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Abstract 

In this paper, hyperbolic spinor representations of space curves are studied according 

to the q-frame in 𝔼1
3. The spinor formulations of curves are calculated for the q-frame 

according to the spacelike and timelike tangent vector cases of the curves in 𝔼1
3. 

Moreover, the relationships of spinor equations between q-frame and Frenet frame 

in Lorentz space are expressed. The results are supported with some theorems. 

 

 
1. Introduction 

 

Spinors, as two-component complex column 

vectors, were discovered by E. Cartan during his 

researches on lineer representations of groups in 

1910 [1]. A geometrical interpretation of spinors is 

based on 3-dimensional Cartesian space with three 

complex-valued components. The usage of 

geometrical notions in physics seems clearly in 

particular physics so that bosons and fermions are 

described by spinors while bosons are only 

characterized by tensors [2]. 𝑆𝑝𝑖𝑛 (2), and 

𝑆𝑝𝑖𝑛(3) = 𝑆𝑈(2) as special cases of special 

unitary groups are composed by spinors algebra 

and the Pauli matrices admit to present a clearer 

characterization of three-dimensional real space 

rotation rather than the classic definition [3]. 

Geometrical notions such as curves, and 

surfaces represented by spinors are available in 

literature. In particular, spinor modelling of curves 

was firstly put forward by Castillo et al. by means 

of Frenet frame vectors in Euclidean 3-space [4]. 

Then from the point of view of Bishop frame called 

also as alternative frame, spinor representation was 

examined in the study [5]. Spinor analysis of 

Darboux frame on oriented a surface and its 

relationship with some types of tetrads such as 

Frenet and Darboux frames were studied in [6].  

Lorentz space is a great important setting 

in which the relativity theory is established in 

physics. Geometrical studies of the notion spinors 

were taken into consideration as in the following 
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works. By means of hyperbolic spinor 

representation stemmed from the different 

structure of Lorentz 3-space, non-null regular 

curves were characterized in the research [7]. The 

spinor analysis of Darboux frame for non-null 

curves lying in non-degenerate surface was given 

in the same space by the work [8].  

The quasi-normal vector of a space curve 

was defined for construction of three-dimensional 

offset curves by Coquillart [9]. The definition of 

the quasi-normal vector is as follows: for each 

point of the curve, the vector lies in the plane 

perpendicular to the tangent of the curve at this 

point [10]. The q-frame along a space curve was 

proposed in Euclidean 3-space by means of the 

quasi-normal vector [11] The quasi frame fields 

along space curves were also studied in Lorentz 3-

space in the work [12]. Some advantages of using 

the q-frame are related to curves to be lines, that is, 

their first curvatures vanish, in this condition, the 

q-frame can be constructed, and also the q-frame 

does not change even though curves to be unit or 

non-unit speed ones. 

The motivation of our study is to 

characterize hyperbolic spinor representations of 

space curves in 3-dimensional Lorentz space 

according to q-frame and to research the 

differences between q-frame and Frenet frame 

from the spinor point of view. Accordingly, our 

investigation consists of two parts occurred 

because of the causal characters of space curves in 

Lorentz space. The derivative formulas of q-frame 
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in terms of hyperbolic spinors are provided to 

represent the oriented triad of q-frame. The 

relationship between Frenet and q-frame formulas 

have been obtained with respect to the hyperbolic 

rotation angles relative to each frame by using 

hyperbolic spinors representations of Frenet and q-

frames.  Thus, it is aimed to use the advantages of 

q-frame in future studies. 

 

2. Preliminaries 

 

The Lorentzian space is equipped with the standard 

metric that is 

 

𝑔(𝑢, 𝑣) = 𝑢1𝑣1 + 𝑢2𝑣2 − 𝑢3𝑣3,                           (1) 

 

where 𝑢 = (𝑢1, 𝑢2, 𝑢3) and 𝑣 = (𝑣1, 𝑣2, 𝑣3) are 

two arbitrary vectors in 𝔼1
3. If 𝑔(𝑢, 𝑢) > 0 or 𝑢 =

 0,  𝑔(𝑢, 𝑢) < 0 and 𝑔(𝑢, 𝑢) = 0  (𝑢 ≠ 0), the 

vector 𝑢 ∈ 𝔼1
3 is called spacelike, timelike and 

lightlike (null) vectors, respectively. From the Eq. 

