MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES

[https://doi.org/10.36753/msaen.1022886](https://doi.org/10.32323/msaen.561873) 10 (4) [199-](#page-0-0)[207](#page-8-0) (2022) - Research Article ISSN: 2147-6268 c MSAEN

Domain of Jordan Totient Matrix in the Space of Almost Convergent Sequences

Merve ˙Ilkhan Kara* and Gizemnur Örnek

Abstract

In this paper, the notion of almost convergence is used to obtain a space as the domain of a regular matrix. After defining a new type of core for complex-valued sequences, certain inclusion theorems are proved.

Keywords: Jordan totient function; regular matrix; almost convergence.

AMS Subject Classification (2020): Primary: 46A45 ; Secondary: 40A05; 46A35.

**Corresponding author*

1. Introduction and preliminaries

The classical summability theory concerns with the generalization of the concept of convergence for series or sequences by assigning a limit for non-convergent series or sequences. For this purpose, infinite special matrices are used.

One of the fundamental subject of summability is the study of the theory of sequence spaces. By a sequence space, we mean any subspace of ω consisting all sequences with real or complex terms. We use the classical sequence spaces

$$
c_0 = \{x = (x_j) \in \omega : \lim_j x_j = 0\},
$$

\n
$$
c = \{x = (x_j) \in \omega : \lim_j x_j \text{ exists }\},
$$

\n
$$
\ell_{\infty} = \{x = (x_j) \in \omega : \sup_j |x_j| < \infty\},
$$

\n
$$
cs = \{x = (x_j) \in \omega : \left(\sum_{i=1}^j x_i\right) \in c\}
$$

\n
$$
bs = \{x = (x_j) \in \omega : \left(\sum_{i=1}^j x_i\right) \in \ell_{\infty}\}.
$$

and

In the theory of sequence spaces, the concept of Banach limit has rised as a fascinating application of the famous Hahn–Banach extension theorem. The Banach limit is known as extension of limit functional on c to the space ℓ_{∞} . This notion has used by Lorentz [\[1\]](#page-7-0) to introduce a new type of convergence called almost convergence. The spaces f and f_0 of almost convergent and almost convergent to zero are given by

$$
f = \left\{ x = (x_j) \in \ell_\infty : \lim_{i \to \infty} \sum_{p=0}^i \frac{x_{j+p}}{i+1} = \mathcal{A} \text{ uniformly in } j \right\}
$$

and

$$
f_0 = \bigg\{ x = (x_j) \in \ell_\infty : \lim_{i \to \infty} \sum_{p=0}^i \frac{x_{j+p}}{i+1} = 0 \text{ uniformly in } j \bigg\}.
$$

A Banach limit L defined on ℓ_{∞} is a non-negative linear functional such that $\mathcal{L}(\mathcal{P}x) = \mathcal{L}x$ and $\mathcal{L}(e) = 1$, where $P: \omega \longrightarrow \omega$, $P_i(x) = x_{i+1}$ is the shift operator. A sequence $x = (x_i)$ is said to be almost convergent to the generalized limit A if all Banach limits of x are coincide and are equal to A. It is denoted by $f-\lim x_j = A$. If \mathcal{P}^p is the p -times composition of P with itself, we use the notation

$$
a_{ij}(x) = \frac{1}{i+1} \sum_{p=0}^{i} (\mathcal{P}^p x)_j \text{ for all } i, j \in \mathbb{N}.
$$

It is proved by Lorentz [\[1\]](#page-7-0) that $f - \lim x_j = A$ if and only if $\lim_{i\to\infty} a_{ij}(x) = A$ uniformly in j. It is a known fact that a convergent sequence is almost convergent such that its ordinary and generalized limits are equal. See the papers [\[2](#page-7-1)[–14\]](#page-7-2) for more on almost convergence and Banach limit.

