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Abstract  Article Info 

This study investigated the effectiveness of logistic regression models to detect 

uniform and non-uniform DIF in polytomous items across small sample sizes and 

non-normality of ability distributions. A simulation study was used to compare 

three logistic regression models, which were the cumulative logits model, the 

continuation ratio model, and the adjacent categories model. The results revealed 

that logistic regression was a powerful method to detect DIF in polytomous items, 

but not useful to distinguish the type of DIF. Continuation ratio model worked best 

to detect uniform DIF, but the cumulative logits model gave more acceptable type I 

error results. As sample size increased, type I errors increased at cumulative logits 

model results. Skewness of ability distributions reduced power of logistic 

regression to detect non-uniform DIF. Small sample sizes reduced power of 

logistic regression.  
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1. Introduction 

The logistic regression method (Swaminathan & Rogers,1990) has become a widely used 

method to detect differential item functioning (DIF) during the last two decades ( e.g., Scott, 

Fayers, Aaronson, Bottomley, DeGraeff, Groenvold, Koller, Peterson & Sprangers, 2007 ; 

Hauger & Sireci, 2008 ; Crane, Hart, Gibbons & Cook, 2006 ; Gelin & Zumbo,2003). Its 

capability to detect both uniform and non-uniform DIF in either dichotomous or polytomous 

items (Zumbo, 1999) makes logistic regression a powerful method for investigating DIF. 

Unlike the Mantel-Haenszel (MH) method, logistic regression allows the ability variable to 

take continuous values, and to interact with the group variable (Swaminathan & Rogers, 

1990). Furthermore, because logistic regression is a model based approach to study DIF, it is 

possible to include additional covariates in the model to help explain the mechanism behind 

DIF (Swaminathan & Rogers, 1990). 

DIF detection methods with logistic regression for polytomous items are extensions of the 

logistic regression model for dichotomous items. Different extensions have been proposed by 

several researchers (Miller & Spray, 1993; Welch & Hoover, 1993; French &Miller, 1996; 

Zumbo, 1999), which are all based on three logistic models for polytomous items described 

by Agresti (2002): the cumulative logits model, the adjacent categories model, and the 

continuation ratio model. Each model uses a different coding procedure to compare pairs of 
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response categories. The cumulative logits model reformulates the response categories into 

two categories from 1 to j and from j+1 to J, where J is the total number of categories. In the 

adjacent categories model, the probability of each response category is compared with the 

probability of the nearby response category. With the continuation ratio model, the probability 

of each response category is compared with the probability of all higher response categories.  

French and Miller (1996) were the first to use the cumulative logits, adjacent categories, 

and continuation ratio logistic regression models as DIF detection methods for polytomous 

items and to compare these models with a simulation study. They concluded that cumulative 

logits and continuation ratio models provided higher power to detect DIF than the adjacent 

categories model. The primary purpose of our study is to expand on French and Miller’s 

research by investigating the feasibility of using the three logistic regression models for DIF 

detection in polytomous items in the case of small sample sizes and non-normal ability 

distributions.  

Unlike IRT-based DIF detection methods (Swaminathan & Gifford, 1985), logistic 

regression models do not assume normality of group ability distributions. Therefore, 

researchers have not paid much attention to whether non-normality of ability distributions has 

any effect on the power of logistic regression to detect uniform or non-uniform DIF. 

Skewness of group ability distributions in DIF detection is an important factor that needs to 

be considered, because in educational and psychological research it is possible to meet with 

non-normal distribution cases. Knowledge about how skewness of ability distributions affects 

power may assist applied researchers in selecting the most appropriate DIF detection method 

given their available sample size. Furthermore, skewness of ability distributions may have an 

effect on the Type I error rates of logistic regression.  

