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ABSTRACT The famous and well-studied Lorenz system is considered a paradigm for chaotic behavior in
three-dimensional continuous differential systems. After the appearance of such a system in 1963, several
Lorenz-like chaotic systems have been proposed and studied in the related literature, as Rössler system, Chen-
Ueta system, Rabinovich system, Rikitake system, among others. However, these systems are parameter
dependent and are chaotic only for suitable combinations of parameter values. This raises the question of
when such systems are not chaotic, which can be seen as a dual problem regarding chaotic systems. In this
paper, we give sufficient algebraic conditions for a generalized class of Lorenz-like systems to be nonchaotic.
Using the general results obtained, we give some examples of nonchaotic behavior of some classical “chaotic”
Lorenz-like systems, including the Lorenz system itself. The nonchaotic differential systems presented here
have invariant algebraic surfaces, which contain the stable (or unstable) invariant manifolds of their equilibrium
points. We show that, in some cases, the deformation of these invariant manifolds through the destruction of
the invariant algebraic surfaces, by perturbing the parameter values, can reorganize the global structure of the
phase space, leading to a transition from nonchaotic to chaotic behavior of such differential systems.
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INTRODUCTION

Let R[x, y, z] be the ring of polynomial functions in the variables
x, y, z, with coefficients in R. Consider the system of first order
ordinary differential equations (or differential system for short)
defined in R3 given by

ẋ = P (x, y, z) , ẏ = Q (x, y, z) , ż = R (x, y, z) , (1)

where P, Q, R ∈ R [x, y, z] and the dot denotes derivative with re-
spect to the independent variable t, usually called the time, mainly
in physical systems. The degree of system (1) is defined as the
maximum of the degrees of polynomials P, Q and R. When the
maximum degree is two, system (1) is called quadratic.
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Beyond its theoretical importance, system (1) appears fre-
quently in mathematical modeling of several dynamical phenom-
ena arising in different areas, like Physics, Engineering, Biology
and Chemistry, among others, as shown in the references (Alligood
et al. 1996; Argyris et al. 2015; Cencini et al. 2010; Guckenheimer and
Holmes 2002; Ott 2002; Strogatz 2001; Wiggins 2003). In this way,
the study of the behavior of solutions of system (1) in its phase
space is important to understand the phenomena modeled by it.
The possible behaviors include stable and unstable equilibrium
points and periodic orbits, quasi-periodic orbits, and chaotic dy-
namics. In particular, the interest in studying systems like (1) with
chaotic behavior increased a lot in the last decades, due to their
appearance in the study of several phenomena. One of the first
chaotic systems studied was the famous and well-known Lorenz
system (Lorenz 1963), which was the precursor of several other
differential systems presenting such a behavior, like Rössler system
(Rössler 1976), Rabinovich system (Llibre et al. 2008), Chen-Ueta
system (Chen and Ueta 1999), Rikitake system (Llibre and Messias
2009), among others. The chaotic dynamics of these polynomial
differential systems is directly related to the degree and values
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of coefficients (also called parameters) of the polynomials which
determine them. In fact, although often called “chaotic systems”
in the literature, the solutions of most of them present chaotic be-
havior only for certain combinations of their parameter values. For
instance, it was shown by Edward Lorenz in 1963 that the solutions
of system

ẋ = s (y − x) ,

ẏ = rx − y − xz,

ż = −bz + xy,

(2)

which has degree two (so it is quadratic), presents chaotic behavior
if s = 10, b = 8

3 and r = 28 (Lorenz 1963). Later on, it was shown
by several authors that Lorenz system (2) has chaotic behavior for
many other combinations of parameter values (see for instance the
nice book (Sparrow 1982) or the more recent review (Algaba et al.
2018) and references cited in them).

The Lorenz system (2) is a polynomial differential system with
peculiar quadratic nonlinearities, which appear in the second and
third equations and are given by the crossed product of variables
(i.e. xz and xy). This motivated the definition of a more general
class of quadratic differential systems called Lorenz-like systems,
given by

ẋ = a1x + b1y + c1z + d1yz,

ẏ = a2x + b2y + c2z + d2xz,

ż = a3x + b3y + c3z + d3xy,

(3)

where ai, bi, ci, di ∈ R, i = 1, 2, 3. This kind of system is often
cited in the literature concerning chaotic systems, because several
classical quadratic polynomial differential systems like Rössler,
Rabinovich, Chen-Ueta, Rikitake, beyond the Lorenz system it-
self, can be obtained from system (3) by appropriate choice of the
parameters ai, bi, ci, di.