Given any sequence spaces X and Y, an infinite matrix $S = (s_{ij})$ is considered as a matrix mapping from X into ${\cal Y}$ if the sequence $Sx=\{(Sx)_i\}=(\sum_j s_{ij}x_j)\in{\cal Y}$ for every $x=(x_j)\in{\cal X}.$ By $({\cal X}: {\cal Y})$, we denote the class of all such matrices. It is said that S regularly maps X into $\mathcal Y$ if $S \in (\mathcal X : \mathcal Y)$ and $\lim_j (Sx)_j = \lim_j x_j$ for all $x \in \mathcal X$. This is denoted by $S \in (\mathcal{X} : \mathcal{Y})_{reg}$.

By f_S , we mean the domain of an infinite matrix S in the space f ; that is

$$
f_S = \{ x = (x_j) \in \omega : Sx \in f \}.
$$

For more on matrix domains and new sequence spaces, see [\[15–](#page-7-3)[25\]](#page-8-1)

Let $x = (x_j) \in \omega$ and C_j be the least convex closed region in complex plane containing $x_j, x_{j+1}, x_{j+2}, \ldots$ for each $j \in \mathbb{N} = \{1, 2, ...\}$. The Knopp Core or \mathcal{K} – *core* of $x = (x_j)$ is defined as the intersection of all C_j ([\[26\]](#page-8-2)). If $x \in \ell_{\infty}$, we have that

$$
\mathcal{K} - core(x) = \bigcap_{z \in \mathbb{C}} \left\{ \tilde{z} \in \mathbb{C} : |\tilde{z} - z| \le \limsup_j |x_j - z| \right\}
$$

([\[27\]](#page-8-3)).

Knopp Core Theorem [\[26,](#page-8-2) p. 138] states that $K - core(Sx) \subseteq K - core(x)$ for all real valued sequences x and a positive matrix $S \in (c : c)_{reg}$.

Statistical convergence is another generalization of usual convergence. It is defined by the aid of natural density of a subset in $\mathbb N$. The natural density of a set N is

$$
\delta(N) = \lim_{j} \frac{1}{j} |\{i \le j : i \in N\}|
$$

provided that the limit exists. Here \parallel gives the cardinality of the set written inside it. It is said that a sequence $x = (x_j)$ is statistically convergent to D if for every $\varepsilon > 0$ the natural density of the set

$$
\{j \in \mathbb{N} : |x_j - \mathcal{D}| \ge \varepsilon\}
$$

equals zero. It is denoted by $st - \lim x = \mathcal{D}([28])$ $st - \lim x = \mathcal{D}([28])$ $st - \lim x = \mathcal{D}([28])$. By st_0 and st , the spaces of all statistically null and statistically convergent sequences are denoted.

The notion of the statistical core or $st - core$ of a statistically bounded sequence x is defined by Fridy and Orhan [\[29\]](#page-8-5) as

$$
st-core(x) = \bigcap_{z \in \mathbb{C}} \left\{ \tilde{z} \in \mathbb{C} : |\tilde{z} - z| \le st - \limsup_{j} |x_j - z| \right\}.
$$

For some papers on core theorems, see [\[30](#page-8-6)[–34\]](#page-8-7).

The Jordan's function $J_r : \mathbb{N} \to \mathbb{N}$ of order r is an arithmetic function, where r is a positive integer. The value $J_r(n)$ equals to the number of r-tuples of positive integers all less than or equal to n that form a coprime $(r + 1)$ -tuples together with *n*.

In a recent paper, İlkhan et al. [\[35\]](#page-8-8) define a new matrix $\Upsilon^r = (v_{nk}^r)$ as

$$
v_{nk}^r = \begin{cases} \frac{J_r(k)}{n^r} & , & \text{if } k \mid n \\ 0 & , & \text{if } k \nmid n \end{cases}
$$

for each $r \in \mathbb{N}$. It is also observed that this special transformation is regular; that is a limit preserving mapping c into c.

