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ABSTRACT 
In this paper, a new probabilistic technique (a variant of Multiple Model Particle Filter-MMPF) will be used to 

predict time-series datasets. At first, the reliable performance of our method is proved using a virtual random 

scenario containing sixty successive days; a large difference between the predicted states and the real 

corresponding values arises on the second, third, and fourth day. The predicted states that are determined by 

using our method converge rapidly towards the real values while a classical linear model exhibits a large amount 

of divergence if used alone here. Then, the performance of our approach is compared with some other techniques 

that were already applied to the same time-series datasets: IEX (Istanbul Stock Exchange Index), TAIEX 

(Taiwan Stock Exchange), and ABC (The Australian Beer Consumption). The performance evaluation metrics 

that are utilized here are the correlation coefficient, the mean absolute percentage error, and the root mean 

squared error. 
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Zaman Serisi Veri Kümeleri İçin Olasılığa Dayalı Tahmin Yöntemi 

 

ÖZ 
Bu makalede, zaman serisi veri kümelerini tahmin etmek için Çoklu Model Parçacık Filtresinin (ÇMPF) bir 

çeşidi olarak düşünülebilecek yeni bir olasılık tabanlı teknik kullanılmaktadır. Yöntemimizin güvenilirlik 

performansı art arda altmış günden oluşan sanal bir rastgele senaryo kullanılarak kanıtlanmıştır. İkinci, üçüncü 

ve dördüncü günde tahmin edilen durumlar ile gerçekte karşılık gelen değerler arasında büyük bir fark ortaya 

çıkmaktadır; yöntemimiz kullanılarak tahmin edilen durumlar gerçek değerlere doğru hızla yakınsarken, tek 

başına klasik bir lineer model kullanıldığında büyük miktarda sapma göstermektedir. Makalede yaklaşımımızın 

performansı; Kök-Ortalama-Kare Hatası, Ortalama Mutlak Yüzde Hatası ve Korelasyon Katsayısı performans 

değerlendirme ölçütleri dikkate alınarak; BIST (Borsa İstanbul Endeksi), TAIEX (Tayvan Borsa Endeksi), ve 

ABC (Avustralya Bira Tüketimi) zaman serisi veri kümelerine halihazırda uygulanmış olan diğer bazı tekniklerle 

karşılaştırılmaktadır. 

 

Anahtar Kelimeler: Tahmin; Zaman Serisi Veri Kümesi; ÇMPF; Değerlendirme Metrikleri 

 

 

 

 
 

Received: 11/11/2021, Revised: 14/05/2022, Accepted: 16/05/2022 

 

 

Düzce University   

Journal of Science & Technology 

 

Düzce University Journal of Science & Technology, 11 (2023) 563-573  

https://orcid.org/0000-0001-5165-4205


564 

 

I. INTRODUCTION 
 

In recent years, time series forecasting has engaged a notable interest, especially in the 

economic and financial fields. In this context, different predictive approaches were proposed 

to achieve accurate and successful works; these approaches are divided into two main 

categories; non-probabilistic techniques including statistical methods, and probabilistic-based 

techniques which are similar to our method proposed in this paper. 

 

In general, statistical-based methods try to fit a forecasting curve according to all the available 

historical data; the extension of the created curve represents the future prediction. In contrast, 

the probabilistic methods represent an adequate alternative that provides probabilistic 

distributions (densities) in the state space instead of that simple curve (suggested by statistical 

methods) in order to increase the predictive range at each moment to guarantee the best fit for 

all given data. Our objective is to find the probabilistic predictive approach that can take all 

the former data into account and understand the current behavior of the considered state.  