As the chaotic dynamics of several subclasses of system (3) were
obtained in literature, a quite natural question arises in this context:
can we determine conditions on the parameters of system (3) which
can guarantee that it is nonchaotic? This is an important issue that
can be seen as the dual problem of knowing when system (3) is
chaotic. There are several papers dedicated to study the nonchaotic
behavior of polynomial systems, especially the quadratic ones, see
for instance the series of papers by Heidel and Zhang (Heidel
and Zhang 1999, 2007; Zhang and Heidel 1997, 2012; Zhang et al.
2008), by Malasoma (Malasoma 2009, 2002) and Yang (Yang 2000,
2002; Yang and Chen 2002). The question about the nonchaotic
behavior of differential systems is also related to the integrability
theory (Dumortier et al. 2006; Llibre 2004; Llibre and Zhang 2012),
because the phase space of integrable differential systems can be
completely determined by their first integrals, hence they are not
chaotic. Despite the existence of such studies, a general criterion
for determining the nonchaotic behavior of polynomial differential
systems defined in R3, or a general characterization of the ω-limit
sets of their solutions, like the Poincaré-Bendixson theorem for
planar differential systems (Dumortier et al. 2006), is far from being
obtained, even in the quadratic case.

In (Messias and Silva 2018), by using some elements of Darboux
Theory of Integrability, namely invariant algebraic surfaces and
Darboux invariants, we stated and proved a sufficient algebraic
criterion which guarantees the nonchaotic behavior of differential
system (1), for P, Q, R polynomials of any degree. Using this cri-
terion, we proved also in (Messias and Silva 2018) the nonchaotic

behavior for a huge class of quadratic polynomial differential sys-
tems which have a symmetric Jacobian matrix, giving a partial
answer for a conjecture proposed by Zeraoulia and Sprott, which
states that “Three-dimensional quadratic continuous-time differen-
tial systems with a symmetric Jacobian matrix cannot be chaotic”.

Later on, in (Messias and Silva 2020) we studied third order
ordinary differential equations of the form

...
x = j (x, ẋ, ẍ) , (4)

called jerk equations. When j is a polynomial, it can be called a poly-
nomial jerk equation. From the physical point of view, the third
derivative can be seen as the derivative of the acceleration of a par-
ticle with position x, velocity ẋ and acceleration ẍ, so this type of
equations has great interest in applications. Using the algebraic cri-
terion stated in (Messias and Silva 2018), we obtained general con-
ditions on the polynomial j that guarantee the nonchaotic behavior
of equation (4), which is equivalent to a subclass of system (1) by
the natural change of coordinates ẋ = y, ẏ = z, ż = j(x, y, z).

In the context above, in this paper our main goal is to deter-
mine sufficient conditions on the parameters which can guarantee
the nonchaotic behavior of Lorenz-like system (3). The paper is
organized as follows. In Section 2 we present some preliminary
results from Darboux theory of integrability and use them to state a
sufficient (but not necessary) algebraic criterion for the noncahotic
behavior of system (1). Using this criterion, in Section 3 we state
sufficient algebraic conditions for system (3) to be nonchaotic. In
Section 4, we give some examples of classical systems derived from
system (3) which we can guarantee that, for some combinations
of parameter values, do not present chaotic behavior, as Lorenz
system, Rabinovich system, Chen-Ueta system, and certain Lorenz-
like systems with D2 symmetry (Anastassiou et al. 2002; Zhu C.,
Liu Y. and Guo Y. 2010). The nonchaotic differential systems pre-
sented here have invariant algebraic surfaces, which contain the
stable or unstable invariant manifolds of their equilibrium points.
In Section 5, we show that, in some cases, the deformation of these
invariant manifolds through the destruction of the invariant alge-
braic surfaces, by perturbing the parameter values in system (3),
can reorganize the global structure of the phase space, leading to a
transition from nonchaotic to chaotic behavior of such differential
systems. Finally, in Section 6 we present some concluding remarks
and comments.

SOME PRELIMINARIES FROM DARBOUX THEORY OF IN-
TEGRABILITY

Here, as in (Messias and Silva 2018), the existence of invariant alge-
braic surfaces and Darboux invariants are used to give a sufficient
algebraic criterion which guarantees the nonchaotic behavior of
three-dimensional polynomial differential systems (see Theorem 1
ahead). The definitions and results presented in this section also
appear in (Messias and Silva 2018; Messias and Silva 2020) and
in other classical texts about integrability theory (Dumortier et al.
2006; Llibre 2004; Llibre and Zhang 2012), but they are included
here for the sake of completeness and to make the text easier to
read.

The Darboux theory of integrability provides a link between
the integrability of polynomial differential systems (or polynomial
vector fields) and their invariant algebraic surfaces. A nice pre-
sentation of this theory for planar polynomial differential systems
can be found in (Llibre 2004) and in Chapter 8 of (Dumortier et al.
2006). Here we are interested in quadratic polynomial differential
systems defined in R3, hence we will present the results for system
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(1) with degree two, which is naturally associated to the vector
field

X (x, y, z) = P (x, y, z)
∂

∂x
+ Q (x, y, z)

∂

∂y
+ R (x, y, z)

∂

∂z
, (5)

where P, Q and R are the polynomials in the right-hand side of
system (1). In the next section we will apply the results in the study
of the Lorenz-like system (3).

Definition 1 Let U be an open subset of R3. If there exists a nonlocally
constant differentiable function H : U → R, which is constant on all
solution curves (x(t), y(t), z(t)) of system (1) (or of the vector field (5))
contained in U, then H is called a first integral of X in U. Clearly H is a
first integral of system (1) if and only if X(H) ≡ 0 on U, i.e.

