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Abstract  Article Info 

This paper offers a critical assessment of the psychometric properties of a standard 

higher education end-of-course evaluation.  Using both exploratory factor analysis 

(EFA) and Rasch modeling, the authors investigate the (a) an overall assessment of 

dimensionality using EFA, (b) a secondary assessment of dimensionality using a 

principal components analysis (PCA) of the residuals when the items are fit to the 

Rasch model, and (c) an assessment of item-level properties using item-level statistics 

provided when the items are fit to the Rasch model. The results support the usage of 

the scale as a supplement to high-stakes decision making such as tenure.  However, the 

lack of precise targeting of item difficulty to person ability combined with the low 

person separation index renders rank-ordering professors according to minuscule 

differences in overall subscale scores a highly questionable practice.  
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1. Introduction 

Teaching, research, and service are the triad of higher education. As such, data-driven 

decision-making and accountability are two phrases that are commonly mentioned when 

attempting to measure how well these activities are performed by faculty. In particular, 

measuring teaching by way of end-of-course evaluations has been a fixed practice in higher 

education for many years (Guthrie, 1954; Otani, Kim, & Cho, 2011). A high-stakes 

assessment such as this is typically used as a measure of teaching quality and is linked to 

important and sometimes career changing decisions, such as determining whether promotion, 

tenure, and pay raises should be granted or during performance reviews.  

When generating reports of the end-of-course evaluations, means and standard 

deviations are traditionally reported at the item level. This practice presupposes that the 

response scale functions in an approximately interval fashion such that the steps between 

scale points are equivalent. If these steps are found to not be equivalent, or if the scale is 

found to have any central pivot points that represent a dramatic difference in respondent 

assessment of teacher ability, then a reporting of means and standard deviations is not only 

faulty but also potentially very misleading. While this paper does not tackle all the issues 
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associated with end-of-course evaluations, it does provide a critical assessment of the 

psychometric properties of a standard higher education end-of-course evaluation. Illustrating 

what the most common tools of practice measure well and not so well.  

2. Theoretical framework 

2.1. End-Of-Course Evaluation Debate  

Student end-of-course evaluations in higher education are long withstanding, beginning 

with the first evaluations of the 1920s (Guthrie, 1954; Otani, Kim, & Cho, 2011). Originally 

intended as an impartial and scientific means to measure teaching performance, evaluations 

have become the topic of controversy between students and faculty, faculty and students, and 

faculty and administration (Calkins & Micari, 2010). These controversies have sparked 

contentious debates within the higher education community regarding the use of evaluations 

to measure and ultimately assess performance in the classroom and subsequently their use in 

making such high stakes decisions as deciding tenure and promotion. To begin the 

conversation, a critical psychometric review of the instrument is required. 

In 1974, the American Association of University Profession (AAUP) released the 

Statement on Teaching Evaluation, which confirmed the importance of student input 

regarding quality teaching (Calkins & Micari, 2010). In response to the AAUP’s assertion, 

many higher education institutions began to include student evaluations in personnel 

decisions (Thorne, 1980).  Because institutions can utilize these evaluations to their advantage 

to monitor curricula and hold faculty accountable for student success, research into the 

concerns of end-of-course evaluations from a variety of perspectives has been conducted.  

Prevalent findings are outlined here. Faculty were more skeptical of evaluations in 

comparison to administrators who believed that the responses to end-of-course evaluations 

represent an accurate description of effectiveness (Morgan, Sneed, & Swinney, 2003).  There 

is evidence to suggest that end-of-course evaluations are a source of anxiety (Hodges & 

Stanton, 2007) and hostility (Franklin & Theall, 1989) for faculty. Faculty members often 

question the validity of student evaluations and the misuse of data (Beran, Violato, & Kline, 

2007; Ory, 2001). A more recent article by Spooren, Brockx, and Mortelmans (2013) found 

many higher education stakeholders, including faculty, continue to question the usefulness 

and validity of student evaluations of teaching. Although the debate of score validity and 

reliability continues, in general, faculty members regardless of their institutional affiliation 

have grown accustomed to the practice of end-of-course evaluations of their teaching (Ewing 

& Crockford, 2008). Based on this general acceptance of employing the evaluation, a review 

of the usefulness and validity of the measure is again supported.   

From the administrative perspective, quantitative rating of faculty teaching, used to 

document effective teaching, frequently take place through end-of-course evaluations. These 

quantitative summaries are typically reported with means and standard deviations (Laube, 

Massoni, Sprague, & Ferber, 2007). In general, administrators have a positive attitude toward 

course evaluation data and find it a useful source of information although validity concerns 

exist (Campbell & Bozeman, 2008). These concerns offer additional support for a 

psychometric study.   

Research on student perceptions is limited. Students believe they are effective 

evaluators of teaching; however, they do not realize how the data collected can affect the 

faculty they evaluate, like through administrative decisions (Campbell & Bozeman, 2008; 

Wachtel, 1998).  There is also evidence to suggest that students use the evaluation summaries 

to determine in which courses to enroll and which courses to avoid (Anderson, et. al, 2012).  
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Regardless of faculty, administrative, or student perceptions, a plethora of research 

suggesting that educators in higher education should make better use of end-of-course 

evaluation, and the collected data exists (Calkins & Micari, 2010; Campbell & Bozeman, 

2008; Griffin & Cook; 2009; Otani, Kim, & Cho, 2011; Wolfer & Johnson, 2003). Cote and 

Allahar (2007) asserted that professional fear of student evaluations is a major contributing 

factor to grade inflation. Student evaluations of instructors were overemphasized in the tenure 

and promotion process (Wattiauz, et. al, 2010). As such, legitimate concerns about general 

bias and validity issues of student evaluations continue to exist. This potential for bias and 

validity issues, however, in no way renders the evaluations of teaching in higher education 

useless. If student end-of-course evaluations are to be a key component in the documentation 

of effective teaching, then institutions should be certain that the evaluations and subsequent 

collected data are functioning as expected and being analyzed appropriately. This study will 

differ from many studies by focusing on the reoccurring validity concerns by evaluating a 

newly revamped end-of-course evaluation instrument through both classical test theory and 

item-response theory approaches. 