 

Non-probabilistic methods include fuzzy logic-based systems [1], artificial neural networks-

based systems [2], and hybrid techniques like adaptive neuro-fuzzy inference systems [3] that 

handle reasoning at a high level by using the linguistic information acquired from the 

environment. When they appeared, these lastly-cited methods were able to show some basic 

promising results. More advanced studies were recently carried out. For example, the Type-1 

fuzzy sets were proposed as a classifier as in [4] and later used for dealing with forecasting 

problems [5]. All these new approaches seem competitive, but they mostly require to be 

combination with an additional optimization algorithm (Genetic algorithm or Grey wolf 

algorithm) as in [6] to determine the global solution in the state space. Such combined 

techniques may provoke some questions about their execution time, especially when they are 

applied to long-period datasets. Some probabilistic methods [7], [8], [9] already employed the 

Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF) to predict daily sales or 

stock markets. In general, UKF is always able to give more accurate results than (EKF), but 

unfortunately, it involves so expensive computational burden. Some other probabilistic 

techniques have also utilized the classical version of Particle Filter (PF) as in [10], [11], and 

[12]. But, they don’t provide all the performance evaluation metrics which are indispensable 

to judge the efficiency of their approaches. In addition, they don’t apply their methods to 

standard datasets to compare their results with the other existing methods. A Bayesian bilinear 

neural network was recently developed to predict financial markets and track the dynamism of 

their prices [13]. While different customized architectures of ANN-based predictors, 

including an adaptable design, were suggested to forecast the daily consumed electricity by a 

local industrial region [14]. In this paper, a mathematical model that considers three 

parameters describing three different effectors (economic, political, and natural) is adopted as 

a dynamic system of our Multiple Model Particle Filter which is in turn so adequate to give a 

reliable predictive approximation, i.e. future reading for fluctuated environments like stock 

markets. The RMSE, MAPE, and correlation coefficient are calculated here as performance 

metrics. Our approach is applied to some standard datasets and compared with a wide range 

of available existing techniques. 

 

To the best of our knowledge, this is the first time where the Multiple Model Particle Filter is 

developed and utilized for handling forecasting problems as presented in this paper. The 

organization of the paper is as follows; in the next section, we explain in detail the theoretical 

basis of our probabilistic predictor. A lot of qualitative and quantitative analyses of our results 

that prove the efficiency of this approach, compared to many other techniques, are depicted in 
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the third paragraph. Finally, we conclude with a summary describing the main features of our 

work. 

 

II. THE PROBABILISTIC TECHNIQUE (MMPF) 
 

The Particle Filter is an estimator that belongs to the family of recursive Bayes filters; it considers the 

current belief of the studied case and renews its state according to its suggested dynamic system and 

consecutive measurements. A Particle Filter can handle nonlinear functions with any probabilistic 

distribution by using a huge amount of particles representing all possible conditions of how the system 

could be represented at each moment in the state space. The PF contains two consecutive steps 

(Prediction and Correction). The estimated states for an upcoming moment are calculated and 

attributed to their corresponding particles to perform the prediction step. To satisfy real and practical 

considerations, this process is always supposed affected by some random noise.  

In the correction step, successive readings will be used to calculate and assign weights to their 

corresponding particles; these weights describe to which extent each particle expresses the real 

considered state. The observation error of the given process should be considered and accurately 

modeled. The more the particle weight the more likely it follows the correct path in this estimating 

scenario.  

Hence, a resampling phase that denotes a survival fit law is utilized to retain a predefined rate of the 

fittest particles that are able to repeat themselves according to their evaluated weights while the other 

lite particles will be removed. Thus, consecutive generations of the most qualified particles are 

developed to finally produce the best solution of the given system over all the studied periods. 

The dynamic model suggested here is depicted as follows: 

 

xt = (B1 + B2 + B3)xt−1 + ε (1) 

 

xt is a state that is calculated at the current moment (t), while ε is the process noise. 

The three parameters B1, , B2 and B3 take their corresponding values in the range [-1, 1]. The first 

parameter (B1) is an economic factor representing the belief status (optimistic/pessimistic) of the 

considered stock markets or financial pointers. B2 and B3 represent natural and political factors that 

may impact the predicted state. The three parameters are daily decided depending on former relevant 

practices or analytic data of markets; these parameters determine if the estimated state xt points up or 

down opposing with the last determined state xt−1 when the three parameters equal zero, the linear 

model will be converted to a random walk system: 

 

xt = xt−1 + ε (2) 

 

When the linear model shown in equation (1) is used alone, it appears as a naive approach that may be 

broken by improper manipulations. It is often unable to produce predictions that may converge to their 

real compatible states; like the real daily sales or market prices, as we report in the coming paragraphs. 