X(H) =
dH
dt

=
∂H
∂x

P +
∂H
∂y

Q +
∂H
∂z

R = 0

on the orbits of X contained in U, where H = H(x(t), y(t), z(t)).

Definition 2 An invariant of system (1) on an open subset U ⊂ R3

is a nonlocally constant differentiable function I in the variables x, y, z
and t such that I is constant on all solution curves (x(t), y(t), z(t)) of
system (1) contained in U, i.e.

dI
dt

=
∂I
∂x

P +
∂I
∂y

Q +
∂I
∂z

R +
∂I
∂t

= 0

on the orbits of X contained in U.

An invariant I can be seen as a first integral of system (1) which
depends on the time t.

Definition 3 Let f ∈ K[x, y, z] be a non-locally constant polynomial,
where K is either R or C. The surface f (x, y, z) = 0 is an invariant
algebraic surface of system (1) if there exists a polynomial K ∈ K[x, y, z]
such that

X( f ) =
∂ f
∂x

P +
∂ f
∂y

Q +
∂ f
∂z

R = K f .

The polynomial K is called the cofactor of the invariant algebraic surface
f = 0.

Note that, as system (1) has degree 2, then the degree of the co-
factor K is at most 1. Moreover, when K = 0, then f is a polynomial
first integral of system (1).

Definition 4 Let g, h ∈ K[x, y, z] \ {0} and assume that g and h are
relatively prime polynomials in the ring K[x, y, z], or that h = 1, where
K is either R or C. Then the function F = exp(g/h) is called an
exponential factor of system (1) if for some polynomial L ∈ K[x, y, z] of
degree at most m − 1 we have that

X(F) =
∂F
∂x

P +
∂F
∂y

Q +
∂F
∂z

R = LF.

We say that an invariant I of X is of Darboux type or a Darboux
invariant if it can be written as

I(x, y, z, t) = f1
λ1 . . . fp

λp F1
µ1 . . . Fq

µq est, (6)

where fi = 0 are invariant algebraic surfaces of X for i = 1, . . . , p;
Fj are exponential factors of X for j = 1, . . . , q; λi, µj ∈ C and
s ∈ R \ {0}.

The following result holds.

Proposition 1 If f (x, y, z) = 0 is an invariant algebraic surface of
system (1) with a constant cofactor K = k ∈ R \ {0}, then I =
f (x, y, z) e−kt is a Darboux invariant of this system.

Proof. Let ϕ(t) = (x(t), y(t), z(t)) be a solution and f = 0 be an
invariant algebraic surface of system (1) (or of the vector field (5)). Then
we have

d
dt

I(ϕ(t)) =
d
dt

[
f (ϕ(t)) e−kt

]
=

=
[

∂ f
∂x P +

∂ f
∂y Q +

∂ f
∂z R

]
e−kt − k f (ϕ(t))e−kt =

= k f (ϕ(t))e−kt − k f (ϕ(t))e−kt = 0

While the knowledge of a first integral of system (1) in R3 al-
lows to reduce its study in one dimension, the knowledge of a
Darboux invariant provides information about the α and ω-limit
sets of all orbits of system (1). Indeed, the following result, proved
in (Llibre and Oliveira 2015) for planar polynomial differential
systems, can be easily extended to polynomial differential systems
defined in R3 and gives a relation between the existence of Dar-
boux invariants and the α and ω–limit sets of the solutions of such
systems.

Proposition 2 Let I(x, y, z, t) = f (x, y, z)est be a Darboux invariant
of system (1). Let p ∈ R3 and φp(t) be the solution of system (1)
with maximal interval (αp, ωp) such that φp(0) = p. The following
statements hold.

(a) If ωp = ∞ then ω(p) ⊂ { f (x, y, z) = 0} ∪ S2, where S2 is the
boundary of the Poincaré ball (at infinity).

(b) If αp = −∞ then α(p) ⊂ { f (x, y, z) = 0} ∪ S2, where S2 is the
boundary of the Poincaré ball (at infinity).

The definition of Poincaré ball is given, for instance, in (Llibre
et al. 2008). Note that in Proposition 2 the function f is of the form

f = f λ1
1 ... f λp

p Fµ1
1 ...Fµq

q , as in (6).

In (Messias and Silva 2018) we proved the following result.

Theorem 1 [Algebraic criterion for nonchaoticity] Let X be the
vector field (5), associated to differential system (1). If X has an invariant
algebraic surface f = 0 with a constant cofactor K = k ∈ R \ {0},
then the α and ω-limit sets of each orbit ϕp (t) = (x (t) , y (t) , z (t))
with ϕp(0) = p ∈ R3, are both contained in { f = 0} ∪ S2, where S2

represents the points at infinity of R3. In particular, X does not present
chaotic behavior.

The algebraic criterion stated in Theorem 1 gives a sufficient but
not necessary condition for the nonchaotic behavior of the vector
field (5). Indeed, there are several differential systems proved
to be nonchaotic in the literature (Zhang and Heidel 1997, 2012;
Zhang et al. 2008; Yang 2000, 2002; Yang and Chen 2002), which
have no invariant algebraic surfaces. Furthermore, we observe
that the hypothesis of a constant cofactor is essential in Theorem
1. Indeed, in (Jafari et al. 2016; Li et al. 2021) the authors gave
examples of chaotic systems which have algebraic surfaces formed
by equilibrium points (which are obviously invariant algebraic
surfaces). However, we checked these cases and in all of them the
cofactors of the invariant algebraic surfaces are not constant.