2.2. End-Of-Course Evaluation Items 

The end-of-course evaluation utilized in the study was a reconstruction of the original 

used at the institution, with a careful review of the literature for items that should be added. 

Collecting course information is necessary. In consideration, there is evidence to suggest that 

certain courses at institutions of higher education require an elevated level of student-teacher 

and student-student interaction, whereas others are more individualistic and require little 

interaction (Brown & Green, 2003). Because variations in courses exist, it is critical that 

researchers, institutional administration, or whoever is in charge of the instrument, select 

items that accurately measure the individual responses regardless of course differences.     

Research regarding what items to include within end-of-course evaluations is plentiful 

and varied. Student-evaluations of faculty are multidimensional, and the development of 

course evaluation instruments requires several items to be linked to specific measures that 

students consider important (Marsh & Dunkin, 1997). According to Marsh & Dunkin (1997) 

six categories commonly appear on end-of-course evaluations: (1) course content, (2) the 

instructor’s communication skills, (3) student-teacher interaction, (4) course difficulty and 

workload, (5) assessment practices, and (6) student self-assessment (Cashin, 1995).  In 2006, 

Bangert found the following four categories were critical to include in course evaluations (1) 

student/faculty interaction, (2) active learning, (3) time on task, and (4) cooperation among 

students.  Other research has suggested that student learning, student sense of community, 

student engagement in learning, use of multiple learning techniques and prompt instructor 

feedback were critical categories to include in end-of-course evaluations (Kim Liu & Bonk, 

2005). Furthermore, Kelly et al., (2007) suggested the following categories for inclusion 

within end-of-course evaluations; (1) instructor attributes, (2) course content, and 

organization as well as (3) grading and assessment. Lastly, a study by Hathorn & Hathorn 

(2010) found basic course information; measureable learning objectives, effective 

communication, and course organization were considered to be appropriate dimensions for 

end-of-course evaluations. 

Although no single dimension is considered sufficient to validate student evaluations of 

faculty, researchers are aware that institutions need instruments that will allow them to gather 

information for a variety of courses quickly and economically (Spooren, Brockx, and 

Mortelmans, 2013).  Since 2000, three peer-reviewed studies have been published that 

included instruments created for specific institutions (Barth, 2008; Cohen, 2005; Gursoy & 

Ubreit, 2005). The number of dimensions included in these studies were five (quality of 
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instruction, course rigor, level or interest, grades, and instructor helpfulness) in Barth’s 

(2008), two in Cohen’s (course, teacher) (2005), and four in Gursoy & Umbreit 

(Organization, Workload, Instruction, and Learning) (2005) study.  Specifically, the Cohen 

(2005) study identified two dimensions as critical to include in a students’ overall evaluations 

to strengthen the validity of the measure.  Variations of each of these dimensions, with 

additional sub-dimensions, were found to be essential within instruments developed 

specifically as larger scale (national) course evaluation measurements (Spooren, 2010; 

Mortelmans & Spoorten, 2009; Bangert, 2006; Toland & De Ayala, 2005; Kim, Liu & Bonk, 

2005; Kelly et al., 2007; Hathorn & Hathorn, 2010; Marsh & Dunkin, 1997.)  A review of 

each of the studies found items related to the course curriculum and material and the 

instructor. Therefore, the instrument developed and employed in this study was derived from 

the literature and focused on these two factors, largely due to the institution’s existing tool, 

which had the only two items that were overall measures, one for instructor and one for 

course.   

2.3. Psychometrics 

Measurement is a component of the research process, especially in instrumentation, that 

is often taken for granted. When developing an instrument to measure certain traits, a 

researcher must be concerned with the quality of the instrument items and how the individual 

responds to those items. In order to eliminate these concerns, the reliability and validity of the 

instrument is commonly measured using psychometric techniques grounded in measurement 

theory.  Psychometric theory offers two approaches to analyzing instrument data: classical 

test theory (CTT) and item-response theory (IRT).  

While a Classical Test Theory is a common, widely used approach; here, a 

psychometric approach is applied. The item-response theory (IRT)  approach to analyzing 

instrument items and respondents is based on item analysis and takes into consideration the 

chance of an individual’s answering items right or wrong (Magno, 2009). It allows 

researchers to obtain an item characteristic curve for each item in the measure (Kaplan & 

Saccuzzo, 1997).  The item characteristic curve describes the probability of responding 

correctly or incorrectly to an item given the ability of the individual. The Rasch (1960) model 

mathematically is equivalent to a one-parameter IRT model.  

2.4. Purpose 

The goal of this research is to assess a newly revamped end-of-course evaluation 

utilized at a Southeastern Research I higher education institution with particular attention 

given to item-level properties and overall validity. This investigation utilized a multi-tier 

analytical approach, with the steps being: (a) an overall assessment of dimensionality using 

exploratory factor analysis (EFA), (b) a secondary assessment of dimensionality using a 

principal components analysis (PCA) of the residuals when the items are fit to the Rasch 

model, and (c) an assessment of item-level properties using item-level statistics provided 

when the items are fit to the Rasch model. While not necessarily generalizable, results offer 

utility to the field of higher education. Results can support the interpretation of similar data 

and utility, or lack thereof of similar instruments at all higher education institutions. 