To defeat the poor properties of this linear model, we suggest using it as a dynamic model for an 

advanced probabilistic method that represents a variant of Multiple Models Particle Filter (MMPF) 

[15], which is in turn so adequate to be used when the estimated state has a maneuvering or switching 

behavior [8, 9], which is the case considered here. 

Kalman Filter could be more adequate for modeling linear systems. But, its heavy computational 

burden that is required to deal with the big arrays and their associated calculation time has guided us to 

prefer the use of the (PF) which is able to model any dynamic system (linear or nonlinear) with any 

probabilistic distribution suggested in the state space. In this work, the (PF) adopts the dynamic 

system which is presented in equation (1) to predict a state at moment (t), then it creates and randomly 

distributes a cloud of (n) particles in its neighborhood. The particle’s state is given as μt
i ; i = 1…𝑛. 

Whereas the weight assigned to each particle wt
i describes its probability to represent the 

corresponding real state is determined as follows: 
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wt
i = p(Zt|μt

i(mt)) ∗ p(mt
i|mt−1) (3) 

 

Zt is a real state, measured at moment (t). 

mt is a regime variable that can take the values {1, 2, 3}; they describe three different behaviors as 

shown in figure (1). The value 1 is to move straight between two successive moments, the value 2 is to 

move up, whereas the value 3 is to move down.  

μt
i(mt) is the particle estimated state customized by the regime variable mt.  

The probabilistic value p(Zt|μt
i(mt)) which is determined for each particle (at each iteration) relies on 

evaluating the gap between the measurement Zt and the particle estimated state μt
i(mt) in accordance 

with the probabilistic distribution in equation (4).  

 

p(Zt|μt
i(mt)) =

1

√2πσ2
exp (−

1

2
(
zt − μt

i(mt)

σ
)

2

) 
(4) 

 

p(mt
i|mt−1) is a particle transition probability that finds its value from the Transition Probability 

Matrix (TPM) that has the initial value in equation (5). The elements in this array represent the 

probability to alternate the particle state from one behavior to another, as three behaviors were already 

considered. The values of these elements are updated for each iteration; some of them could be 

increased when the others may decrease but the total sum of the elements sharing the same raw is 

always one.  

The particle transition probability p(mt
i|mt−1) as given here retains a trace of all former changes of 

the predicted state to give an idea about its historic performance if it points to move up, down or 

retaining the same value. 

 

TPM = [

P11 P12 P13
P21 P22 P23
P31 P32 P33

] = 0.33 ∗ ones(3,3) (5) 

 

 
Figure 1. The regime variable of the given particle was changed from 1 to 2 (moving up) between two successive 

moments. At (t+1) its regime variable becomes 1 (to retain its level).  

 

 

Then, the importance of the produced particles will be evaluated by calculating and assigning a weight 

to each particle. According to these weights, a phase will be applied to delete particles that have fewer 

weights. In this experiment, 35% of particles are held (as they are the most weight), and 65% are 

removed (they are the less weight). 

The weights of the retained (k) particles are normalized as follows: 
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𝑤𝑡
𝑖 =

�̃�𝑡
𝑖

∑ �̃�𝑡
𝑗𝑘

𝑗=1

 
(6) 

Where; 𝑤𝑡
𝑖 is the normalized weight attributed to each particle. 

 

A resampling phase [16] will be applied as shown in the following pseudocode, Figure (2).  

 

 
Figure 2. Pseudocode describing the resampling phase which is used by the Particle Filter. 

 

In this case, and according to its normalized weight, each particle gives its corresponding successors at 

moment (t + 1). Hence, the more the particle weight the more successors it generates. At any iteration, 

the number of all particles has to meet a predefined constant (N). Consequently, a cloud of the fittest 

particles is created for each new moment, and a new estimation process to be fired. 