The inverse $(\Upsilon^r)^{-1} = ((v_{nk}^r)^{-1})$ is computed as

$$
(v_{nk}^r)^{-1} = \begin{cases} \frac{\mu(\frac{n}{k})}{J_r(n)} k^r & , & \text{if } k \mid n \\ 0 & , & \text{if } k \nmid n \end{cases}
$$

Here and what follows μ is the Mobius function. By using usual matrix product, the Υ^r -transform of a sequence $x = (x_j) \in \omega$ is the sequence

$$
y = \Upsilon^r x = ((\Upsilon^r x)_j) = \left(\frac{1}{j^r} \sum_{d|j} J_r(d) x_d\right).
$$

In this study, it is aimed to introduce and study on a new sequence space $\hat{f}(Y^r)$ as the domain of Y^r in the space f. Further, *Jordan Totient Core* (Υr−core) of a sequence is defined and characterization of matrices satisfying $\Upsilon^r - core(Sx) \subseteq \mathcal{K} - core(x)$ and $\Upsilon^r - core(Sx) \subseteq st - core(x)$ with $x \in \ell_{\infty}$ are given.

2. Domain of Υ^r **in the space** f **and Jordan Totient Core**

In this section, we introduce the space $\hat{f}(Y^r)$ consisting of all sequences whose Υ^r -transforms are in f . That is,

$$
\widehat{f}(\Upsilon^r) = \left\{ x = (x_j) \in \ell_\infty : \lim_{i \to \infty} \sum_{p=0}^i \frac{(\Upsilon^r x)_{j+p}}{i+1} = \mathcal{A} \text{ uniformly in } j \right\}.
$$

One can prove that the spaces $\widehat{f}(\Upsilon^r)$ and f are linearly isomorphic.

The β -dual of a space X consists of all sequences $a = (a_j) \in \omega$ such that $xa = (x_j a_j) \in cs$ for all $x = (x_j) \in \mathcal{X}$. In order to determine the β –dual of the space $\widehat{f}(\Upsilon^r)$, we need the following result.

Lemma 2.1. *[\[36\]](#page-8-9)* $S = (s_{ij}) \in (f : c)$ *if and only if*

$$
\sup_{i \in \mathbb{N}} \sum_{j} |s_{ij}| < \infty,\tag{2.1}
$$

$$
\lim_{i \to \infty} s_{ij} = s_j \in \mathbb{C} \text{ for each } j \in \mathbb{N}, \tag{2.2}
$$

$$
\lim_{i \to \infty} \sum_{j} s_{ij} = s \in \mathbb{C},\tag{2.3}
$$

$$
\lim_{i \to \infty} \sum_{j} \left| \Delta(s_{ij} - s_j) \right| = 0. \tag{2.4}
$$

Theorem 2.1. *The β*−*dual of the sequence space* $\hat{f}(Y^r)$ *is the intersection of the following sets*

$$
\mathfrak{B}_{1} = \left\{ t = (t_{j}) \in \omega : \sup_{i \in \mathbb{N}} \sum_{j=1}^{i} \left| \sum_{d=j,j|d} \frac{\mu(\frac{d}{j})}{J_{r}(d)} j t_{d} \right| < \infty \right\},
$$
\n
$$
\mathfrak{B}_{2} = \left\{ t = (t_{j}) \in \omega : \lim_{i \to \infty} \sum_{d=j,j|d}^{i} \frac{\mu(\frac{d}{j})}{J_{r}(d)} j^{r} t_{d} \text{ exists} \right\},
$$
\n
$$
\mathfrak{B}_{3} = \left\{ t = (t_{j}) \in \omega : \lim_{i \to \infty} \sum_{j=1}^{i} \left[\sum_{d=j,j|d}^{i} \frac{\mu(\frac{d}{j})}{J_{r}(d)} j^{r} t_{d} \right] \text{ exists} \right\},
$$
\n
$$
\mathfrak{B}_{4} = \left\{ t = (t_{j}) \in \omega : \lim_{i \to \infty} \sum_{j} \left| \Delta \left[\sum_{d=j,j|d} \frac{\mu(\frac{d}{j})}{J_{r}(d)} j^{r} t_{d} - \alpha_{j} \right] \right| = 0 \right\}.
$$