3. Methods 

3.1. Instrumentation 

The instrument, with items mapped out in Table 3 and 5 below, was developed taking 

the institution’s existing instrument, editing and vetting it through faculty council and the 
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general faculty for feedback and edits. The literature was then reviewed and items that 

consistently appeared in the literature were added. Prior to use, faculty council, chairs, and the 

associate dean of research reviewed the instrument.  Items are reviewed in more detail in the 

analysis. 

3.2. Response Frame 

Participants included students enrolled in eligible courses taught within college of 

education during the two summer sessions in 2013. Eligible courses met the following 

structure criteria: the course consisted of a practicum component of a lecture course with a 

different instructor from the lecture component or the course is labeled as a lab, a lecture, a 

seminar, or a distance-learning course. Courses that were irregular in structure, such as 

independent studies, were omitted from consideration, as these courses are not evaluated in a 

traditional fashion. Students were eligible for inclusion if they were enrolled in an eligible 

course past the final add/drop date for the summer session. Using the college Systems, 

Applications and Products (SAP) database, researchers identified 457 instances of enrollment 

past the final add/drop date in eligible courses. This resulted in 457 requests sent to 357 

different people with the majority of individuals enrolled in only one course for the first 

summer session. Of these requests, 96 responses were returned, constituting a 21% response 

rate. Response return was slightly disparate as a higher response rate was found in courses 

traditionally identified as graduate courses (N=57, 25.79%) when compared to courses 

traditionally identified as undergraduate courses (N=39, 16.53%). The same protocol was 

used to identify instances of enrollment in eligible courses for the second summer session, 

leading to the identification of 676 requests, which were sent to 432 unique individuals. The 

return rate was slightly higher with 199 (29.44%) responses returned from 153 unique 

individuals. Responses rate for courses identified as graduate (N=158, 33.12%) exceeded 

response rate for courses identified as undergraduate (N=41, 20.60%), following the same 

pattern identified in the first summer session. Overall, 295 responses (26.04%) were collected 

across the two summer sessions for analysis. 

3.3. Exploratory Factor Analysis 

EFA was used as the foundation of the analysis due to a broad understanding of this 

procedure across most applied fields. This method offers an easily digestible assessment of 

dimensionality; however, EFA does have some shortcomings when it comes to assessing 

dimensionality. Most notably, EFA was primarily developed to look at cognitive abilities, 

which have the ability to be measured in such a way that the variables are continuous and 

normally distributed. Despite widespread application of EFA to Likert-type data, there are 

known weaknesses in applying an approach designed for continuous data to coarsely chopped 

ordinal data: (a) correlations assessed using Pearson’s product-moment are attenuated due to 

floor and ceiling effects, (b) the number of factors to be extracted may be misleading, and (c) 

parameter estimates may be biased (Flora, LaBrish, & Chalmers, 2012). These issues are 

exacerbated if the ordinal data are also highly skewed, a common situation found in teacher 

end-of-course evaluation data. Although polychoric correlations are often used instead of 

product-moment correlations to analyze ordinal data, the polychoric correlation coefficient 

still assumes a latent normal continuous distribution. An additional weakness to this approach 

is that using polychoric correlation coefficients is still a limited-information technique in 

which only univariate and bivariate information is used to estimate the factor solution (Flora, 

LaBrish, & Chalmers, 2012).   
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3.4. Applying the Rasch Model 

With concerns related to possible non-normality of items, a desire to assess the size of 

the steps between scale points, and recognition of the ordinal nature of the item responses, it 

was deemed preferable to use a polytomous Rasch model for the remainder of the analyses 

concerning this nascent scale.  The Rasch model is a special case of the one-parameter logistic 

model from item-response theory (IRT) in which the discrimination parameter is set to a 

constant value of 1 rather than estimated from the data at hand.  This demonstrates the pivotal 

difference between the Rasch family of models and the rest of the IRT models.  In the Rasch 

models, the model is sacrosanct and represents characteristics desired in any measurement 

instrument: invariance of items/people, unidimensional measures, and independence of item 

and person parameters.  The level to which these desired model characteristics can be applied 

to the data depends upon the fit of the data to the model.  When operating from the mindset of 

IRT, the data are considered sacrosanct, with the model to be used (1-, 2-, or 3-PL) dependent 

on how well the model fits the data (Jaeger, 1977). Simply stated, in IRT it is a question of 

does the model fit the data? In a Rasch analysis, it becomes does the data fit the model? 

For all Rasch analyses, the Andrich (1978) rating scale model was selected from the 

family of Rasch models for three reasons: (1) the same scale was used across items and 

should theoretically be consistent across items, (2) lower scale points, such as strongly 

disagree and disagree, were used less frequently, and (3) the Andrich rating scale has better 

stability with smaller sample sizes due to calculating across all items at the same time when 

compared with an estimation method that allows item thresholds to change across items, i.e. 

the partial credit model (Sick, 2009). The Andrich rating scale model formula is: 

log (Pnij / Pni(j–1) ) = Bn– Di– Fj 

where Pnij is the probability that person n encountering item i is observed in category j, Bn is 

the "ability" measure of person n, Di is the "difficulty" measure of item i,. Fj is the 

"calibration" measure of category j relative to category j-1, the point where categories j-1 and 

j are equally probable. 

3.5. Data Analysis 

Dimensionality. One of the key assumptions underlying a Rasch analysis is that of 

unidimensionality of measures. The teacher evaluation scale that has been developed includes 

three potential sub-dimensions: items pertaining to the curriculum and materials, items 

pertaining to the instructor, and items asking for reflection on the course overall. Items 

reflecting on the course overall were created with the intention of being potential explanatory 

variables for ratings as well as possible variables for use in assessing whether there is any 

differential item functioning present; therefore, only items pertaining to curriculum and 

instruction and items pertaining to the instructor were considered while assessing 

dimensionality. These two sets of items have the possibility of falling under one overarching 

dimension, such as course satisfaction, or being perceived as two distinct dimensions relating 

to unique aspects of the course experience. Dimensionality can be assessed with either 

classical test theory methods (e.g. reliability analysis and factor analysis) or Rasch methods 

(e.g., Rasch principal components analysis of residuals). 