Before applying the probabilistic method proposed here to some standard datasets in order to evaluate 

its performance compared with some other existing approaches, let’s first prove its robustness when it 

is used with a randomly generated scenario (including the selection of the three parameters B1, B2, 

and B3), as it is shown in Figure (3). In this case, we suppose for example a prediction scheme for 60 

successive days; the starting point was randomly selected. Between the second and fourth day, a 

sudden and vast change takes place between the predicted states, which are calculated according to the 

linear model explained in equation (1) and shown as small red circles on Figure (3), and the real 

values which are shown as small black diamonds on the same figure. The clouds (the blue stars), 

which are produced using our approach (MMPF) and composed of 30 particles per day, converge 

rapidly towards the real values while the linear model seems a naïve approach that accumulates a lot of 

errors over all the considered period. Therefore, it diverges away from the curve of real values. 

 

 
Figure 3. Red circles are the calculated values according to the linear model explained in equation 1. Black 

small diamonds are assigned to the real values. Blue stars are the particles; the green stars are the most 

weighted particles, i.e. the nearest particles to their corresponding real values for each day.   
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III. RESULTS AND ANALYSIS 
 

To compare the performance of our approach, suggested in this paper (MMPF), with the performance 

of some other existing techniques like Exponential smoothing (ES), Multilayer perceptron ANN 

(MLP), Fuzzy function (FF), Fuzzy time series network (FTS-N), and Type -1 recurrent intuitionistic 

fuzzy functions (T1-R-IFF), we have to use the same time-series datasets already used by all of them. 

These datasets are:   

 

 IEX (Istanbul Stock Exchange Index): Daily observed elements for the first six months 

between 2009 and 2013. 

 TAIEX (Taiwan Stock Exchange): Daily observed elements between 1999 and 2004. 

 ABC (The Australian Beer Consumption): Quarterly observed elements between 1956 and 

1994. 

 

The evaluation criterions considered here are the Root-Mean-Squared Error (RMSE), the Mean 

Absolute Percentage Error (MAPE), and the Correlation Coefficient (R).  

  

1. Our probabilistic-based method (MMPF) is first tested with the first group of datasets (IEX). 

It gives smaller errors (RMSE and MAPE) and a better correlation coefficient (R) compared 

with the results determined by all the upper-mentioned existing methods which were 

calculated for only 15 test data from each dataset (these results were quoted from [17]), while 

in our study we test our approach for the total length of each dataset as it is shown in the three 

Tables (1, 2, and 3). If we consider just 15 test data, better results could be determined. All 

operations achieved here are carried out using MATLAB. In order to show an example 

illustrating how our approach is working, Figure (4) represents the forecasting for the total 

length of the dataset (IEX - 2009) which includes 103 days. This experiment requires at least 

200 distributed particles per day. The same number of particles is considered to calculate the 

three performance criteria (RMSE, MAPE, and R) for all the other datasets (IEX – 2010, 

2011, 2012, and 2013) as it is illustrated in Tables (1, 2, and 3). The bigger the number of 

particles, the better the performance is. This number should be bounded by an experimental 

limit to always keep an acceptable balance between reliable performance and minimal running 

time. 

 

2. For the second dataset (TAIEX) which was daily observed between 1999 and 2004 and 

composed of six tables, one table per year, our probabilistic approach is compared with the 

results of a group of the best and newest existing techniques according to the performance 

criterion (RMSE) as it is illustrated in Table (4), this table was quoted from [17, 1, 3]. This 

comparison leads us to conclude that the performance of our probabilistic method is much 

better than all the other existing techniques. The Mean absolute percentage error (MAPE) is 

provided for our approach (Table 5) while it is unfortunately unavailable for the other 

techniques. The calculated correlation coefficient according to our approach doesn’t break 

below the value of 0.99. Once again, 200 particles per day were used to give the highly 

reliable forecasting performance shown in Figure (6). 