(1) the norm of the vector 𝑢 ∈ 𝔼1
3 is obtained like 

as below, 

 

‖𝑢‖𝐿 = √|𝑔(𝑢, 𝑢)|.                                                 (2) 

 

For the same vectors 𝑢, 𝑣, Lorentzian cross 

product is defined by 

 

𝑢 ∧𝐿 𝑣 = |

𝑒1 𝑒2 −𝑒3

𝑢1 𝑢2 𝑢3

𝑣1 𝑣2 𝑣3

|,                                     (3) 

 

where 𝑒1 ∧ 𝑒2 = 𝑒3, 𝑒2 ∧ 𝑒3 = −𝑒1, 𝑒3 ∧ 𝑒1 =
−𝑒2, [13]. The tangent vector 𝛼′(𝑠) of a space 

curve 𝛼(𝑠) can be spacelike, timelike or null 

(lightlike) so the curve is called with these names 

[14]. If 〈𝛼′(𝑠), 𝛼′(𝑠)〉 = ∓1, a non-null curve 𝛼 is 

parameterized by arc-length parameter 𝑠 [15]. 

The Frenet frame {𝑡, 𝑛, 𝑏} of a non-null 

curve in Lorentz space is given by  

 

𝑡 = 𝛼′,       𝑛 =
𝛼′′

‖𝛼′′‖
,       𝑏 = 𝜀𝑏(𝑡˄𝑛).             (4) 

 

Additionally, the Frenet derivative 

formulas are expressed as 

 

[
𝑡′

𝑛′

𝑏′
] = [

0 𝜅 0
𝜀𝑏𝜅 0 𝜏

0 𝜀𝑡𝜏 0
] [

𝑡
𝑛
𝑏

],                                   (5) 

 

where 𝜀𝑡 = 𝑔(𝑡, 𝑡), 𝜀𝑏 = 𝑔(𝑏, 𝑏) and 𝜅, 𝜏 are the 

Lorentzian curvature and torsion functions, 

respectively [16]. 

The q-frame is an alternative way to 

defining a moving frame of a space curve with 

three orthonormal basis which are the unit tangent 

vector 𝑡, the quasi-normal 𝑛𝑞 and the quasi-

binormal vector 𝑏𝑞. The q-frame {𝑡, 𝑛𝑞 , 𝑏𝑞 , 𝑘} is 

expressed by,  

 

𝑡 =
𝛼′

‖𝛼′‖
,       𝑛𝑞 =

𝑡˄𝑘

‖𝑡˄𝑘‖
,       𝑏𝑞 = 𝑡˄𝑛𝑞 ,        (6) 

 

where 𝑘 is the projection vector which is chosen as 

(0,1,0) spacelike or (0,0,1) timelike. The q-frame 

has many dominances from other frames (Frenet, 

Bishop, Sabban) for characterizing a space curve. 

Such that the q-frame can be defined even when 

Lorentzian curvature vanished (along a line) and 

the space curve does not need to has unit speed for 

characterizing [12]. 

The q-frame derivative formulation in 

Lorentz space must be handled for two different 

cases which are the tangent vector of space curve 

is spacelike or timelike, seperetaly. In the case of 

tangent vector is spacelike (so quasi-normal or 

quasi-binormal is timelike), the derivative formulas 

of q-frame are expressed by 

 

[

𝑡′

𝑛𝑞
′

𝑏𝑞
′
] = [

0 𝜀𝑛𝑞
𝑘1 𝜀𝑏𝑞

𝑘2

−𝑘1 0 𝜀𝑏𝑞
𝑘3

−𝑘2 𝜀𝑏𝑞
𝑘3 0

] [

𝑡
𝑛𝑞

𝑏𝑞

],                (7) 

 

where 𝜀𝑛𝑞
= 〈𝑛𝑞 , 𝑛𝑞〉, 𝜀𝑏𝑞

= 〈𝑏𝑞 , 𝑏𝑞〉 and 

Lorentzian q-curvatures are  

 

𝑘1 = 𝜅 cosh 𝜃 ,  𝑘2 = −𝜅 sinh 𝜃, 
𝑘3 = 𝜀𝑏𝑞

(𝑑𝜃 + 𝜏).                                                   (8) 

 