In the next section we will use Theorem 1 to obtain sufficient
conditions for the nonchaotic behavior of Lorenz-like systems (3).
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STATEMENT AND PROOF OF THE MAIN RESULTS: NON-
CHAOTIC LORENZ-LIKE SYSTEMS

In the following result we give a huge class of Lorenz-like systems
which do not present chaotic behavior.

Theorem 2 Let X = X(x, y, z) be the vector field associated to system

(3). For the parameter values a1 = b2 =
1
2

k, c3 = k, d3 ̸= 0 and the
other parameters satisfying the system(2a2c1 + kc2) d3 − 2a3 (a2d1 − b1d2) = 0,

(2b1c2 + kc1) + 2b3 (a2d1 − b1d2) = 0,
(7)

the vector field X = X(x, y, z) has the invariant algebraic surface

f (x, y, z) = −d2x2 − 2c2x + d1y2 + 2c1y − 2
a2d1 − b1d2

d3
z (8)

with cofactor k ∈ R. Consequently, for these choice of parameters, system
(3) does not present chaotic behavior.

Proof. Consider the vector field X = (P, Q, R) associated to system
(3) with the choice of parameters given in Theorem 2. Then, the system
reduces to

ẋ = P(x, y, z) =
k
2

x + b1y + c1z + d1yz,

ẏ = Q(x, y, z) = a2x +
k
2

y + c2z + d2xz,

ż = R(x, y, z) = a3x + b3y + kz + d3xy,

(9)

where the parameters a2, a3, b1, b3, c1, c2, d1, d2 satisfy system (7). In
this way, the function (8) is a Darboux polynomial of system (9), with
cofactor k ∈ R. In fact, we have

⟨∇ f , X⟩ =

∂ f
∂x (x, y, z)P (x, y, z) + ∂ f

∂y (x, y, z)Q (x, y, z) + ∂ f
∂z (x, y, z)R (x, y, z)

= −kd2x2 − kc2x + 2c1a2x + kd1y2 + kc1y − 2c2b1y−

−2k
(a2d1 − b1d2)

d3
z − 2a3

(a2d1 − b1d2)

d3
x − 2b3

(a2d1 − b1d2)

d3
y

= k
(
−d2x2 − 2c2x + d1y2 + 2c1y − 2k

(a2d1 − b1d2)

d3
z
)

+
(2a2c1 + kc2) d3 − 2a3 (a2d1 − b1d2)

d3
x−

− (2b1c2 + kc1) + 2b3 (a2d1 − b1d2)

d3
y

= k f (x, y, z) .

Hence, f (x, y, z) = 0 is an invariant algebraic surface of system (3),
with cofactor k ∈ R. Therefore, by Theorem 1 this system does not present
chaotic behavior.

Remark Let X = X(x, y, z) be the vector field associated to sys-
tem (9) and f (x, y, z) = 0 the invariant algebraic surface given in
Theorem 2. Then, we have that
a) f (x, y, z) is a first integral of system (9) if, and only if, k = 0.
In this case, the phase space is foliated by the invariant algebraic
surfaces f (x, y, z) = c, c ∈ R;
b) The vector field X is dissipative if, and only if, k < 0. If k = 0,
then X is conservative.

Theorem 3 Let X = X(x, y, z) be the vector field associated to system

(3) with the choice of parameters a1 = b2 = c3 =
1
2

k, b1 = a2α, and c1d3 + a3 (d2α − d1) = 0,

αc2d3 − b3 (d2α − d1) = 0,
(10)

where α, k ∈ R and αd3 ̸= 0. Then, system (3) presents the invariant
algebraic surface

f (x, y, z) = −x2 + αy2 − (d2α − d1)

d3
z2, (11)

with cofactor k ∈ R. Consequently, the system does not present chaotic
behavior.

Proof. Consider the vector field X = (P, Q, R) associated to system (3)
with the choice of parameters given in Theorem 3. Then, we have

ẋ = P(x, y, z) =
k
2

x + a2αy + c1z + d1yz,

ẏ = Q(x, y, z) = a2x +
k
2

y + c2z + d2xz,

ż = R(x, y, z) = a3x + b3y +
k
2

z + d3xy.

(12)

In this way, the function (11) is a Darboux polynomial of system (12)
with cofactor k ∈ R. In fact, we have

⟨∇ f , X⟩ =

=
∂ f
∂x (x, y, z)P (x, y, z) + ∂ f

∂y (x, y, z)Q (x, y, z) + ∂ f
∂z (x, y, z)R (x, y, z) =

= −kx2 + kαy2 − k
(d2α − d1)

d3
z2 − 2c1xz + 2αc2yz

−2a3
(d2α − d1)

d3
xz − 2b3

(d2α − d1)

d3
yz

= k
(
−x2 + αy2 − (d2α − d1)

d3
z2
)

−2
(c1d3 + a3 (d2α − d1))

d3
xz + 2

(αc2d3 − b3 (d2α − d1))

d3
yz

= k f (x, y, z) .