 DIF detection in polytomous items with small samples is another condition requiring 

further study. Previous research on the effect of small sample sizes for detecting DIF in 

polytomous items showed different results for different DIF detection methods. Bolt (2002) 

compared parametric (i.e., Graded Response Model- Likelihood Ratio test, and Graded 

Response Model- Differential Functioning of Items and Tests) and nonparametric (i.e., Poly-

SIBTEST) DIF detection methods in polytomous items. Her study demonstrated that when 

sample size is small (i.e., 300 per group), the parametric methods were more powerful to 

detect DIF than poly-SIBTEST. Also, type I error rate increased in small sample sizes for 

Poly-SIBTEST. The study concluded that the parametric methods might be more desirable 

than non parametric methods for small sample sizes. Furthermore, Chang and his colleagues 

(1996) found that changes in sample sizes had a positive impact on the Type I error rates of 

MH and Standardized mean difference (SMD) methods, but they found no effect on the Type 

I error rate of Poly-SIBTEST. Spray and Miller (1994) indicated that Logistic Discriminant 

Function Analysis procedure was affected by small sample size in their study. In order to 

obtain an adequate level of power, the minimum sample size recommend in DIF studies with 

either dichotomous or polytomous is approximately 250 per group (Swaminathan & Rogers, 

1990; Scott, Fayers, Aaronson, Bottomley, Graeff, Groenvold, Gundy, Koller, Petersen & 

Sprangers, 2009; Zumbo, 1999). None of the previous studies addressed the effect of small 

sample sizes on DIF detection in polytomous items with logistic regression models. The 

present study investigated the feasibility of logistic regression for polytomous items for small 

samples by simulating sample sizes of 100 and 250 per group. 

The research questions addressed in this study were: Do the cumulative logits, continuation 

ratio and adjacent categories models differ with respect to power to detect DIF in polytomous 

items? Do these models differ with respect to Type I error when used to detect DIF in 

polytomous items? Is the performance of logistic regression models for polytomous items 
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affected by non-normality of the ability distribution? How are logistic regression models for 

polytomous items affected by small sample sizes? These questions were addressed through a 

Monte Carlo simulation study.  

The logistic regression method of DIF detection 

Using logistic regression for DIF detection in dichotomous items was proposed by 

Swaminathan and Rogers (1990).  Based on the standard logistic regression model (Agresti, 

2002), the authors used as the following model to detect DIF: 
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In this model, θ is the ability of an individual from a particular group, g is the group 

membership defined as 0 for the reference group and 1 for the focal group, and the p θg is the 

product of the two variables. The respondent’s total scores on the scale is commonly used to 

represent the ability level θ. The regression coefficient 2  is the group difference in 

performance on the item, and 3  is the interaction term between group membership and 

ability. Swaminathan and Rogers (1990) indicated that if 2 0   and 3 0  , the items shows 

uniform DIF. Furthermore, if  3 0  , the item shows non-uniform DIF, no matter whether 

2 0   or not.  

Swaminathan and Rogers (1990) compared the logistic regression procedure with the MH 

procedure in terms of power by manipulating sample size, test length, and type of DIF. The 

results indicated that logistic regression was as powerful as the MH in detecting uniform DIF. 

Furthermore, logistic regression is able to detect non-uniform DIF, but the MH method is not.  

The logistic regression DIF detection method for dichotomous items has been extended to 

polytomous items by several researchers (Miller & Spray, 1993; Welch & Hoover, 1993; 

French &Miller, 1996; Zumbo, 1999). French and Miller (1996) conducted a simulation study 

to examine the usefulness of different logistic regression models extended to polytomous 

data. Their study compared three extensions of the logistic modeling to polytomous data, 

which are the cumulative logits, adjacent categories, and continuation ratio logit models. The 

cumulative logits model is (Agresti,2002): 
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with j=1,….., J-1, where J is the number of the response categories in an item. This model 

reformulates the multiple categories to two categories (i.e., 1 to j; j+1 to J), and compares the 

probability of a 1 to j response (i.e., the numerator) with a  j+1 to J response (i.e., the 

denominator).  This is a model that does not lose data during the dichotomization of the score 

categories. 

The adjacent categories model is defined as (Agresti, 2002): 
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where j=1,……, J-1. In the adjacent categories model, the probability of every category is 

compared with the probability of the adjacent category (French and Miller, 1996).  

The continuation ratio model is described as (Agresti, 2002): 

1
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,   j = 1, ……, J-1.  (5) 
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In this model, the probability of a response category is compared with the probability of 

the categories either above or below it.  