Proof. Given any $t = (t_i) \in \omega$, the equality

$$
\sum_{j=1}^{i} t_j x_j = \sum_{j=1}^{i} t_j \left(\sum_{d|j} \frac{\mu(\frac{j}{d})}{J_r(j)} d^r y_d \right)
$$

$$
= \sum_{j=1}^{i} \left(\sum_{d=j, j|d} \frac{\mu(\frac{d}{j})}{J_r(d)} j^r t_d \right) y_j
$$

$$
= B_i(y); \qquad (i \in \mathbb{N})
$$
(2.5)

holds, where the matrix $B = (b_{ij})$ is defined by

$$
b_{ji} = \begin{cases} \sum_{d=j,j|d}^{i} \frac{\mu(\frac{d}{j})}{J_r(d)} j^r t_d & 1 \le j \le i, \\ 0 & \text{otherwise} \end{cases}
$$
 (2.6)

for all $j, i \in \mathbb{N}$. It follows from [\(2.5\)](#page-3-0) that $tx = (t_jx_j) \in cs$ whenever $x = (x_j) \in c$ if and only if $By \in c$ whenever $y = (y_j) \in f$. That is, $t = (t_j) \in \{\widehat{f}(\Upsilon^r)\}^{\beta}$ if and only if $B \in (f : c)$. Hence the result is obtained by using Lemma [2.1.](#page-2-0) \Box

Now, we define Jordan totient core or ^{γr}−core of a complex valued sequence.

Definition 2.1. Let C_j be the least closed convex hull containing $(\Upsilon^r x)_j,(\Upsilon^r x)_{j+1},...$ Then, $\Upsilon^r - core$ of x is the intersection of all C_j , i.e.,

$$
\Upsilon^r - core(x) = \bigcap_{j=1}^{\infty} C_j.
$$

The following result is immediate since the Υ^r – *core* of x is the K – *core* of the sequence $\Upsilon^r x$. **Theorem 2.2.** *For any* $x \in \ell_{\infty}$ *, we have*

$$
\Upsilon^r - core(x) = \bigcap_{z \in \mathbb{C}} \left\{ \tilde{z} \in \mathbb{C} : |\tilde{z} - z| \le \limsup_j |(\Upsilon^r x)_j - z| \right\}.
$$

Recently, İlkhan et al. [\[37\]](#page-8-10) introduced the following spaces by the aid of Jordan totient function.

$$
c_0(\Upsilon^r) = \left\{ x = (x_j) \in \omega : \lim_j \left(\frac{1}{j^r} \sum_{d \mid j} J_r(d) x_d \right) = 0 \right\}
$$

and

$$
c(\Upsilon^r) = \left\{ x = (x_j) \in \omega : \lim_j \left(\frac{1}{j^r} \sum_{d|j} J_r(d) x_d \right) \text{ exists} \right\}.
$$

In order to give the necessary and sufficient conditions for an infinite matrix $S = (s_{ij})$ be in the classes $(c : c(\Upsilon^r))_{reg}$ and $(st(S) \cap \ell_\infty : c(\Upsilon^r))_{reg}$, we firstly have some auxiliary results.

Lemma 2.2. $S = (s_{ij}) \in (\ell_{\infty} : c(\Upsilon^r))$ *if and only if*

$$
\sup_{i} \sum_{j} \left| \frac{1}{i^r} \sum_{j \mid i} J_r(j) s_{ij} \right| < \infty,\tag{2.7}
$$

$$
\lim_{i} \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij} = \gamma_{j} \quad \text{for each } j,
$$
\n(2.8)

$$
\lim_{i} \sum_{j} \left| \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} - \gamma_j \right| = 0.
$$
\n(2.9)

Lemma 2.3. $S = (s_{ij}) \in (c : c(\Upsilon^r))_{reg}$ if and only if [\(2.7\)](#page-4-0) and [\(2.8\)](#page-4-1) hold with $\gamma_j = 0$ for each j and

$$
\lim_{i} \sum_{j} \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} = 1.
$$
\n(2.10)

Lemma 2.4. $S = (s_{ij}) \in (st \cap \ell_{\infty} : c(\Upsilon^r))_{reg}$ if and only if $S \in (c : c(\Upsilon^r))_{reg}$ and

$$
\lim_{i} \sum_{j \in N, \delta(N)=0} \left| \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} \right| = 0.
$$
 (2.11)