Also, the rotation matrix between Frenet frame and 

q-frame of a spacelike curve in Lorentz space can 

be given by the hyperbolic angle 𝜃 which is 

between the principal normal 𝑛 and the quasi-

normal 𝑛𝑞 as follows: 

 

[

𝑡
𝑛𝑞

𝑏𝑞

] = [
1 0 0
0 cosh 𝜃 sinh 𝜃
0 sinh 𝜃 cosh 𝜃

] [
𝑡
𝑛
𝑏

],                      (9) 

 

and 
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[
𝑡
𝑛
𝑏

] = [
1 0 0
0 cosh 𝜃 − sinh 𝜃
0 −sinh 𝜃 cosh 𝜃

] [

𝑡
𝑛𝑞

𝑏𝑞

],              (10) 

 

where the projection vector 𝑘 = (0,1,0) is 

spacelike [17]. With this transformation, timelike 

vectors turn into timelike vectors, spacelike vectors 

turn into spacelike vectors [18]. Moreover, the 

Euler formula is expressed by 

 

𝑒𝑗𝜃 = 𝑐𝑜𝑠ℎ𝜃 + 𝑗𝑠𝑖𝑛ℎ𝜃,                                       (11) 

 

for the hyperbolic rotation [19].  

In the case that the curve has timelike 

tangent vector, the derivation formulation does not 

depend on projection vector being timelike or 

spacelike. Then the derivative formulas of q-frame 

are obtained by 

 

[

𝑡′

𝑛𝑞
′

𝑏𝑞
′
] = [

0 𝑘1 𝑘2

𝑘1 0 𝑘3

𝑘2 −𝑘3 0
] [

𝑡
𝑛𝑞

𝑏𝑞

],                          (12) 

 

where Lorentzian q-curvatures are defined by 

 

𝑘1 = 𝜅 cos 𝜃 , 𝑘2 = −𝜅 sin 𝜃 , 𝑘3 = 𝑑𝜃 + 𝜏,    (13) 

 

where 𝜃 is the angle between the vectors which are 

the principal normal 𝑛 and the quasi-normal 𝑛𝑞. 

Also, the rotation matrix between Frenet frame and 

q-frame of a timelike curve in Lorentz space is 

 

[
𝑡
𝑛
𝑏

] = [
1 0 0
0 cos 𝜃 −sin 𝜃
0 sin 𝜃 cos 𝜃

] [

𝑡
𝑛𝑞

𝑏𝑞

],                      (14) 

 

[12].  

The group 𝑈(𝑛, ℍ) is said to be hyperbolic 

unitary group which is established by Hermitian 

𝑛 × 𝑛 matrices set. The subgroup 𝑆𝑂(1, 3) is a 

special Lorentzian group which is composed by 

Lorentzian transformation whose determinant is 

+1 [20]. The relation between the groups 𝑆𝑂(1, 3) 

and 𝑆𝑈(2, ℍ) is a special one called as 

homomorphism. By means of this homomorphism, 

Hermitian matrices of the group 𝑆𝑈(2, ℍ) serve as 

hyperbolic spinors while the elements of the 

subgroup 𝑆𝑂(1, 3) express vectors in Lorentz 

space [21]. 

A hyperbolic spinor can be defined as 

 

𝛹 = (
𝛹1

𝛹2
),                                                              (15) 

 

by means of three vectors 𝑎, 𝑏, 𝑐 ∈ 𝔼1
3 such that  

 

𝑎 + 𝑗𝑏 = 𝛹𝑡𝜎𝛹,      c = −�̂�𝑡𝜎𝛹,                      (16) 
 

where 𝑗2 = 1 and 𝜎 = (𝜎1, 𝜎2, 𝜎3) is a vector 

whose cartesian components are the hyperbolic 

symmetric 2𝑥2 matrices 

 

𝜎1 = (
1 0
0 −1

),    𝜎2 = (
j 0
0 j

),     

𝜎3 = (
0 −1

−1 0
),                                                  (17) 

 

which are the products of the matrix 

 

𝐾 = (
0 1

−1 0
)                                                      (18) 

 

by the Pauli matrices employed in physics [22]. 

