬂ{/ﬁ {/?HH % s} dt+/Th U;M t"’zés))ldsrdz}l/p

x{(é’;|h’(a)|‘1+;‘;\h’(b)\q)dz}l/q
= (!g,HZ) {/ %b V :MH %’ds]pd”/ be V ;HH

X{Mww;wwqy

o(b—ys)
(b—ys)

p Y VUUP
ds} dt}

o

I'la)

then we get the expression of Theorem 7 in [7].

Remark 2.22. Under the hypotheses of Theorem 7, if we choose @ (x) = x, then the inequality (2.13) becomes the inequality found in [17].
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