Proof. It is a known fact that $c \subset st \cap \ell_\infty$ holds. So we have $S \in (c : c(\Upsilon^r))_{reg}$. Now let $\delta(N) = 0$ and $x \in \ell_\infty$. Define a sequence $\tilde{x} = (\tilde{x}_j)$ as $\tilde{x}_j = x_j$ if $j \in N$ and $\tilde{x}_j = 0$ otherwise. Clearly $\tilde{x} \in st_0$. Hence we have $S\tilde{x} \in c_0(\Upsilon^r)$. Further the equality

$$
\sum_{j} \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} \tilde{x}_j = \sum_{j \in N} \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} x_j
$$

yields that $\hat{S} = (\hat{s}_{ij}) \in (\ell_{\infty} : c(\Upsilon^r))$, where

$$
\hat{s}_{ij} = \begin{cases} \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} & , & \text{if } j \in N \\ 0 & , & \text{if } j \notin N. \end{cases}
$$

Thus we deduce [\(2.11\)](#page-4-2) from Lemma [2.2.](#page-4-3)

Conversely, choose a sequence $x \in st \cap \ell_{\infty}$ with $st - \lim x = \mathcal{D}$. Given any $\varepsilon > 0$, we have $\delta(N) = \delta(\{j :$ $|x_j - D| \ge \varepsilon$ }) = 0. By letting $i \to \infty$ in the following equality

$$
\sum_{j} \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij} x_{j} = \sum_{j} \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij}(x_{j} - \mathcal{D}) + \mathcal{D} \sum_{j} \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij}, \qquad (2.12)
$$

the inequality

$$
\left|\sum_{j} \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij}(x_j - \mathcal{D})\right| \leq ||x|| \sum_{j \in N} \left|\frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij}\right| + \varepsilon \sum_{j} \left|\frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij}\right|,
$$

and [\(2.10\)](#page-4-4) with [\(2.11\)](#page-4-2) yield that

$$
\lim_{i} \sum_{j} \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} x_j = \mathcal{D}.
$$

This means that $S \in (st \cap \ell_{\infty} : c(\Upsilon^r))_{reg}$.

 $\hfill\square$

Lemma 2.5. [\[30\]](#page-8-6) Let $S=(s_{ij})$ be a matrix satisfying the conditions $\sum_j |s_{ij}| < \infty$ and $\lim_i s_{ij}=0.$ Then we have

$$
\limsup_{i} \sum_{j} s_{ij} x_j = \limsup_{i} \sum_{j} |s_{ij}|
$$

for some $x \in \ell_{\infty}$ *with* $||x|| \leq 1$ *.*

Now, we are ready to give our main theorems.

Theorem 2.3. Let $S \in (c, c(\Upsilon^r))_{reg}$ and $x \in \ell_{\infty}$. The inclusion $\Upsilon^r - core(Sx) \subseteq K - core(x)$ holds if and only if

$$
\lim_{i} \sum_{j} \left| \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} \right| = 1. \tag{2.13}
$$

Proof. By combining Lemma [2.3](#page-4-5) and Lemma [2.5](#page-5-0) we obtain the equality

$$
\left\{\tilde{w}\in\mathbb{C}:|\tilde{w}|\leq\limsup_{i}\sum_{j}\frac{1}{i^{r}}\sum_{j|i}J_{r}(j)s_{ij}x_{j}\right\}=\left\{\tilde{w}\in\mathbb{C}:|\tilde{w}|\leq\limsup_{i}\sum_{j}\left|\frac{1}{i^{r}}\sum_{j|i}J_{r}(j)s_{ij}\right|\right\}
$$

for some $x = (x_j) \in \ell_\infty$ with $||x|| \leq 1$. Since the inclusions

$$
\Upsilon^r - core(Sx) \subseteq \mathcal{K} - core(x) \subseteq \{\tilde{w} \in \mathbb{C} : |\tilde{w}| \le 1\}
$$

hold, [\(2.13\)](#page-5-1) follows from the inclusion

$$
\left\{\tilde{w}\in\mathbb{C}:|\tilde{w}|\leq\limsup_{i}\sum_{j}\left|\frac{1}{i^{r}}\sum_{j|i}J_{r}(j)s_{ij}\right|\right\}\subseteq\{\tilde{w}\in\mathbb{C}:|\tilde{w}|\leq1\}.
$$