If hyperbolic spinor �̂� be the mate and �̅� 

be the conjugation of hyperbolic spinor 𝛹. Then, 

 

�̂� = − (
0 1

−1 0
) �̅� = − (

0 1
−1 0

) (
�̅�1

�̅�2
)

= (
−�̅�2

�̅�1
).                                  (19) 

 

If it is chosen as 𝑎 + 𝑗𝑏 = (𝑥1, 𝑥2, 𝑥3), it is 

obtained from the Eq. (17) and (19) 

 

𝑥1 = 𝛹𝑡𝜎1𝛹 = 𝛹1
2 − 𝛹2

2,       
𝑥2 = 𝛹𝑡𝜎2𝛹 = 𝑗(𝛹1

2 + 𝛹2
2),       

𝑥3 = 𝛹𝑡𝜎3𝛹 = −2𝛹1𝛹2, 
 

where superscript 𝑡 means transposition of 

hyperbolic spinor 𝛹. Then, 

 

𝑎 + 𝑗𝑏 =  𝛹𝑡𝜎𝛹 

              = (𝛹1
2 − 𝛹2

2, 𝑗(𝛹1
2

+ 𝛹2
2), −2𝛹1𝛹2),                    (20) 

 

is obtained. Likewise, it can be seen 

 

𝑐 = (𝑐1, 𝑐2, 𝑐3) 

    = (𝛹1�̅�2 + �̅�1𝛹2, 𝑖(𝛹1�̅�2 − �̅�1𝛹2), |𝛹1|2

− |𝛹2|2). 
 

The norms ‖𝑎‖𝐿 = ‖𝑏‖𝐿 =  ‖𝑐‖𝐿 = �̅�𝑡𝛹 

are obtained by using the vector 𝑎 + 𝑗𝑏 which is an 

isotropic one, that is, 𝑔(𝑎 + 𝑗𝑏, 𝑎 + 𝑗𝑏) = 0. 

The equality 𝛹′̅̅̅̅ 𝑡
𝛹′ = �̅�𝑡𝛹 is satisfied for 

the equation 𝛹′ = 𝑈𝛹 such that a matrix 𝑈 ∈
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𝑆𝑈(2, ℍ). It means that the norms of the vectors 

𝑎′, 𝑏′, 𝑐′ are equal to the ones of the vectors 𝑎, 𝑏, 𝑐, 

so that these two sets of the vectors correspond to 

𝛹′, and 𝛹, respectively. Thus, all transformations 

from the orthogonal basis of 𝔼1
3 to another 

orthogonal basis of the same space are the elements 

of 𝑆𝑈(2, ℍ). 

The elements 𝑈, and – 𝑈 of 𝑆𝑈(2, ℍ) 

match the same ordered set of 𝔼1
3. This occurs 

because the transformation from 𝑆𝑈(2, ℍ) to 

𝑆𝑂(1, 3) is a two-to-one homomorphism. On the 

other hand, the sets {𝑎, 𝑏, 𝑐} performs to the spinor 

𝛹. So it can be expressed that the different ordered 

sets of 𝔼1
3 represent to the different hyperbolic 

spinors. But the same set can be shown by the 

spinors 𝛹, and - 𝛹. Then, the equalities below are 

satisfied for hyperbolic spinors 𝜙 and 𝛹 

 

         𝜙𝑡𝜎𝛹̅̅ ̅̅ ̅̅ ̅̅ = −�̂�𝑡𝜎�̂�, 
𝑎𝜙 + 𝑏𝛹̂ = �̅��̂� + �̅��̂�,                                      (21) 

                 �̂̂� = −𝛹, 
 

where 𝑎 and 𝑏 are hyperbolic numbers [23]. 

Moreover, the ordered sets 

{𝑎, 𝑏, 𝑐}, {𝑏, 𝑐, 𝑎}, {𝑐, 𝑎, 𝑏} represent different 

hyperbolic spinors. The following equation is 

satisfied for any pair of hyperbolic spinors 𝜙 and 𝛹 

 

𝜙𝑡𝜎 𝛹 =  𝛹𝑡 𝜎 𝜙,                                                 (22) 

 

where the matrices σ (given by the Eq. (17)) are 

symmetric. 

 

3. Spinor Q-Equations in 𝔼𝟏
𝟑 

 

In this section of the study, it is obtained that the 

hyperbolic spinor representations of spacelike and 

timelike curves according to q-frame and the 

relationships of these representations between q-

frame and the Frenet frame of the spacelike and 

timelike curves in 𝔼𝟏
𝟑, separately. 