In their study, French and Miller (1996) evaluated the power of logistic regression DIF 

detection method in polytomously scored items across the three logistic regression models 

described above. A 25-item test was simulated with a single item including DIF; and every 

item had four potential score categories ranging from 0 to 3. The authors created four 

conditions with respect to location of DIF: In three conditions, they varied discrimination 

parameters across groups to create non-uniform DIF, and in one condition they varied the 

difficulty parameters to create uniform DIF. They also simulated two levels of sample size, 

500 and 2,000. Their results can be summarized into three major points: Firstly, as expected, 

sample size had a substantial effect on power, which was higher with the largest sample size 

(i.e., 2,000). Second, the magnitude of the difference in item parameters between two groups 

had an impact on the likelihood of detection of uniform and non-uniform DIF. Finally, the 

cumulative logits and continuation ratio models had high power to detect uniform DIF and 

non-uniform DIF. The adjacent categories model had the lowest power, due to loss of data 

when comparing each pair of categories separately from the other categories. On the other 

hand, the study stated that the adjacent categories model might be useful to determine the 

location of DIF.   

Zumbo (1999) proposed a DIF detection method that combines the Ordinal Logistic 

regression (OLR) method, which works with cumulative logits model, and an R
2
 measure of 

effect size in order to detect DIF and determine its magnitude in polytomous items. Zumbo 

(1999) proposed a DIF effect size measure for ordinal items based on the R
2
. In three steps, he 

showed the application of the method on two items from a simulated 20-item ordinal test data 

for gender-based DIF. In the first step of modeling, only the conditioning variable (i.e. the 

total score) was entered in the model. In the second step, the group variable (i.e., gender) was 

added to the model. In the third and the last model, the interaction term between gender and 

total score was added to the model. DIF tests were performed by using the chi-square values 

obtained from each step of the analysis: The difference between the chi-square statistic from 

step 1 and the chi-square statistic from step 3 gave the simultaneous statistical test of uniform 

and non-uniform DIF. The same procedure was repeated between step 1 and step 2 to identify 

of uniform DIF, and between step 2 and step 3 to identify non-uniform DIF. The estimation of 

the effect size of DIF was obtained by taking the differences in R
2
 between step 3 and step 1, 

step 2 and step 1, and step 3 and step 2. R
2
values at or above .002 were considered to show 

meaningful levels of DIF.  
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The effect of skewed ability distributions on DIF detection methods 

Kristjansson, Aylesworth, McDowell, and  Zumbo (2005) evaluated the effect of skewness 

on the performance of four DIF detection methods for polytomous items, which are the MH, 

generalized MH, logistic discriminant function analysis, and unconstrained cumulative logits 

ordinal logistic regression. These authors simulated conditions where the skewness levels 

where either -.75 (moderate negative) for both groups and zero. Their study’s results indicated 

that the skewness level simulated did not have a notable effect on the efficiency of the four 

methods examined.  

Welkenhuysen-Gybels (2004) examined the performance of different DIF detection 

methods for dichotomously scored items by varying group ability distribution. To test the 

robustness of the logistic regression method, the author simulated three different ability 

distribution conditions: (1) a normal distribution for both groups, (2) a normal distribution for 

the reference group and a positively skewed distribution for focal group (with a beta 

distribution of 1.5, 5), and (3) a normal distribution for the reference group and a negatively 

skewed distribution for the focal group (with a beta distribution of 5, 1.5). In the case of 

uniform DIF, the logistic regression method results indicated that both the false positive rate 

and the false negative rate for the normal / positively skewed ability distribution condition had 

a higher value than for the normal / normal ability condition. On the other hand, the false 

negative rate for the normal / negatively skewed ability distribution condition was lower than 

for the normal / normal ability distribution condition. In the case of nonuniform DIF, a 

skewed distribution always produced higher false positive rate than the normal distribution. 

However, the false negative rate of any skewed distribution condition was not significantly 

different than the normal distribution condition. 

The majority of simulation studies about logistic regression have been done by simulating 

a normal ability distribution. As we mentioned above, there are only a few studies for all DIF 

detection methods with skewed ability level conditions. However, real samples are not always 

normally distributed, as shown in some application studies from medical and educational 

fields (e.g., Wang & Lane, 1996). Therefore, there have not been enough simulation studies 

examining the robustness of DIF detection methods to skewness of ability distributions. In 

particular, there have been no studies about the effect of skewed ability distribution on the 

performance of logistic regression models for DIF detection in polytomously scored.  