Now, let $\tilde{w} \in \Upsilon^r - core(Sx)$. We have

$$
|\tilde{w} - w| \leq \limsup_{i} |(Y^r(Sx))_i - w|
$$
\n
$$
= \limsup_{i} \left| w - \sum_{j} \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} x_j \right|
$$
\n
$$
\leq \limsup_{i} \left| \sum_{j} \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} (w - x_j) \right| + \limsup_{i} |w| \left| 1 - \sum_{j} \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} \right|
$$
\n
$$
= \limsup_{i} \left| \sum_{j} \frac{1}{i^r} \sum_{j|i} J_r(j) s_{ij} (w - x_j) \right|
$$
\n(2.14)

for any $w \in \mathbb{C}$. Put $\limsup_j |x_j - w| = l$. Given any $\varepsilon > 0$ there exists j_0 such that $|x_j - w| \leq l + \varepsilon$ for $j \geq j_0$. Hence, it follows that

$$
\left| \sum_{j} \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij}(w - x_{j}) \right| = \left| \sum_{j < j_{0}} \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij}(w - x_{j}) + \sum_{j \geq j_{0}} \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij}(w - x_{j}) \right| \tag{2.15}
$$
\n
$$
\leq \sup_{j} |w - x_{j}| \sum_{j < j_{0}} \left| \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij} \right| + (l + \varepsilon) \sum_{j \geq j_{0}} \left| \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij} \right|
$$
\n
$$
\leq \sup_{j} |w - x_{j}| \sum_{j < j_{0}} \left| \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij} \right| + (l + \varepsilon) \sum_{j} \left| \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij} \right|.
$$

Hence [\(2.14\)](#page-5-2) and [\(2.15\)](#page-5-3) yield that

$$
|\tilde{w} - w| \le \limsup_{i} \left| \sum_{j} \frac{1}{i^r} \sum_{j \mid i} J_r(j) s_{ij} (w - x_j) \right| \le l + \varepsilon.
$$

This implies that $\tilde{w} \in \mathcal{K} - core(x)$. Hence the desired inclusion holds.

Theorem 2.4. Let $S \in (st \cap \ell_{\infty}: c(\Upsilon^r))_{reg}$ and $x \in \ell_{\infty}$. The inclusion $\Upsilon^r - core(Sx) \subseteq st - core(x)$ holds if and only if *[\(2.13\)](#page-5-1) holds.*

Proof. Since $st - core(x) \subseteq K - core(x)$ holds, the inclusion $\Upsilon^r - core(Sx) \subseteq st - core(x)$ implies [\(2.13\)](#page-5-1) by Theorem [2.3.](#page-5-4)

Now, let $\tilde{w} \in \Upsilon^r - core(Sx)$. Similarly we have inequality [\(2.14\)](#page-5-2). Put $st - \limsup |x_i - w| = \hat{l}$. Given any $\varepsilon > 0$, we have $\delta(\tilde{N}) = \delta({j : |x_j - w| > \tilde{l} + \varepsilon}) = 0$ (see [\[38\]](#page-8-11)). Hence it follows that

$$
\left| \sum_{j} \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij}(w - x_{j}) \right| = \left| \sum_{j \in \tilde{N}} \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij}(w - x_{j}) + \sum_{j \notin \tilde{N}} \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij}(w - x_{j}) \right|
$$

$$
\leq \sup_{j} |w - x_{j}| \sum_{j \in \tilde{N}} \left| \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij} \right| + (\hat{l} + \varepsilon) \sum_{j \notin \tilde{N}} \left| \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij} \right|
$$

$$
\leq \sup_{j} |w - x_{j}| \sum_{j \in \tilde{N}} \left| \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij} \right| + (\hat{l} + \varepsilon) \sum_{j} \left| \frac{1}{i^{r}} \sum_{j|i} J_{r}(j) s_{ij} \right|.
$$