 

3.1. Hyperbolic Spinor Q-Equations of 

Spacelike Curves 

 

Let 𝛼: 𝐼 ⟶ 𝔼1
3 be a spacelike curve and {𝑛, 𝑏, 𝑡} be 

Frenet vector fields in 𝔼1
3. It is known that 

 

   𝑛 + 𝑗𝑏 = 𝛹𝑡 𝜎 𝛹,       𝑡 =  −�̂�𝑡 𝜎 𝛹,             (23) 

equations of Frenet frame are obtained as 

 
𝑑𝛹

𝑑𝑠
=  

1

2
 (−𝑗𝜏𝛹 + 𝜀𝑏𝜅�̂�),                                  (24) 

 

where 𝛹 is a hyperbolic spinor which is represent 

Frenet frame, �̅�𝑡𝛹 = 1 and 𝜅, 𝜏 is Lorentzian 

curvature and torsion of the spacelike curve 𝛼, 

respectively [24]. 

On the other hand, it is chosen that the q-

frame {𝑛𝑞, 𝑏𝑞 , 𝑡} of the spacelike curve in 𝔼1
3 

corresponds to the hyperbolic spinor 𝜙. Then, it 

can be written as 

 

𝑛𝑞 + 𝑗𝑏𝑞 =  𝜙𝑡𝜎𝜙,       𝑡 =  −�̂�𝑡𝜎𝜙,                 (25) 

 

where  �̅�𝑡𝜙 = 1. If  
𝑑𝜙

𝑑𝑠
 means the change of the q-

frame along the spacelike curve, differentiating the 

first equation in the Eq. (25) and considering the 

Eq. (7), it is obtained  

 

−𝑘1𝑡 + 𝜀𝑏𝑞
𝑘3𝑏𝑞 + 𝑗 (−𝑘2𝑡 + 𝜀𝑏𝑞

𝑘3𝑛𝑞)

= (
𝑑𝜙

𝑑𝑠
)

𝑡

𝜎𝜙 + 𝜙𝜎 (
𝑑𝜙

𝑑𝑠
).      (26) 

 

Since the set {𝜙,  �̂�} composes a basis for 

the hyperbolic spinors, the following equation 

 
𝑑𝜙

𝑑𝑠
= 𝑓𝜙 + 𝑔�̂�,                                                     (27) 

 

is achieved where 𝑓 and 𝑔 are two arbitrary 

hyperbolic functions. Then, considering the Eqs. 

(25), (26) and (27), it is obtained 

 

𝑓 = −
𝑗

2
𝜀𝑏𝑞

𝑘3, 𝑔 =
1

2
(𝑘1 + 𝑗 𝑘2).            (28) 

 

Thus, the following theorem can be given with the 

aid of the Eq. (27) and (28). 

 

Theorem 1. Let the hyperbolic spinor 𝜙 represents 

the q-frame {𝑛𝑞 , 𝑏𝑞 , 𝑡} of the spacelike curve 𝛼 in 

Lorentz space 𝔼1
3. The q-frame derivative 

equations are given via a hyperbolic spinor as 

 
𝑑𝜙

𝑑𝑠
= −

𝑗

2
𝜀𝑏𝑞

𝑘3𝜙 +
1

2
  (𝑘1 + 𝑗 𝑘2 ) �̂�,            (29) 

 

where 𝑘1, 𝑘2 and  𝑘3 are q-curvatures of the 

spacelike curve.  

Other than this, if it is approached the 

relationship between the spinors 𝛹 and 𝜙, 

considering the Eq. (9), it is obtained 
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𝑡  =
𝑛𝑞 =

𝑏𝑞 =

𝑡
𝑛 cos ℎ𝜃 + 𝑏 sin ℎ𝜃
𝑛 sin ℎ𝜃 + 𝑏 cos ℎ𝜃

, 

 

and  

 

𝑛𝑞 + 𝑗𝑏𝑞 = (𝑛 + 𝑗𝑏)(𝑐𝑜𝑠ℎ + 𝑗𝑠𝑖𝑛ℎ).          (30) 

 

From the Eqs. (23), (25) and (30), it can be seen 

that 

 

𝜙 𝑡𝜙 = 𝑒𝑗(𝛹𝑡𝛹), 
           𝑡 = 𝑡.                                                             (31) 

 

Then, it is given by the following theorem: 

 

Theorem 2. The relationships of the hyperbolic 

spinor formulas between q-frame and Frenet frame 

of the spacelike curve are 

 

𝜙𝑡𝜙 = 𝑒𝑗(𝛹𝑡𝛹), 
        𝑡 = 𝑡.            
 

where 𝑒𝑗 = 𝑐𝑜𝑠ℎ + 𝑗𝑠𝑖𝑛ℎ  and the spinors 𝛹 

and 𝜙 represent the Frenet frame {𝑛, 𝑏, 𝑡} and q-

frame {𝑛𝑞, 𝑏𝑞 , 𝑡}, respectively. 