Hence, f (x, y, z) = 0 is an invariant algebraic surface of system (3),
with cofactor k ∈ R. Therefore, by Theorem 1 this system does not present
chaotic behavior.

It follows from the results above that system (3) has a plane
as an invariant algebraic surface if and only if d1 = d2 = d3 = 0,
that is, only when it is linear. On the other hand, such system may
have invariant algebraic surfaces with degrees n ≥ 3, however
we did not study these cases in this note, since the conditions on
the coefficients are very huge and complicated, due to the great
number of parameters.

EXAMPLES AND APPLICATIONS

We can relate the classes of nonchaotic systems obtained in The-
orems 2 and 3 with some classical Lorenz-like systems which ap-
pear in the literature. Since some “chaotic” Lorenz-like systems
are actually chaotic only for some parameter values, they can be
nonchaotic for other choices of parameters. Some examples are
presented below.
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Lorenz system

The Lorenz systems (2) is maybe the most famous system which
is known to be chaotic for certain parameter values (Algaba et
al. 2018; Lorenz 1963; Sparrow 1982). Using Theorem 2 we can
obtain some subclasses of Lorenz system which are not chaotic. We
observe that a more general and detailed study of Lorenz system
having invariant algebraic surfaces, including the dynamics at
infinity via the Poincaré compactification, was made in (Llibre et
al. 2010).
a) Consider in Theorem 2, the parameter values a3 = b3 = c1 =
c2 = d1 = 0, b1 = d3 = 1, d2 = −1, k = −2 and a2 ∈ R, which
corresponds to the Lorenz system (2) with parameters s = 1, r = a2
and b = 2, that is

ẋ = y − x,

ẏ = a2x − y − xz,

ż = −2z + xy,

(13)

which has the parabolic cylinder x2 − 2z = 0 as an invariant alge-
braic surface with cofactor k = −2, hence from Theorem 2, it is not
chaotic.

b) Consider the choice of parameters in Theorem 3 as a3 = b3 =

c1 = c2 = d1 = 0, d2 = −1, d3 = 1, α = 1
a2

, k = −2, and a2 ̸= 0,
which corresponds to the Lorenz system (2) with parameters s =
1, r = a2 and b = 1. Then, we get the nonchaotic system

ẋ = y − x,

ẏ = a2x − y − xz,

ż = −z + xy,

(14)

which has the cone −x2 + 1
a2

(
y2 + z2) = 0 as an invariant alge-

braic surface with cofactor k = −2.

The phase portraits of systems (13) and (14) on the respective
invariant algebraic surfaces are shown in Figures 1 and 2.

Figure 1 Phase portrait of system (13) with a2 = 3.

Figure 2 Phase portrait of system (14) with a2 = 1.

Rabinovich system
The Rabinovich system (Llibre et al. 2008) is an example of Lorenz-
like system. It is given by

ẋ = hy − v1x + yz,

ẏ = hx − v2y − xz,

ż = −v3z + xy,

(15)

with h, v1, v2, v3 ∈ R. It is known that system (15) presents chaotic
behavior for the parameter values v1 = 4, v2 = v3 = 1 and
h = 6, 75 (Llibre et al. 2008). Using Theorem 2, we can obtain
the following cases in which the Rabinovich system has an invari-
ant algebraic surface with constant cofactor, thus the system does
not present chaotic behavior in theses cases.

a) Following Theorem 3 and considering the parameters a3 = b3 =
c1 = c2 = 0, d1 = d3 = 1, d2 = −1, b1 = a2, and k = −2v in system
(15), we obtain v1 = v2 = v, v3 = 2v with v ∈ R and h = a2, which
lead to the following system

ẋ = hy − vx + yz,

ẏ = hx − vy − xz,

ż = −2vz + xy,

(16)

which has the invariant algebraic surface x2 + y2 − 4hz = 0 with
constant cofactor −2v ∈ R. From Theorem 3 follows that system
(16) is not chaotic.

b) Following Theorem 3 and considering the parameters a3 = b3 =
c1 = c2 = 0, d1 = d3 = 1, d2 = −1, α = 1 and k = −2v with v ∈ R

in system (15), we obtain v1 = v2 = v3 = v, h = a2 and the system

ẋ = hy − vx + yz,

ẏ = hx − vy − xz,

ż = −vz + xy,

(17)

which has the invariant algebraic surface −x2 + y2 + 2z2 = 0, with
constant cofactor −2v ∈ R, therefore it is not chaotic.

The phase portraits of systems (16) and (17) on the invariant
algebraic surfaces described above are shown in Figures 3 (a) and
(b), respectively.
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(a) h = v = 1 (b) h = v = 1

Figure 3 (a) Phase portrait of system (16); (b) Phase portrait of
system (17). In both cases, v = h = 1.