The effect of small sample sizes 

Many studies have been published about how effective DIF methods work with different 

sample sizes. In particular, studies about logistic regression for DIF detection in dichotomous 

items have addressed sample sizes as small as 250. More specifically, Swaminathan and 

Rogers (1990), comparing MH and Logistic Regression techniques for dichotomously scored 

items, found that for samples of 250, the logistic regression method resulted in 75% correct 

detection of uniform DIF and 50 % correct detection of nonuniform DIF. With 500 

respondents per group, the logistic regression procedure resulted in 100 % accurate uniform 

DIF detection and 75% accurate nonuniform DIF detection. Rogers and Swaminathan (1993) 

also found a strong effect of sample size on the DIF detection rate of logistic regression. Their 

results showed a 19% increase on the DIF detection rate of logistic regression as the sample 

size increased from 250 to 500.  

A Monte Carlo simulation study performed by Herrera and Gomez (2008) detected the 

effect of the different sample sizes of reference and focal groups on the power and type I error 

of logistic regression. Their study manipulated 12 conditions with two different sample sizes 

for the reference group (i.e., 500, 1,500) and six different ratios of sample sizes between the 
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focal group and the reference group (i.e., 1/5, 1/4, 1/3, 2/5, 1/2, 1/1). Error mean squares were 

used as the accuracy index. Surprisingly, the results of their study indicated that the highest 

type I error rate of the logistic regression procedure resulted from the condition with a sample 

size of 1,500 (i.e., the largest sample size) with equal group sizes.  

Welkenhuysen-Gybels (2004) examined the effect of sample size on logistic regression for 

detection of uniform and non-uniform DIF.  They examined conditions with large and equal 

sample size for the focal and reference groups (i.e., 1,000), as well as a smaller sample size 

for the focal group (i.e., 300) than the reference group (i.e., 1,000).  In the case of uniform 

DIF, the results for logistic regression indicated that when the sample size decreased for the 

focal group, the false positive rate decreased but the false negative rate increased. For 

nonuniform DIF, the logistic regression model produced an increase on the false negative rate 

as the sample size decreased.  

Scott et al. (2009) studied the effect of sample size on DIF detection in polytomous items 

with ordinal logistic regression. They found that for a power level of 80% or higher, ordinal 

logistic regression requires at least 200 observations per group. For a p-value of .001 instead 

of .05, these authors suggested a minimum sample size of 500per group. Based on the 

findings in the literature, Zumbo (1999) suggested at least 200 observations per group to 

achieve adequate levels of power for DIF detection with ordinal logistic regression. 

2. Method 

The logistic regression procedure was used in this study to conduct differential item 

functioning (DIF) analyses in polytomously scored items. A Monte Carlo simulation study 

was conducted to compare the performances of three different logistic regression models for 

DIF detection in polytomous items: the continuation ratio logits model, the cumulative logits 

model, and the adjacent categories model. The performances of the three ordinal logistic 

regression models for DIF detection were compared in terms of the power and type I error 

rates. Our study’s design is a partial replication and extension of the study by French and 

Miller (1996).  

We simulated scores for a test with 25 items of four score categories under the graded 

response model of Samejima (1969; 1996), which is an appropriate model for items with 

ordered polytomous responses. Similar to French and Miller's (1996) study, only the 25th 

item in each test condition had uniform or non-uniform DIF and was used to investigate the 

power of the logistic regression model for DIF detection. Therefore, items 1 to 24 did not 

contain DIF, and were used to estimate Type I error rates.  

Factors Manipulated 

We simulated DIF in the 25
th

 item according to four conditions reflecting different 

combinations of type of DIF (i.e., uniform or non-uniform) and magnitude of DIF (i.e., the 

differences between item parameters). The first three conditions contained nonuniform DIF of 

increasing magnitude, and the last condition contained uniform DIF. These conditions will be 

detailed in the data generation section.  

In all conditions, the sample sizes for the reference group and the focal group were equal. 