Using CTT methods, the common factor model was used to assess dimensionality with 

principal axis factoring as the preferred method of extraction due to robustness against non-

normality, an expected issue when analyzing an end-of-course evaluation instrument.  

Preliminary analyses to assess the appropriateness of the data to analysis using dimension 
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reduction techniques were examined using the Kaiser-Meyer-Olkin measure of sampling 

adequacy, in which values may range from 0 to 1 with values approaching 1 indicating 

stronger support for the existence of underlying factors, as well as Bartlett’s test of sphericity, 

in which one seeks to reject the null hypothesis that the correlation matrix is an identity 

matrix.  As the data were deemed acceptable for an EFA model, inspections of univariate 

indicators of normality, such as skewness and kurtosis values, as well as the application of 

Mardia’s test of multivariate normality were used to assess the appropriateness of the factor 

extraction method.  Retention of factors were determined by using multiple criteria: (1) a 

visual inspection of the Cattell (1966) scree plot, (2) examination of the eigenvalues using the 

Kaiser (1960) criteria, and (3) a review for theoretical coherence of the factor pattern and 

structure matrices.  If more than one factor is suggested for retention using this method, the 

oblimin oblique rotation will be implemented, as the factors should be theoretically related: 

the oblimin method was selected purely for purposes of familiarity, as all oblique rotation 

methods produce similar results (Osborne, Costello, & Kellow, 2008). 

A subsequent analysis to check dimensionality was performed using a Rasch PCA of 

item residuals. A PCA residual analysis began with the hypothesis that the residuals are error 

or random noise.  The residuals were then grouped to explain as much of the remaining 

variance as possible in a contrast to see if the null hypothesis should be rejected.  This is 

similar to the methods used in EFA to decide upon the number of components, such as the 

Cattell (1966) scree plot or the Kaiser (1966) criterion, as both EFA and a PCA of residuals 

attempt to assess whether subsequent eigenvalues exceed the value expected purely by chance 

or random noise (Raîche, 2005).  Although similarities exist between EFA and the Rasch 

PCA of residuals, the output is interpreted differently.  Common factor analysis seeks to 

optimize the factor structure solution by considering many indicators, such as (a) variance 

explained, (b) reduction of cross loadings, and (c) commonalities. The Rasch PCA analysis of 

residuals functions from one simple hypothesis: The residuals are just random noise.  To 

attempt to nullify this hypothesis, the residuals are grouped in a way to explain a maximum 

variance in the first contrast.  Although no absolute cutoff values determine when the items 

residual contrast denotes a true secondary dimension, rules of thumb help guide this decision: 

(a) the first contrast should explain at least the amount of variance in two items to be 

considered as a secondary dimension, (b) the value of the first contrast should exceed the 

value of the first contrast in randomly generated simulated data that conforms to the same 

data structure (i.e., number of respondents, number of items, and number of response 

options), and (c) the contrast should make theoretical sense (Linacre, 2014a). When the 

second contrast is large and theoretically sound, item statistics will be best parameterized by 

assessing each sub-dimension separately. 

Item misfit. The Rasch model offers indices to assess individual item fit to the model in 

the form of infit and outfit mean squares. These two indices differentially weight people’s 

responses: Infit offers an information-weighted measure of misfit, meaning that person 

responses with an estimated overall ability near the estimated item difficulty are given a 

greater weight, whereas outfit is an outlier-sensitive measure of misfit that reflects surprising 

responses by individuals with ability estimates disparate from the item’s estimated difficulty. 

For both infit and outfit mean-squares, values of 1 are expected, and the values may range 

from 0 to infinity (Wright & Linacre, 1994). 

As the Rasch model is a stochastic model, some randomness is expected when persons 

encounter the items. Thus, there are two ways in which an item (or person) can demonstrate 

misfit: underfit and overfit. Underfit occurs when too much randomness is perceived in an 

item, indicated by mean-square values greater than 1; in contrast, overfit occurs when 
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response patterns to an item are overly predictable, indicated by mean-square values less than 

1.  Both of these occurrences are worth further attention, but overfit is a more pressing issue 

than underfit. Overfit can actually degrade the measurement capabilities of a scale, but 

underfit indicates an item that may not contribute much to the measurement abilities of the 

scale but is unlikely to actually reduce the measurement properties of the scale.  One concern 

associated with underfit is the possible artificial inflation of person and item reliability 

indices. In general, items with mean-square values between .6 and 1.4 are deemed acceptable 

for a survey; however, it is important to note that there are no true absolute values that deem 

an item unacceptable (Wright & Linacre, 1994). 

Variable map. A variable map offers the unique opportunity to place item difficulty and 

person ability on the same metric to assess appropriate matching of item difficulty and person 

ability.  In an analogy derived from the physical sciences, a mismatch of items to persons can 

be similar to trying to measure the temperature of a roast with a thermometer intended to 

measure human temperatures. If the thermometer is not calibrated for the range desired, the 

precision of the measurement is diminished. Another way to think of this mismatch is to 

imagine and instructor giving calculus students a multiplication test. Due to the relative 

easiness of this assessment for individuals so advanced in mathematics, the instructor can tell 

that test-takers have mastered multiplication, but the instructor is unable to rank the 

individuals in terms of ability. If the instructor then gave these same students a calculus 

assessment on a current topic, the individual would be able to rank students on their ability by 

looking at the estimated difficulties of correct and incorrect items for each student. 