 

Lemma 1. Let 𝛼: 𝐼 ⟶ 𝔼1
3 be a spacelike curve in 

Lorentz space 𝔼1
3 and the angle 𝜃 be hyperbolic 

rotation angle between the triads {𝑛, 𝑏, 𝑡} and 

{𝑛𝑞 , 𝑏𝑞 , 𝑡}. Then, the hyperbolic rotation angle is 

also same between the hyperbolic spinors 𝛹𝑡 𝜎 𝛹 

and 𝜙𝑡𝜎𝜙. Furthermore, the hyperbolic rotation 

angle is equal to 𝜃
2⁄  between the hyperbolic 

spinors 𝛹 and 𝜙. 

 

Proof. For the isotropic vector 𝑛 + 𝑗𝑏 =  (1, 𝑗, 0), 

the following equation can be written from the Eq. 

(20) 

 

𝑛 + 𝑗𝑏 = (𝑎1, 𝑎2, 𝑎3) =  𝛹𝑡𝜎𝛹 

= (𝛹1
2 − 𝛹2

2, 𝑗(𝛹1
2 + 𝛹2

2), −2𝛹1𝛹2),              (32) 

 

and 

 

𝛹1 = ∓√
𝑎1 + 𝑗𝑎2

2
,   𝛹2 = ∓√

−𝑎1 + 𝑗𝑎2

2
,    (33) 

are obtained. Then, it can be calculated the 

hyperbolic spinor 𝛹 corresponds to the triad 

{𝑛, 𝑏, 𝑡} as 𝛹 = (𝛹1, 𝛹2)  =  (±1, 0). So, the triad 

{𝑛, 𝑏, 𝑡} is rotated with the hyperbolic angle 𝜃. 

From the Eq. (9), it can be written 

 
𝑛𝑞 = 𝑛𝑐𝑜𝑠ℎ𝜃 + 𝑏𝑠𝑖𝑛ℎ𝜃,

𝑏𝑞 = 𝑛𝑠𝑖𝑛ℎ𝜃 + 𝑏𝑐𝑜𝑠ℎ𝜃.
 

 

with the aid of the Eq. (30), since the hyperbolic 

spinor 𝛹 rotates to the hyperbolic spinor 𝜙 when 

the Frenet frame {𝑛, 𝑏, 𝑡} rotates to the q-frame 

{𝑛𝑞 , 𝑏𝑞 , 𝑡}, it is obtained 

 

𝑛𝑞 + 𝑗𝑏𝑞 = (𝑛 + 𝑖𝑏)𝑒𝑗𝜃 

                  = (𝑎1, 𝑎2, 𝑎3)𝑒𝑗𝜃 =  𝜙𝑡𝜎𝜙 

                  = (𝜙1
2 − 𝜙2

2, 𝑗(𝜙1
2 + 𝜙2

2), −2𝜙1𝜙2) 

 

and  

 

𝜙1 = ∓𝑒𝑗𝜃
2⁄ √

𝑎1 + 𝑗𝑎2

2
,       

𝜙2 = ∓𝑒𝑗𝜃
2⁄ √

−𝑎1 + 𝑗𝑎2

2
.                                  (34) 

 

Then, it can be written 

 

𝜙1 =  ∓𝑒𝑗𝜃
2⁄ ,    𝜙2 = 0. 

 

and  

 

𝜙 = (𝜙1, 𝜙2) =  (∓𝑒𝑗𝜃
2⁄ , 0) 

                       = 𝑒𝑗𝜃
2⁄ (∓1, 0) = 𝑒𝑗𝜃

2⁄ 𝛹.           (35) 

 

So, the hyperbolic rotation angle is equal to 
𝜃

2⁄  between the hyperbolic spinors 𝛹 and 𝜙. 