Three levels of sample size were investigated. The sample size of 500 for each group was 

used to represent a medium sample size. Small sample sizes were chosen based on the 

findings in the literature, which recommends that 200 per group is the smallest sample size for 

the logistic regression procedure (Zumbo, 1999; Scott et.al. 2009). For the two conditions 

with small sample size, we defined the number of examinees in each group as 100 and 250. 
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The sample size of 250 was a common sample size in simulation studies investigating DIF 

with small samples. Furthermore, we investigated the feasibility of the sample size of 100. 

The effect of skewness of ability distributions has not been thoroughly studied in previous 

research. To examine the effect of skewness on power to detect DIF in polytomous items, we 

simulated three levels of skewness of ability distributions: normal, moderate negative 

skewness, and high negative skewness. Normally-distributed ability values with a mean of 

zero and standard deviation of one were simulated by using the rnorm function from the R 

statistical software (R development core team, 2010). Fleishman's (1978) power 

transformation method was used for simulating skewed distributions. The levels of skewness 

and kurtosis were simulated by using the coefficient values on Fleishman's Power Method 

Weights table. Moderate negative skew on ability distribution was studied by Kristjansson et 

al. (2005) at the level of -.75 and it showed a slight effect on the performance of DIF 

detection methods. In the present study, we set the skewness levels of ability distributions as -

.75 for moderate skewness, and -1.75 for high skewness. The kurtosis level of the ability 

distributions was fixed at 3.75. 

Data Generation 

The item parameters used by French and Miller (1996) to generate the data were also used 

in this study. In all conditions, the item parameters remained the same for the first 24 items, 

which are the items with no DIF. For the first 24 items, five different values of item 

discrimination parameter (a) were simulated. The values were .50 for questions 1 to 5; .75 for 

questions 6 to 10; 1.00 for questions 11 to 15; 1.25 for questions 16 to 20; and 1.50 for 

questions 21 to 24. Since the value of the first score category was 0, French and Miller (1996) 

set the threshold parameters to 0 for the first score category (b1). Because in a four-category 

item only three thresholds are needed, we did not use b1 parameters in the simulation. The 

parameters b2, b3 and b4 were different for each item, and they were in increasing order 

within every item.  

Four different DIF conditions were simulated for the 25th item. From condition 1 to 

condition 3, the difference between the item discrimination parameters of the focal and the 

reference groups were increased by .5 in each condition, but item threshold parameters were 

held constant at in order to create non-uniform DIF. In condition 4, item discrimination 

parameters of the focal and the reference groups were held constant at the same level, which 

was 1.0, but the difference between the item threshold parameters were increased by 1.0 for b2 

and b3 in order to create uniform DIF. b4 remained constant at 2.0.  

The simulation design consisted of four DIF conditions (i.e., three uniform and one non-

uniform DIF), three sample size conditions (i.e.,100, 250, 500), and three level of skewness 

(i.e., normal, moderately skewed and highly skewed), and three logistic regression models 

(i.e., cumulative logits, continuation ratio, adjacent categories). For each condition, 1,000 

datasets were generated. Data was simulated and analyzed with the R 2.10.1 statistical 

software (R Development Core Team, 2010). 

Data Analysis 

We used the VGAM package for categorical data analysis (Yee, 2010) of the R statistical 

software to fit the logistic regression models. We evaluated DIF with each ordinal logistic 

regression model using the three steps recommended by Zumbo (1999) mentioned earlier. 

These steps require fitting each logistic regression model three times to each dataset: a first 

model with only the total score as a predictor of item response; a second model with total 

score and group variables as predictors; a third model with total score, group variable, and the 
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interaction term as predictors. DIF was evaluated by testing the differences in deviance chi 

square values between these models given their difference in degrees of freedom. Three 

different deviance chi-square tests were performed. To test the existence of any kind of DIF, 

we subtracted the deviance chi square value of third model from the first model. To test 

uniform DIF, the deviance value of the second model was subtracted from the first model. 

And finally, to test the non-uniform DIF, the deviance chi-square value of the third model was 

subtracted from the second model.  