Chen-Ueta system
As a subclass of the Lorenz-like system (3) there is the known
Chen-Ueta system, given by (Chen and Ueta 1999)

ẋ = a (y − x) ,

ẏ = (c − a) x + cy − xz,

ż = −bz + xy,

(18)

where a, b, c ∈ R. System (18) has chaotic behavior for the parame-
ter values a = 35, b = 3 and c = 28, as shown in (Chen and Ueta
1999). The global dynamical behavior of system (18) having in-
variant algebraic surfaces, including the behavior at infinity using
Poincaré compactification, was done in (Llibre et al. 2012). Us-
ing Theorem 2, we can give some examples of Chen-Ueta system
without chaotic behavior.

Considering Theorem 2 and taking the parameters a3 = b3 =

c1 = c2 = d1 = 0, a2 = k, b1 = − 1
2 k, d2 = −1, d3 = 1, c2 = 0, k =

2r with r ∈ R in system (18) we obtain a = −r, c = r, b = −2r and
the nonchaotic system

ẋ = −r (y − x) ,

ẏ = 2rx + ry + xz,

ż = 2rz − xy,

(19)

which has x2 − 2rz = 0 as invariant algebraic surface, with con-
stant cofactor k = 2r. The phase portrait of system (19) on this
surface is given in Figure 4.

Lorenz-like system with D2 Symmetry
In (Anastassiou et al. 2002), the authors studied the following
differential system, derived from Lorenz-like system (3):

ẋ = a1x + d1yz,

ẏ = b2y + d2xz,

ż = c3z + d3xy,

(20)

where a1, b2, c3, d1, d2, d3 ∈ R. System (20) has several types of
symmetry, as pointed out in (Anastassiou et al. 2002), and has

Figure 4 Phase portrait of Chen system (19) with r = 1.

chaotic behavior for some choices of parameter values a1 and b2.
They also showed that the function V (x, y, z) = x2 + y2 + 2z2 is
a Lyapunov function for system (20) if a1, b2 > 0 and c3 = d1 =
d2 = 1, d3 = ±1.

Considering in Theorem 3 the parameter values a2 = a3 =
b3 = c1 = c2 = 0 and taking a1 = b2 = c3 = k/2 we obtain the
following subclass of system (20)

ẋ =
k
2

x + d1yz,

ẏ =
k
2

y + d2xz,

ż =
k
2

z + d3xy.

(21)

From Theorem 3, it follows that system (20) has no chaotic dynam-
ics in this case, for any parameters d1, d2, d3 ∈ R, with d3 ̸= 0,
since it has the invariant algebraic surface

f (x, y, z) = −x2 + αy2 − (d2α − d1)

d3
z2 = 0, (22)

with constant cofactor k ∈ R, for any α ∈ R.

(a) α = 2 (b) α = 1

Figure 5 Phase portrait of D2 system in the case of system (21)
for the parameters k = 2, d1 = d2 = 1, d3 = −1, and: (a) α = 2; (b)
α = 1.

From these calculations, we can see that for the choice of param-
eters c1 = d1 = d2 = 1, d3 = −1, system (20) has a cone and two
planes intersecting at the z-axis as invariant algebraic surfaces. In
fact, taking α = 1, we obtain from equation (22) that −x2 + y2 = 0
is an invariant algebraic surface with cofactor k. Furthermore, for
α = 2 we obtain −x2 + 2y2 + z2 = 0, which implies that system
(20) has an invariant cone (see Figure 5 (a)), and for α = 1 this
system has two invariant planes, see Figure 5 (b) ). These results
complement the ones obtained in (Anastassiou et al. 2002).

CHAOS Theory and Applications 31



Zhu-Liu-Guo symmetric Lorenz-like system
In (Zhu C., Liu Y. and Guo Y. 2010), the authors studied the Lorenz-
like system given by

ẋ = −x − β1y + yz,

ẏ = β2y − xz,

ż = −β3z + xy,

(23)

where β1, β2, β3 ∈ R. This system has the symmetry (x, y, z) 7→
(−x,−y, z) and present chaotic behavior for certain parameter
values, as shown in (Zhu C., Liu Y. and Guo Y. 2010). Considering
Theorem 2, and choosing a2 = a3 = b3 = c1 = c2 = 0, d1 = d3 =
1, d2 = −1, with b1 ̸= 0 and k = −2, we obtain β1 = −b1, β2 =
−1, β3 = 2 and the subclass of system (23) given by

ẋ = −x − b1y + yz,

ẏ = −y − xz,

ż = −2z + xy,

(24)

which has the invariant algebraic surface x2 + y2 + 2b1z = 0, with
cofactor k = −2. It follows from Theorem 1 that system (24) do not
present chaotic behavior, see their phase portrait on the respective
invariant algebraic surface in Figure 6.

Figure 6 Phase portrait of Zhu system (24), with b1 = −1.

TRANSITION FROM NONCHAOTIC TO CHAOTIC
BEHAVIOR IN LORENZ-LIKE SYSTEMS

In this section we will study the transition from nonchaotic to
chaotic behavior in some Lorenz-like systems. The nonchaotic dif-
ferential systems presented in the previous sections have invariant
algebraic surfaces with constant cofactor, hence their equilibrium
points are contained in the invariant algebraic surfaces, which
therefore contain the stable (or unstable) manifolds of these equi-
libria. We will see that a small perturbation in the parameters of
a nonchaotic system can destroy the invariant algebraic surface
and, consequently, deform the invariant manifolds and reorganize
the global structure of the phase space, leading to the creation
of chaotic behavior in these systems. In order to show this tran-
sition from nonchaotic to chaotic behavior, via perturbation, we
will analyze the Rabinovich system (15). As already mentioned,
this system presents chaotic behavior for the parameter values
v1 = 4, v2 = v3 = 1 and h = 6.75, having in this case the chaotic
attractor shown in Figure 7.