 

3.2. Hyperbolic Spinor Q-Equations of Timelike 

Curves 

 

Let 𝛼: 𝐼 ⟶ 𝔼1
3 be a timelike curve and {𝑛𝑞 , 𝑏𝑞 , 𝑡} 

be the q-frame of timelike curve in Lorentz space. 

Then, for the hyperbolic spinor 𝜆 which represents 

q-frame {𝑛𝑞 , 𝑏𝑞 , 𝑡}, it is written 

 

𝑛𝑞 + 𝑗𝑏𝑞 = 𝜆𝑡 𝜎 𝜆,      𝑡 =  −�̂�𝑡 𝜎 𝜆 

 

where �̅�𝑡𝜆 = 1. Differentiating the first part of last 

equation and from the equation of 
𝑑𝜆

𝑑𝑠
= 𝑚𝜆 + 𝑛�̂�, 

it can be obtained 
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(𝑘1 + 𝑗𝑘2 + 2𝑛)𝑡 − (𝑗𝑘3 + 2𝑚)𝑛𝑞

+ (𝑘3 − 𝑗2𝑚)𝑏𝑞 = 0              (36) 

 

and 

 

𝑚 = −
𝑗𝑘3

2
,    𝑚 =

𝑗𝑘3

2
,    𝑛 = −

𝑘1 + 𝑗𝑘2

2
. 

 

where 𝑚, 𝑛 are two hyperbolic functions. In this 

case, it can be seen as 𝑚 = 0 and so 𝑘3 = 0. From 

here, it can be given with the following theorem: 

 

Theorem 3. Let the hyperbolic spinor 𝜆 represents 

q-frame triad {𝑛𝑞 , 𝑏𝑞 , 𝑡} of the timelike curve in 

Lorentz space 𝔼1
3. The q-frame derivative 

equations are given via a hyperbolic spinor as 

 
𝑑𝜆

𝑑𝑠
= −

1

2
(𝑘1 + 𝑗𝑘2)�̂�                                          (37) 

 

where 𝑘3 = 0. Then, q-frame {𝑛𝑞 , 𝑏𝑞 , 𝑡} turns into 

the Bishop frame [24]. 

 

Remark 1. If a timelike space curve represents by 

hyperbolic spinor via q-frame in Lorentz space 𝔼1
3 

has a vanishing of third q-curvature 𝑘3, then the q-

frame turns into the Bishop frame. 

 

4. Conclusion 

 

The spinors play an important role in 

Mathematics and Physics. These two-

component complex column vectors render 

possible to describe some notions like as 

fermions. Spinors are characterized by a 

projective representation of the rotation group 

in Geometry. It is seemed to increase also the 

studies on spinors from many different fields 

recently. The representations of this notion can 

also be used to give the characterizations of 

space curves according to Frenet and Bishop 

frames in Euclidean and Lorentz 3-spaces.  
In this study, we handled the spinor representation 

of a space curve according to q-frame in 𝔼1
3, so this 

is a hyperbolic spinor representation. This frame 

can be defined even when Lorentzian curvature 

vanished (along a line) and the space curve does 

not need to have unit speed for characterization. 

We firstly defined the q-frame {𝑛𝑞 , 𝑏𝑞 , 𝑡} of the 

spacelike curve in 𝔼1
3 which corresponds to the 

hyperbolic spinor 𝜙. Then, we obtained the q-

frame derivative equations which correspond to a 

hyperbolic spinor equation. Also, the relations of 

spinor formulations between q-frame and Frenet 

frame of the spacelike curve are given with the aid 

of Euler formula. The hyperbolic rotation angle 

between 𝛹 and 𝜙 is achieved as 𝜃
2⁄  where 

hyperbolic spinors 𝛹 and 𝜙 represent the Frenet 

frame {𝑛, 𝑏, 𝑡} and the q- frame {𝑛𝑞 , 𝑏𝑞 , 𝑡} of the 

spacelike curve, respectively. On the other hand, in 

the case that the space curve has timelike tangent 

vector, we investigated the derivative formulas of 

q-frame, but the third q-curvature 𝑘3 vanished and 

the frame turned into Bishop frame. As a result, our 

findings can be used for future works on this 

subject. It is clearly seen that there is a wide study 

area for spinor representations along space curves 

according to q-frame. 
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