Reliability estimates (person and item). Rasch reliability indices exist on the same 

metric as traditional CTT reliability indices, such as Cronbach’s alpha, and range from 0 to 1 

with larger values demonstrating superior reliability. The reliability index reflects the 

reproducibility of the person or item order from most agreeable to least agreeable persons or 

most to least easily endorsed items. Two preconditions are necessary for acquiring a high 

reliability index: (1) the group (people/items) for which reliability is being estimated has to 

have a wide distribution across ability/difficulty, and (2) the opposing group (items if 

measuring people reliability and vice versa) needs to have sufficient length.  Attaining a high 

person reliability index requires a relatively wide person ability distribution and sufficient 

items, and item reliability requires a relatively wide item difficulty distribution and sufficient 

people to attain a high reliability index. The appropriate matching of item difficulty to person 

ability is also necessary for achieving high reliability indices (Linacre, 2014b). 

Step difficulties. The Andrich rating scale treats each transition across categories as an 

independent dichotomy. To guarantee that these transitions can actually be perceived as 

independent dichotomies, step difficulties must meet certain parameters: namely, step 

difficulties should advance by at least a bit more than one logit for a four category rating scale 

and no more than five logits for optimal measurement precision (Linacre, 2002). Applying all 

of the techniques and methods above, the evaluation results psychometrically sound and even 

more important from a practical standpoint, trustworthy to those individuals being evaluated. 

4. Results 

4.1. Exploratory Factor Analysis 

Initial assessments for the appropriateness of attempting an explanation of the items 

with common factors supported the utility of performing an EFA. The Kaiser-Meyer-Olkin 

measure of sampling adequacy was found to be .92, suggesting that a great deal of the 

variance can be explained by underlying factors (e.g., small partial correlations after the 

shared variance is parceled out); furthermore, Bartlett’s test of sphericity, χ
2
(78) = 3679.343, 
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p < .01, suggested that the items are acceptable for factor analysis with enough covariation to 

allow reduction to a smaller set of factors.  

The choice of extraction method for exploratory factor analysis (EFA) depends on 

whether the data meets the underlying assumptions of the extraction method.  Preliminary 

review of univariate statistics was performed in light of suggested guidelines by West, Finch, 

and Curran (1995), in which absolute values of skew less than 2 and absolute values of 

kurtosis less than 7 indicated acceptable levels of univariate normality (see Table 1). Using 

this guideline, all items except Instructor3 “Instructor returned exams and/or papers in a 

timely manner” violated acceptable levels of skewness, but only one item, C&M6 “Exams 

were connected to course content”, violated acceptable levels of kurtosis.  This is an expected 

result because the data are technically ordinal rather than interval and used a scale with few 

scale points (4-point Likert-type ranging from strongly disagree to strongly agree with no 

midpoint).  

Table 1. Univariate Normality Assessment for Items 

Variable 

Skewness Kurtosis 

Skew SE Kurtosis SE 

C&M1 -2.270 0.150 5.454 0.300 

C&M2 -2.162 0.151 4.885 0.302 

C&M3 -2.299 0.151 5.239 0.302 

C&M4 -2.068 0.152 4.506 0.303 

C&M5 -2.381 0.151 6.079 0.302 

C&M6 -2.493 0.175 7.522 0.349 

Instructor1 -2.253 0.151 5.141 0.302 

Instructor2 -2.393 0.155 5.789 0.309 

Instructor3 -1.995 0.156 4.162 0.310 

Instructor4 -2.329 0.153 5.168 0.304 

Instructor5 -2.097 0.152 4.361 0.302 

Instructor6 -2.038 0.153 3.762 0.304 

Instructor7 -2.502 0.155 6.178 0.308 

Note. Bolded skew or kurtosis values indicate a violation of acceptable levels of skew and/or kurtosis 
for that item. 

Univariate normality is a necessary, though not sufficient, precondition to multivariate 

normality; therefore, with the rejection of univariate normality, multivariate normality is not 

expected (DeCarlo, 1997). However, since univariate normality was assessed using rules of 

thumb rather than statistical analysis, Mardia’s test for multivariate normality was also used 

for purposes of statistical conclusion validity.  The results of this statistical test indicated a 

Mardia value of 667.5776, which suggests that the kurtosis of the empirical distribution 

differs significantly, p < .001, from the expected distribution of multivariate normal data.  

Thus, multivariate normality is an untenable assumption. 

Preliminary analysis of the data produced a first factor that explained 78.54% of the 

variance (eigenvalue of 10.33) and a second factor that explained 9.35% of variance 

(eigenvalue of 1.33) after oblique rotation. All subsequent eigenvalues were less than .28 in 

value. Usage of the Kaiser (1966) criteria (or eigenvalue-greater-than-one rule) and 

examination of the Cattell (1960) scree plot (Figure 1) both lead to the same conclusion, a 

two-factor solution, explaining 88.89% of the variance in these items, appears to fit the data 

well.   
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Figure 1. Cattell scree plot for Eigenvalues of C&M and Instructor items. 

The two-factor solution was then examined for theoretical coherence. As can be seen in 

Table 2, the factor loading matrix, the items split based upon whether the items referred to the 

curriculum and materials subdomain or to the instructor subdomain. This fit with the 

development of the items and the content areas that were intended to be targeted; furthermore, 

cross loadings were very small across subdomains (Keep in mind that the two factors were 

allowed to correlate). The first factor consisted of the seven instructor items, and loadings 

ranged from .810 for instructor item 1, “The instructor was accessible when I needed help 

with course material,” to .995 for instructor item 4, “The instructor advanced my knowledge 

of the subject.” The largest cross loading from the curriculum and materials (C&M) items 

showed a loading of .075 for C&M item 3. The second factor consisted of the six C&M items, 

and factor loadings ranged from .864 for C&M item 3, “Course content was organized”, to 

.987 for C&M item 6, “Exams were connected to course content.”  The largest cross loading 

from the instructor items showed a loading of .131 for instructor item 1. Factors 1 and 2 were 

found to have a .777 inter-factor correlation, showing them as strongly related subdomains.  