 

3. Finally, our probabilistic technique is going to be tested with the third dataset called ABC 

which is composed of 148 values observed quarterly between 1965 and 1994. Table (6) proves 

the high forecasting performance of our method when it is compared with some other existing 

methods. The performance criterions (RMSE, MAPE and R) are calculated for the last 16 

elements from the dataset, similarly to the other existing methods, then for the total length of 

the dataset as it is shown in Table (6). 200 particles per day were used to give the forecasting 

diagram shown in Figure (7). For all the upper-mentioned tests, the MMPF was applied to 

each dataset for 100 successive iterations; the corresponding results illustrated in tables are the 

averages of all attempts. 
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Table 1. For IEX; the RMSE is determined for all existing methods between 2009 and 2013 and compared with 

the corresponding values which are calculated according to the approach (MMPF). 

 

Year 

Length of 

dataset 

ES 

(15 test) 

MLP 

(15 test) 

FF 

(15 test) 

FTS-N 

(15 test) 

T1-R-IFF 

(15 test) 

MMPF 

(Total length 

of data) 

2009 103 540.21 525.73 534.13 514.56 450.185 207.8767 

2010 104 1611.5 1603 1852 1357.4 1314.228 541.7540 

2011 105 1129.7 1095.7 1145.6 916.54 872.1253 753.7474 

2012 105 620.83 783.35 1037.6 581.71 510.6038 445.3562 

2013 105 1268.7 1232.5 1278.6 1207.9 1016.646 747.9867 

Mean  1034.19 1048.06 1169.59 915.62 832.76 539.3442 

 
Table 2. For IEX; the MAPE is determined for all existing methods between 2009 and 2013 and compared with 

the corresponding values which are calculated according to the approach (MMPF). 

 

Year 

Length of 

dataset 

ES 

(15 test) 

MLP 

(15 test) 

FF 

(15 test) 

FTS-N 

(15 test) 

T1-R-IFF 

(15 test) 

MMPF 

(Total length 

of data) 

2009 103 0.012 0.0114 0.0438 0.0112 0.0096 0.0044 

2010 104 0.022 0.0220 0.0264 0.0202 0.0197 0.0071 

2011 105 0.015 0.0146 0.0156 0.0121 0.0116 0.0092 

2012 105 0.0088 0.0117 0.0161 0.0087 0.0074 0.0062 

2013 105 0.109 0.0107 0.0108 0.0106 0.0091 0.0065 

Mean  0.01374 0.014 0.02254 0.01256 0.01148 0.0067 

 
Table 3. For IEX; the correlation coefficient (R) is determined for all existing methods between 2009 and 2013.  

This coefficient doesn’t break below 0.99 for all datasets (all years) when it is calculated according to our 

approach. 

 

Year 
ES 

(15 test) 

MLP 

(15 test) 

FF 

(15 test) 

FTS-N 

(15 test) 

R-T1FF 

(15 test) 

2009 0.881914 0.877104 0.885241 0.886303 0.902892 

2010 0.493117 0.49661 0.428723 0.510228 0.683963 

2011 0.786252 0.800986 0.766808 0.816094 0.81248 

2012 0.912444 0.911624 0.904967 0.903832 0.918389 

2013 0.779042 0.784258 0.790284 0.805135 0.87873 

 
Table 4. For TAIEX; the RMSE is determined for all existing methods between 1999 and 2004 and compared 

with the corresponding values which are calculated according to the approach (MMPF). 

 

Year 

Chen et al. 

(2012) 

Chen and Jian  

(2017) 

Chen and 

Phuong 

(2017) 

Tak et al. 

(2018) 

Tak 

(2020) 

MMPF 

 

1999 99.87 101.82 99.97 98.33 97.81 72.54 

2000 119.98 128.95 126.59 128.18 122.23 95.72 

2001 114.47 110.66 110.17 106.48 106.81 72.37 

2002 67.17 60.41 61.62 65.14 64.24 55.32 

2003 52.49 50.65 53.01 52.38 51.5 41.14 

2004 52.27 52.86 53.28 53.78 52.79 46.24 

Mean 84.37 84.23 84.11 84.05 82.56 63.88 
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Table 5. For TAEIX; the MAPE is calculated according to the approach (MMPF) between 1999 and 2004 

 

Year MMPF 

1999 0.0072 

2000 0.0101 

2001 0.0120 

2002 0.0080 

2003 0.0062 

2004 0.0053 

Mean 0.0082 
 

 

 

 
Figure 4. The forecasting for 103 days for the dataset IEX-2009, 200 particles were used per day. 