Figure 7 Chaotic attractor of Rabinovich system (15) with param-
eter values h = 6.75, v1 = 4, v2 = v3 = 1.

Considering now system (15) in the conditions of Theorem 3,
taking the parameter values h = a2, v1 = v2 = v3 = v, we obtain
system (17), which presents the cone −x2 + y2 + 2z2 = 0 as an
invariant algebraic surface with cofactor k = −2v ∈ R, hence
it has no chaotic behavior (see Figure 3 (b)). In order to destroy
the invariant algebraic surface in such a way that system (17) can
generate chaotic behavior, we will use the following variation of
this system

ẋ = hy − v1x + yz,

ẏ = hx − vy − xz,

ż = −vz + xy,

(25)

where v2 = v3 = v are fixed and equal to 1 and h = 6.75. Then,
we will vary v1 in order to deform the invariant cone and produce
chaotic behavior. Varying v1 in the interval [1, 3.8] , we obtained
the solutions of system (25) with initial conditions (±0.6,±0.6, 0) ,
shown in Figures 8 to 12. In these figures, we can see the deforma-
tion of the invariant cone and the transition of solutions ranging
from nonchaotic to chaotic behavior.

We observe that, when the parameter v1 = 1, system (25)
presents a cone as an invariant algebraic surface and three sin-
gular points belonging to the invariant cone: a saddle at the origin
and two stable foci. Hence, the stable manifolds of the foci are
contained in the invariant cone. When v1 is different from 1, the
structure given by the invariant cone and the singular points is
deformed and the system has no longer invariant algebraic sur-
faces, so the invariant manifolds are deformed. As v1 moves away
from v1 = 1, the behavior of solutions become more and more
complex and, for v1 = 3.8 the chaotic attractor is created, as shown
in Figure 12.

We can conclude that the formation of chaotic dynamics was
due to the deformation of the invariant manifolds of the equilib-
rium points, which were initially (for v1 = 1) contained on the
invariant cone, with the destruction of this cone (for v1 ̸= 1).

The same type of analysis can be done for the Rabinovich
chaotic system presented in (Llibre et al. 2008). In such work,
the authors have shown that system (15) presents a four-wings
chaotic attractor for the parameter values given by h = 0.04, v1 =
−1.5, v2 = −0.3 and v3 = −1.67, as shown in see Figure 13. Let
us see that this chaotic attractor can be obtained by the deforma-
tion of an invariant algebraic surface through the variation of the
parameter values.
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Figure 8 Two solutions of Rabinovich system (25) with param-
eter values h = 6.75, v = v1 = 1 and initial conditions
(±0.6,±0.6, 0) .

Figure 9 Two solutions of Rabinovich system (25) with param-
eter values h = 6.75, v = 1, v1 = 1.5 and initial conditions
(±0.6,±0.6, 0) .

Figure 10 Two solutions of Rabinovich system (25) with pa-
rameter values h = 6.75, v = 1, v1 = 2 and initial conditions
(±0.6,±0.6, 0) .

Consider the Rabinovich system (15) with h = 0.0, v1 = v3 and
v2 ∈ R. In this case, system (15) is in the hypothesis of Theorem
3, having the invariant algebraic surface −x2 + z2 = 0, given by
two intersecting invariant planes, with constant cofactor −2v1,
hence it does not present chaotic behavior. In order to study the
deformation of the invariant planes of system (15), we will vary
the parameter h in the interval [0, 0.0201] and consider also v1 ̸= v3.

Figure 11 Two solutions of Rabinovich system (25) with pa-
rameter values h = 6.75, v = 1, v1 = 3 and initial conditions
(±0.6,±0.6, 0) .

Figure 12 Two solutions of Rabinovich system (25) with param-
eter values h = 6.75, v = 1, v1 = 3.8 and initial conditions
(±0.6,±0.6, 0) .

As the invariant algebraic planes −x2 + z2 = 0 does not depend
on the variable y, we can modify the second equation of the system
without changing the invariant algebraic surface, hence based on
our knowledge on the existence of the four-wings attractor shown
in Figure 13, we will take the parameter values v1 = v3 = −1.5
and v2 = 0.3. In this case, system (15) has five singular points
belonging to the invariant algebraic surface −x2 + z2 = 0: four
unstable foci and one saddle at the origin (see Figure 14). Hence,
the global two-dimensional unstable manifolds of the unstable foci
are contained in the invariant planes −x2 + z2 = 0 and the global
one-dimensional unstable manifold of the saddle at the origin is
given exactly by the intersection of these planes.