Consequently, by [\(2.11\)](#page-4-2) and [\(2.13\)](#page-5-1), we have

$$
\limsup_{i} \left| \sum_{j} \frac{1}{i^r} \sum_{j \mid i} J_r(j) s_{ij} (w - x_j) \right| \leq \hat{l} + \varepsilon.
$$
 (2.16)

If we combine [\(2.14\)](#page-5-2) with [\(2.16\)](#page-6-0), we deduce that

$$
|\tilde{w} - w| \le st - \limsup_{j} |x_j - w|.
$$

This implies that $\tilde{w} \in st - core(x)$. Hence the desired inclusion holds.

 \Box

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

 \Box

References

- **[1]** Lorentz, G.G.: *A contribution to the theory of divergent sequences*. Acta Math. **80**, 167-190 (1948).
- **[2]** Ba¸sar, F., Kiri¸sçi, M.: *Almost convergence and generalized difference matrix*. Comput. Math. Appl. **61**, 602-611 (2011).
- **[3]** Kiri¸sçi, M.: *Almost convergence and generalized weighted mean II*. J. Inequal. Appl. **2014** 93, (2014).
- [4] Kirisci, M.: *The spaces of Euler almost null and Euler almost convergent sequences. Commun. Fac. Sci. Univ. Ank.* Series A1. **62**(2), 85-100 (2013).
- **[5]** Mursaleen, M.: *Invariant means and some matrix transformations*. Indian J. Pure Appl. Math. **25**(3), 353-359 (1994).
- **[6]** Ba¸sar, F., Çolak, R.: *Almost-conservative matrix transformations*. Turkish J. Math. **13**(3), 91-100 (1989).
- **[7]** Ba¸sar, F.: f−*conservative matrix sequences*. Tamkang J. Math. **22**(2), 205-212 (1991).
- **[8]** Qamaruddin, Q., Mohuiddine, S.A.: *Almost convergence and some matrix transformations*. Filomat. **21**(2), 261-266 (2007).
- **[9]** Demiriz, S., Kara, E.E., Ba¸sarir, M.: *On the Fibonacci almost convergent sequence space and Fibonacci core*. Kyungpook Math. J. **55**, 355-372 (2015).
- **[10]** Demiriz, S., ˙Ilkhan, M., Kara E.E.: *Almost convergence and Euler totient matrix*. Ann Funct Anal. 2020 1–13.
- **[11]** ˙Ilkhan, M.: *Certain geometric properties and matrix transformations on a newly introduced Banach space*. Fundam. J. Math. Appl. **3**(1), 45-51 (2020).
- **[12]** ˙Ilkhan, M., Demiriz, S., Kara, E.E.: *A new paranormed sequence space defined by Euler totient matrix*. Karaelmas Science and Engineering Journal. **9**(2) 277-282 (2019).
- **[13]** ˙Ilkhan Kara, M., Bayrakdar, M.A.: *A study on matrix domain of Riesz-Euler totient matrix in the space of* p*-absolutely summable sequences*. Commun. Adv. Math. Sci. **4**(1), 14-25 (2021).
- **[14]** ˙Ilkhan, M., Kara, E.E.: *A new Banach space defined by Euler totient matrix operator*. Oper. Matrices, **13**(2), 527-544 (2019).
- **[15]** Polat, H.: *Some new Pascal sequence spaces*. Fundam. J. Math. Appl., **1**(1), 61-68 (2018).
- **[16]** Aydın,S., Polat, H.: *Difference sequence spaces derived by using Pascal transform*. Fundam. J. Math. Appl., **2**(1), 56-62 (2019).
- **[17]** Erdem, S., Demiriz, S.: *A study on strongly almost convergent and strongly almost null binomial double sequence spaces*. Fundam. J. Math. Appl., **4**(4), 271-279 (2021).
- **[18]** Candan, M.: *A new aspect for some sequence spaces derived using the domain of the matrix* ^ˆBˆ. Fundam. J. Math. Appl., **5**(1), 51-62 (2022).