Table 2. Factor Loadings after Direct Oblimin Rotation 

Item 

Factor 

1 2 

C&M1 -.069 .985 

C&M2 .017 .941 

C&M3 .075 .864 

C&M4 .057 .892 

C&M5 .015 .929 

C&M6 -.023 .987 

Instructor1 .810 .131 

Instructor2 .975 -.026 

Instructor3 .812 .102 

Instructor4 .995 -.085 

Instructor5 .958 -.028 

Instructor6 .942 .003 

Instructor7 .930 .027 

Note. Bolded pattern loadings indicate that the item is retained on this factor. 
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4.2. Rasch PCA of Item Residuals 

Despite the EFA suggesting a two factor solution, the high factor intercorrelation, .777, 

left open the possibility that a one-dimensional model, including both curriculum and 

instructor items, may demonstrate acceptable fit for a Rasch analysis.  The central question is 

whether these two subscales are different enough to warrant independent investigation as 

separate unidimensional constructs; therefore, a one-dimensional model including both 

subscales was initially fit using the Andrich rating scale in Winsteps.  

In the case of this particular PCA of residuals, the eigenvalue of the first contrast had a 

value of 3.8, suggesting that this eigenvalue shows the strength of about four items.  This 

exceeds the base value of 2 needed to posit a secondary dimension contained within the data 

structure (Linacre, 2014a).  When this first contrast is examined, the items group according to 

the proposed subscales, suggesting that these two subscales are distinct enough to warrant 

separate Rasch analyses.  To assess this decision, expected eigenvalues and explained 

variance that can be attributed to noise was calculated by simulating 10 data files to match the 

response set, number of items, and number of respondents.  On average, the first contrast 

from the simulated data showed an eigenvalue of 1.4 with a percentage of explained variance 

equaling 3.36%.  This can be compared to the empirical results from the actual data that 

showed a real eigenvalue of 3.8 and the percentage of explained variance as 13.3% for the 

first contrast.  Based on this information, the two subscales were analyzed separately for all 

remaining analyses, as they are different enough to preclude a combined unidimensional 

analysis. 

4.3. Rasch Analysis of the Curriculum and Materials Subscale   

Item misfit. All but two of the items on the Curriculum and Materials subscale 

demonstrate adequate fit when considering mean-square infit and outfit statistics as well as 

standardized z-scores (see Table 3). The most concerning issues involve underfit, meaning 

that mean-square infit values are greater than approximately 1.4, as this can reduce the quality 

of measurement due to too little predictability in respondents’ use of the item.  Item C&M3 

“Course content was organized” had a mean-square infit statistic of 1.58, which indicated that 

the item was being answered unexpectedly by individuals to whom this item was 

appropriately targeted.  As this item did not function in accordance with the rest of the items 

on the scale, no value was added to the overall scale by including this item. Item C&M3 

should be indexed for either rewording or deletion during future development of this scale. 

Item C&M6 “Exams were connected to course content” displayed the opposite fit issue 

in that it was overfitting with a mean-square infit value of .48 and mean-square outfit value of 

.35, indicating that this item performed too predictably to provide useful additional 

information for this scale. Although this item could be considered for deletion or revision, 

overfit will not actually damage the scale measurement properties as a whole, and the item is 

theoretically important to include.  If students indicated that exams were not connected to 

course content, then this would be extremely valuable information for the college to know; 

therefore, future iterations of this scale should retain this item despite displaying some misfit.  
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Table 3. Fit Statistics for Curriculum and Material Items 

Item Infit Outfit 

Numb

er Stem MNSQ 

ZST

D 

MNS

Q 

ZS

TD 

C&M3 Course content was organized. 1.58 2.6 1.35 1.2 

C&M1 Objectives for this course are clearly stated. 1.26 1.3 1.10 .5 

C&M2 Assignments contributed to my understanding of the 

material. 

 .82  -1.0 .74  -.9 

C&M5 Assignments were connected to course content. .80 -1.0 .61  -1.5 

C&M4 The resources (texts, articles, videos, etc.) used in this 

course contributed to my learning. 

 .79 -1.2 .65 -1.4 

C&M6 Exams were connected to course content. .48 -2.5 .35   -2.6 

M  .96  -.3 .80 -.8 

SD  .36 1.7 .33 1.3 

Note. Bolded values are outside the recommended values, suggesting misfit. 

Variable map. The variable map shows a lack of congruence between item difficulty 

and person ability (see Figure 2). The C&M items are easily endorsed by the individuals 

included in this sample.  Out of the six items, the easiest item to endorse is C&M6, “Exams 

were connected to course content”, and the most difficult item to endorse is C&M4, “The 

resources (texts, articles, videos, etc.) used in this course contributed to my learning.” These 

items spanned a range of approximately two logits, suggesting that items are somewhat 

variable in difficulty. With this in mind, the common practice of taking an average across 

items to determine an overall score is questionable. Another important note from this map is 

that these items cannot differentiate among instructors with much precision on the upper end 

of the scale: As long as an instructor is getting responses of “agree” or “strongly agree,” the 

instructor is performing well. These items should be considered as more of a pass-fail 

measure than as a way to differentiate the quality of instruction by ranking instructors on 

average scores.  