Keeping h = 0.0, taking the parameter v1 = −1.5 and chang-
ing slightly the parameter v3 to v3 = −1.6, we can see that sys-
tem (15) has no longer the two invariant planes, but it is not
yet chaotic, see Figure 15. The same occurs for v3 = −1.67, as
shown in Figure 16. In Figures 15 and 16, we have taken the
initial conditions (0.6, 1.5, 0.6) , (−0.6, 1.5,−0.6) , (−0.6,−1.5, 0.6)
and (0.6,−1.5,−0.6) .

In order to deform the two invariant planes with the struc-
ture contained on them (five singular points), to generate the
chaotic behavior, we will now vary the parameter h. Taking
h ∈ [0, 0.01] we obtain solutions topologically equivalent to
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Figure 13 Four-wings chaotic attractor of Rabinovich system
with parameters h = 0.04, v1 = −1.5, v2 = 0.3, v3 =
−1.67, and its projection on the yz-plane. Initial conditions:
(±0.6,±1.5,±0.6). Time integration: t ∈ [800, 1100].

Figure 14 Phase portrait of the system (15) with parameters
h = 0.0, v1 = v3 = −1.5, and v2 = 0.3. The sys-
tem has two invariant planes and five equilibrium points:
a saddle at the origin and four unstable foci. Initial condi-
tions (0.6, 1.5, 0.6) , (−0.6, 1.5,−0.6) , (−0.6,−1.5, 0.6) and
(0.6,−1.5,−0.6) .

the ones shown in Figure 17, where we have taken the same
initial conditions (0.6, 1.5, 0.6) , (−0.6, 1.5,−0.6) , (−0.6,−1.5, 0.6)
and (0.6,−1.5,−0.6) and the time of integration t ∈ [300, 350] in
order to exclude the transient part of the solutions and to obtain
only the representation of the ω−limit set.

Figure 15 Phase portrait of system (15) with parameters h =
0.0, v1 = −1.5, v3 = −1.6, v2 = 0.3 The system has no longer
the invariant planes, but there is no chaotic behavior yet. Time
integration: t ∈ [120, 150].

Figure 16 Phase portrait of system (15) with parameters h =
0.0, v1 = −1.5, v3 = −1.67, v2 = 0.3 Time integration: t ∈
[120, 150].

Figure 17 Phase portrait of system (15) with parameters h =
0.01, v1 = −1.5, v3 = −1.67, v2 = 0.3 Time integration:
t ∈ [300, 350].

Taking h = 0.015 and the same initial conditions, we observe
that the solutions become more complex, as shown in Figure 18.

Now taking h ∈ [0, 0.02] and the same initial conditions, we
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Figure 18 Phase portrait of system (15) with parameters h =
0.015, v1 = −1.5, v3 = −1.67, v2 = 0.3 Time integration:
t ∈ [600, 800].

finally obtain a four-wings chaotic attractor, shown in Figure 19,
which is similar to the attractor of Figure 13.

Figure 19 Phase portrait of system (15) with h = 0.02, v1 =
−1.5, v3 = −1.67, v2 = 0.3 Observe the existence of a four-wings
chaotic attractor. Time integration: t ∈ [800, 1000].

We can see from Figures 14 to 19 that the deformation of the
invariant manifolds of the equilibrium points of system (15), which
are contained on the invariant planes for h = 0.0 and v1 = v3,
through the variation of the parameter values, lead to the transition
from nonchaotic to chaotic behavior of this system.

CONCLUSIONS

In this paper we gave sufficient algebraic conditions for some
classes of the generalized Lorenz-like system (3) to be nonchaotic.
More precisely, these systems have no chaotic behavior when they
have an invariant algebraic surface with constant cofactor, as stated
in Theorem 1. We also have shown that, in some cases, the defor-
mation of the invariant manifolds of equilibrium points, contained
on the invariant surfaces of nonchaotic Lorenz-like systems, by
perturbing their parameter values, can deform and reorganize the
global phase space structure, leading to the chaotic behavior of
these systems. The results presented here are quite general and
can be used to study other Lorenz-like systems than the examples
presented here.

We believe that the results presented here are somehow related

to the works (Osinga and Krauskopf 2002, 2004) on the deter-
mination of global one or two-dimensional stable and unstable
manifolds of critical elements (mainly singular points and periodic
orbits) of chaotic differential systems (as the Lorenz system), in
order to describe how these manifolds organize the global phase
space of such systems. In these studies, a better understanding
of the global behavior of chaotic dynamics were obtained. Anal-
ogously, in this paper we could see that the invariant algebraic
surfaces of nonchaotic Lorenz-like systems contain the stable (or
unstable) manifolds of critical elements because, as the cofactor
of these surfaces are constant, all the equilibrium points of the
nonchaotic systems are contained on them. Also, the deformation
of these invariant algebraic surfaces may lead do the creation of
chaotic dynamics, as shown for instance in the Rabinovich sys-
tem. We think that this ideas may be further developed, aiming to
obtain a better understanding of the organization of phase space
for nonchaotic and chaotic differential systems by the stable and
unstable manifolds of their equilibrium points.

We can conclude saying that, in order to have a better under-
standing of the complex dynamical behavior of continuous three-
dimensional differential systems, it is important to study also the
nonchaotic differential systems, beyond the chaotic ones.
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