- **[19]** Khan, V.A., Abdullah, S.A., Alshlool, K.M.: *Paranorm ideal convergent Fibonacci difference sequence spaces*. Commun. Adv. Math. Sci., **2**(4), 293-302 (2019).
- **[20]** Ellidokuzo ˘glu, H.B., Demiriz, S., Köseo ˘glu, A.: *On the paranormed binomial sequence spaces*. Univers. J. Math. Appl., **1**(3), 137-147 (2018).
- **[21]** Polat, H.: *Some new Cauchy sequence spaces*. Univers. J. Math. Appl., **1**(4), 267-272 (2018).
- **[22]** Roopaei, H., Yaying, T.: *Quasi-Cesaro matrix and associated sequence spaces*. Turkish J. Math., **45**(1), 153-166 (2021).
- **[23]** Yaying, T., Hazarika, B.: *On sequence spaces defined by the domain of a regular Tribonacci matrix*. Math. Slovaca, **70**(3), 697-706 (2020).
- **[24]** Mursaleen, M., Roopaei, H.: *Sequence spaces associated with fractional Copson matrix and compact operators*. Results in Math., *76*, 1-20 (2021).
- **[25]** Roopaei, H., Ba¸sar, F.: *On the spaces of Cesaro absolutely p-summable, null, and convergent sequences*. Math. Meth. Appl. Sci., **44**(5), 3670-3685 (2021).
- **[26]** Cooke, R. G.: Infinite Matrices and Sequence Spaces, Mcmillan, New York (1950).
- **[27]** Shcherbakov, A. A.: *Kernels of sequences of complex numbers and their regular transformations*. Math. Notes. **22**, 948-953 (1977).
- **[28]** Steinhaus, H.: *Quality control by sampling*. Collog. Math. **2**, 98-108 (1951).
- **[29]** Fridy, J.A., Orhan, C.: *Statistical core theorems*. J. Math. Anal. Appl. **208**, 520-527 (1997).
- **[30]** Simons, S.: *Banach limits, infinite matrices and sublinear functionals*. J. Math. Anal. Appl. **26**, 640-655 (1969).
- **[31]** Connor, J., Fridy, J. A., Orhan, C.: *Core equality results for sequences*. J. Math. Anal. Appl. **321**, 515-523 (2006).
- **[32]** Demiriz, S., Çakan, C.: *On some new paranormed Euler sequence spaces and Euler core*. Acta Math. Sin. (Engl. Ser.). **26**, 1207–1222 (2010).
- **[33]** Demiriz, S. Çakan, C.: *Some new paranormed difference sequence spaces and weighted core*. Comput. Math. Appl. **64**, 1726-1739 (2012).
- **[34]** Demiriz, S., Çakan, C.: *Some new paranormed sequence spaces and* α*-core of a sequence*. Pure Appl. Math. Letters. **2016**, 32-45 (2016).
- **[35]** ˙Ilkhan, M., Simsek, N., Kara, E.E.: *A new regular infinite matrix defined by Jordan totient function and its matrix domain in* ℓ_p . Math. Methods Appl. Sci. **44**(9), 7622-7633 (2021).
- **[36]** Sıddıqi, J.A. *Infinite matrices summing every almost periodic sequences*. Pacific. J. Math. **39**(1), 235-251 (1971).
- [37] Kara, E.E., Ilkhan, M., Simsek, N.: A study on certain sequence spaces using Jordan totient function, 8th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2019), August 27-30, 2019, Baku, Azerbaijan.
- **[38]** Demirci, K.: A*-statistical core of a sequence*. Demonstratio Math. **33**, 43-51 (2000).

Affiliations

MERVE İLKHAN KARA **ADDRESS:** Düzce University, Faculty of Arts and Sciences, Department of Mathematics, 81620, Düzce, Turkey. **E-MAIL:** merveilkhan@duzce.edu.tr **ORCID ID:0000-0002-0831-1474**

GİZEMNUR ÖRNEK **ADDRESS:** Düzce University, Faculty of Arts and Sciences, Department of Mathematics, 81620, Düzce, Turkey. **E-MAIL:** gng92@ghotmail.com **ORCID ID:0000-0001-7339-7502**