Reliability estimates (person and item). As is expected from the mismatch between item 

difficulty and person ability overall, person reliability for the C&M subscale is calculated as 

.65, which suggests that it is possible to discriminate between only one to two levels for 

persons. This could be improved by increasing the number of categories on the response 

scale, presuming that the respondents can discriminate consistently across more scale points, 

or adding items that are more difficult to endorse to better match the higher person ability on 

this scale.  Item reliability (.77) is higher than the person reliability, but this still only suggests 

the ability to discriminate across two to three levels of items. In order to improve item 

reliability, items that are more difficult to endorse could be generated and included in future 

iterations of this scale. 
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Figure 2. Variable (person/item) map for Curriculum and Materials items. 

Step difficulties. As can be seen in Table 4, the threshold between one (strongly 

disagree) and two (disagree) occurs at -3.14, and the threshold between two (disagree) and 

three (agree) occurs at -1.73. This yields a step difficulty of 1.41 logits, which is close to 

optimal for a scale with four response categories. The issue arises when looking at the 

threshold between three (agree) and four (strongly agree), which occurs at 4.88 logits, thereby 

rendering a step difficulty of 6.61 logits. Although this is adequate for separate dichotomies, 

measurement precision was lost because the step difficulty is too broad.  This is similar to 

trying to measure people’s heights with a ruler only marked in feet: Many distinctions will be 

lost between individuals who range in height between five and six feet. 

 

Table 4. Summary of Category Structure for C&M Items 

Category Observed Observed Sample MNSQ Andrich Category 

Label Count % Average Expectations Infit Outfit Threshold Measure 

1 51 3 -2.79 -3.11 1.44 1.54 NONE (-4.39) 

2 22 1 -.11 -.30 1.14 .85 -3.14 -2.44 

3 343 23 2.20 2.25 .85 .78 -1.73 1.58 

4 1071 72 5.67 5.60 .96 .78 4.88 (5.98) 
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4.4. Rasch Analysis of the Instructor Subscale 

Item misfit. All items on the Instructor subscale demonstrated adequate fit when 

considering mean-square infit and outfit statistics as well as standardized z-scores (see Table 

5).  One item, Instructor item 3, displayed a standardized infit z-score (2.3) that exceeded the 

desired range of ±2; however, the infit mean-square value was within acceptable range (1.38) 

as it is below the 1.4 cutoff guideline used in evaluating the items. Instructor item 3 

demonstrated more unpredictability than desired in responses by individuals whose ability 

level was targeted by the item difficulty. With only one of the four fit statistics flagging the 

item as misfitting, the researchers retained this item, “Instructor returned exams and/or papers 

in a timely manner,” for the added theoretical diversity.  Overall, this subscale showed 

adequate item fit. 

 
Table 5. Fit Statistics for Instructor Items 

Item Infit Outfit 

Number Stem MNSQ ZSTD MNSQ ZSTD 

3 Instructor returned exams and/or papers in a timely 

manner. 

1.38  2.3 1.23  1.1 

1 Instructor was accessible when I needed help with 

course material. 

1.03    .3   .94   -.2 

6 Instructor presented course material in an effective 

manner. 

1.03    .3   .85   -.7 

4 Instructor advanced my knowledge of the subject. 1.01    .1   .81   -.8 
7 Instructor made me feel comfortable with asking 

questions and expressing my ideas. 

  .87    -.7   .67  -1.3 

5 Instructor incorporated current developments in the 
area of study. 

  .85  -1.0   .74 -1.3 

2 Instructor was prepared for class.   .75  -1.4   .64 -1.6 

M    .99     .0   .84   -.7 

SD   .19    1.1   .19    .9 

Note. Bolded values are outside the recommended values, suggesting misfit. 

Variable map. The person-item map showed the same trends as found in the C&M 

subscale: Person ability exceeded item difficulty (see Figure 3). Essentially, respondents very 

easily endorse these items. The easiest item for the respondents to endorse was Instructor item 

7, “Instructor made me feel comfortable with asking questions and expressing my ideas”. The 

two most difficult items to endorse were Instructor item 3, “Instructor returned exams and/or 

papers in a timely fashion,” and Instructor item 6, “Instructor presented course material in an 

effective manner.” Instructor items 1, 2, and 4 appear to be redundant as they are estimated at 

the same level of item difficulty; however, these items should be retained for theoretical 

purposes because they address three different components of teacher instruction: accessibility 

of the instructor, preparedness for class, and advancing student knowledge in the topic area.   

Overall, the mismatch between item difficulty and person ability, or willingness to 

endorse the item, suggests that these items can be used as a basic litmus test to assess whether 

the instructor is performing acceptably or intervention is necessary. Attempting to rank order 

instructors based on some scoring rule would be questionable because the mismatch leads to 

reduced precision of course instructor ability scores. 
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Figure 3. Variable (person/item) map for Instructor items. 

Reliability estimates (person and item). Both person reliability (.79) and item reliability 

(.76) were slightly lower than desired and discriminated between two to three levels of 

persons and items. In order to improve these values, items that are more difficult to endorse 

need to be constructed and added to this scale for future iterations. 

Step difficulties. As can be seen in Table 6, the threshold between categories 1 and 2 

occurred at -3.52 logits, and the threshold between categories 2 and 3 occurred at -1.39 logits. 

This yielded a step difficulty of 2.13 logits, which is adequate for presupposing two 

independent dichotomies. Similar to the C&M scale, the problem occurred at the transition 

between “agree” and “strongly agree”. The threshold for this transition is at 4.91 logits, which 

rendered a step difficulty of 6.30 logits. Such an increase will render a decrease in overall test 

information in the person ability level captured between item categories 3 and 4. 
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Table 6. Summary of Category Structure for Instructor Items. 