 

 

 
Figure 5. A zoomed region from the figure (4), the blue stars are the particles, the small red circle is the main 

predict particle per day before diffusing the other particles around it. The green star is the most weighted 

particle per day. The black diamonds are the real values of the dataset. The green diamonds are produced by the 

simple linear model when used alone. 

 

Selected region; zoomed 

and illustrated in figure 5. 



571 

 

 
 

Figure6. Forecasting for the total length of the dataset TAIEX-2001 that includes 245 days. In this experiment 

200 particles were also used per day. The blue stars are the particles, the small red circle is the main predict 

particle per day before diffusing the other particles around it. The green star is the most weighted particle. The 

black diamonds are the real values of the dataset. The green diamonds are produced by the simple linear model 

when used alone. 

 

 

Table 6. For ABC; the RMSE and MAPE are calculated for the last 16 elements from the dataset. 

Then, for the total length of the dataset. The vector of 16 tested elements is: 

[430.5000, 600.0000, 464.5000, 423.6000, 437.0000, 574.0000, 443.0000, 410.0000, 420.0000, 

532.0000, 432.0000, 420.0000, 411.0000, 512.0000, 449.0000, 382.0000] 

 

 ARIMA FANN ANFIS MANFIS R-T1FF T1-R- 

1FFs 

MMPF 

16 values 

MMPF 

148 values  

RMSE 47.04 24.11 25.05 21.37 19.21 19.84 17.54 14.09 

MAPE 0.0949 0.0476 0.0467 0.0401 0.0333 0.036 0.023727 0.026559 

R 0.905 0.945 0.939 0.956 0.948 0.951 0.99 0.99 

 

 

 

 

 

The forecasting diagram for just 16 days of ABC dataset, which is composed of 

148 elements 

A zoomed region 

Fig.7. In this experiment, 200 particles were used per day. The blue stars are the particles, the small red circle is 

the main predict particle per day before diffusing the other particles around it. The green star is the most 

weighted particle. The black diamonds are the real values of the dataset. The green diamonds are produced by 

the simple linear model when used alone. 

 

Zoomed region. 
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IV.CONCLUSION 
 

To predict the fluctuations of stock markets which are mostly regarded as randomly changing 

environments, a variant of Multiple Model Particle Filter (MMPF) was proposed in this paper. The 

dynamic model of this filter takes into account three different parameters (economic, political, and 

natural) that decide the primitive prediction of the next state. Then, (MMPF) produces a cloud of (N) 

particles randomly distributed around it. To calculate the weights assigned at each moment to all 

particles we include a probabilistic value that considers all the historical story of the addressed state 

(whether it tends to move up, down, or keep its value), taking this historical behavior of the studied 

state into account makes our predictor more stable and always converging towards the real values. Our 

method was at first tested with a randomly generated virtual scenario that contains a sudden and wide 

deviation between supposed real values and their corresponding predicted values for some successive 

moments to prove the reliable performance of this probabilistic-based approach in such cases. Later, it 

was compared with different existing methods using the same datasets which were already used by all 

of them. In all cases, our probabilistic method has shown better performance according to the 

calculated evaluation metrics (RMSE, MAPE, and the Correlation Coefficient). 

 

Even though the probabilistic approach presented here is able to model the uncertainty margin for a 

cloud of predicted values at the next given moment, more than predicting a single value, which is one 

of its main advantages, it could be considered a time-consuming method compared to statistical-based 

techniques. Performing this type of probabilistic-based forecasting in real-time requires utilizing more 

advanced parallel programming techniques; in this context, FPGA-based embedded systems may 

represent a good environment to develop many practical implementations in the near future. 
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