Category Observed Observed Sample MNSQ Andrich Category 

Label Count % Average Expectations Infit Outfit Threshold Measure 

1 71 4 -3.10 -3.09 .91 .77 NONE (-4.70) 

2 38 2 - .45 -1.01 1.41 .92 -3.52 -2.46 

3 380 22 2.58 2.70 .97 .89 -1.39 1.77 

4 1275 72 6.08 5.99 .88 .75 4.91 (6.01) 

5. Discussion 

The literature currently suggests that higher education should make better use of end-of-

course evaluations and subsequent data (Calkins & Micari, 2010; Campbell & Bozeman, 

2008; Griffin & Cook, 2009; Otani, Kim, & Cho, 2011; Wolfer & Johnson, 2003).  Much of 

this stems from faculty (Beran, Violato, & Kline, 2007) and administrator (Campbell & 

Bozeman, 2008) disappointment in the reliability and validity of current course evaluation 

measures. Given the faculty and administrator views of end-of-course evaluations, it is 

suggested that both groups receive training in how to administer the measure and interpret the 

results prior to its use in evaluation. Specifically, those analyzing and interpreting the data 

need to see beyond the tradition presentation of means and standard deviations. As illustrated 

above, a psychometric analysis offers greater insight and details about items and respondents. 

While this study does not cover such issues as number of evaluations needed, students 

per implementation and the predictive validity of the measure with such outcomes as course 

outcomes, it does provide a strong foundation for the general critique of fit and function of 

items. The result of this research contributes to the greater body of evaluation literature and 

offers specific guidance in the realm of end-of-course evaluation literature, specific to the 

argument of validity. The ability to measure and evaluate faculty performance and the quality 

of higher education course curriculum and material is challenging. The use of EFA and Rasch 

modeling helped ameliorate this challenge because it allowed for the comparison of persons, 

items, and the underlying subscales that may influence the measure.  

The items from the revamped end-of-course evaluation behaved in the expected 

manner. The EFA confirmed a two-factor solution categorizing items into Curriculum and 

Materials and Instructor. This is not surprising giving the literature and the construction of the 

instrument. However, the high factor intercorrelation, .777, left open the possibility that a 

one-dimensional model that includes both curriculum and instructor items may demonstrate 

acceptable fit for a Rasch analysis. Based on this information, a Rasch analysis was conducted 

that included both subscales and confirmed that they were different enough to complete a 

separate unidimensional analysis. The consistent identification of the two subscales (i.e., 

curriculum and materials and instructor) using both EFA and Rasch was appropriate given the 

question wording and support from the literature to include these components in the measure 

(Banger, 2006; Cashin, 1995; Hathorn & Hathorn, 2010; Kelly et al., 2007).   

The separate Rasch analyses of the C&M scale revealed that C&M3 “Course content 

was organized” needs to be reworked or deleted before institutions use it for course evaluation 

purposes. The item map revealed the use of averages across items to determine an overall 

score could be problematic. The person reliability (.65) and item reliability (.77) were 

moderately low; therefore, it is recommended the instrument be modified to include more 

difficult items to endorse, more response categories, and an uneven response scale that allows 

greater differentiation on the “agree” side of the scale (i.e., strongly disagree, disagree, 

slightly agree, moderately agree, and strongly agree). A disadvantage to such a modification 
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is that comparability to other end-of-course evaluation forms and prior end-of-course 

evaluations is lost by altering the scale.   

All seven items on the Instructor subscale fit adequately. The person-item map showed 

that the items are easily endorsed. Instructor7 “Instructor made me feel comfortable with 

asking questions and expressing my ideas” was the easiest to endorse, but Instructor3 and 

Instructor6 were the most difficult to endorse. Both person reliability (.79) and item reliability 

(.76) were slightly lower than desired. To improve these values, items that are more difficult 

need to be constructed and added to this scale for future iterations. Again, this measure could 

be used as a pass/fail to identify when a conversation or intervention with a faculty member is 

necessary. Basically, it could be used as a screening instrument, where scores below a set 

mark are flagged for intervention by administration.  

Without changing the measure, the usage of the scale as a supplement to high-stakes 

decisions, such as tenure, must be considered.  The lack of precise targeting of item difficulty 

to person ability combined with the low person separation index renders rank-ordering 

professors according to minuscule differences in overall subscale scores a highly questionable 

practice. Instead, these items should be taken as an indicator that the course instruction is 

meeting a set of standards with any average score of 3.0 or above in a subscale deemed 

acceptable.   

Future studies should investigate whether the instrument remains stable in various 

course settings by comparing findings (e.g. lecture evaluations versus distance education 

evaluations). If modifications to the current measure were performed, then an institution of 

higher education might use the resulting data to establish a benchmark to determine if there is 

a need for reinvention of course curriculum, workshops, or professional development for 

faculty. For example, an institution could use items 1-7 of the Instructor subscale as focus 

areas for brown-bag lunch events. 

An institution of higher education could also use the measure to establish a required 

minimum score on end-of-course evaluations for all faculty members. For those faculty 

members who do not meet the minimum score, it would be possible to provide a teaching 

intervention. Again, the intervention could be tailored to the needs of the students given the 

data derived from administering the measure. For example, if assignments do not contribute 

to the students’ understanding of the material (C&M2), then a workshop focusing on 

assignment creation can be provided.   

It is imperative that higher education institutions use sound methods when determining 

the effectiveness of end-of-course evaluations. Unfortunately, it is extremely difficult for 

institutions to rectify poor or inappropriate course evaluation practices without knowing what 

faculty members are doing in their courses.  This is true even if the scores produced from the 

person/item interaction within the instrument have valid and reliable properties.  Although the 

revamped end-of-course measure utilized in this study will not solve all problems between 

students, faculty, and administrators, the psychometric analysis and subsequent findings can 

help administrators, faculty, and those involved in the dissemination and collection of 

evaluation data to utilize results in a more responsible way and with a clearer picture of where 

concerns about results exist.   
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