The VGAM package for categorical data analysis (Yee, 2010) of the R statistical software 

is able to fit the logistic regression models for ordinal responses with or without the 

parallelism (or proportionality) assumption. The parallelism assumption states that logistic 

regression models for different categories have equal slopes for a given predictor (Armstrong 

& Sloan, 1989; Cole & Ananth, 2001). We compared the model fit between the ordinal 

logistic regression models with or without the parallelism assumption. We found that the 

parallelism assumption only held with the model where the single predictor was the total 

score. Therefore, we decided to fit the ordinal logistic regression models in the study without 

making the parallelism assumption.  

After the data generation and analysis were completed, the p-values of each logistic 

regression models were collected. Power was estimated by calculating the proportion of 

iterations DIF was correctly detected in the 25
th

 item. The Type I error was calculated by 

computing the proportion of iterations DIF was falsely detected in items 1 to 24. Similarly to 

French and Miller's (1996) study, the alpha level of .05 was divided by the number of 

items,25, to control the family-wise Type I error rate, resulting in an alpha level of .002 per 

test. The results of each model were compared across all the conditions to determine the best 

performing model.  

3. Results 

The results of the study are composed of the power values for the 25
th

 item and Type I 

error values for 24 non-DIF items in each condition. It was expected that the power levels 

would increase from condition one through condition three because increasing differences 

between item discrimination parameters would make the shape of item characteristic curves 

(ICCs) more distinguishable (Embretson & Reise, 2000). It was also expected that increases 

in sample size would result in higher power for DIF detection. Finally, skewness of ability 

distributions was expected to reduce the power for detecting DIF. We present the results of 

this study in Tables 1 to 6. Overall, the results show that most of the expectations were met. 

Table 1 contains power values of the three ordinal logistic regression methods to flag the 

presence of any kind of DIF in item 25 across all the levels of sample sizes, ability 

distributions, and magnitude of DIF. In condition 1, which had the smallest difference 

between item parameters, none of the models with sample size of 100 provided sufficient 

power to detect DIF due to a 0.5 difference between discriminations. However, sufficient 

power values were provided in the groups with sample size of 250 and high power values 

with sample size of 500. We found that three models slightly differed in their performance to 

detect any kind of DIF in condition 1. With the smallest level of DIF, the cumulative logits 

model provided slightly lower power than other two models with sample size of 100 in 

condition 1 and 2. Models did not differ in conditions 3 and 4. In condition 2, power values 

were sufficient for sample size of 100 and perfect power values were observed for sample 

sizes of 250 and 500. Conditions 3 and 4 provided almost perfect power results for all models 

with all sample sizes. The results gathered from conditions 2 to 4 showed that a small sample 

size of 100 worked well in the case of conditions with large difference between the item 

parameters of the focal and the reference groups. The continuation ratio and adjacent 
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categories models performed similarly in all the conditions. Power values did not differ 

substantially between normal and skewed distributions. 

Table 1. Power of ordinal logistic regression models to detect any kind of DIF in item 25 

Ability 

Distribution Model 

Sample 

size Condition 1 Condition 2 Condition 3 Condition 4 

Normal Cumulative 100 0.059 0.798 0.978 0.852 

Distribution logits 250 0.789 0.999 0.993 0.988 

  

500 0.996 1 1 0.996 

 

Continuation 100 0.205 0.873 0.997 0.936 

 

ratio 250 0.812 1 1 1 

  

500 0.997 1 1 1 

 

Adjacent 100 0.205 0.869 0.995 0.939 

 

categories 250 0.795 1 1 1 

  

500 0.997 1 1 1 

Moderately Cumulative 100 0.144 0.789 0.985 0.622 

Skewed logits 250 0.768 1 0.999 0.641 

  

500 0.996 0.999 0.997 0.51 

 

Continuation 100 0.203 0.876 0.997 0.961 

 

ratio 250 0.801 1 1 1 

  

500 0.996 1 1 1 

 

Adjacent 100 0.209 0.883 0.995 0.96 

 

categories 250 0.814 1 1 1 

  

500 0.996 1 1 1 

Highly Cumulative 100 0.158 0.84 0.992 0.93 

Skewed logits 250 0.795 1 0.999 0.996 

  

500 1 1 0.991 0.999 

 

Continuation 100 0.229 0.897 0.999 0.962 

 

ratio 250 0.815 1 1 1 

  

500 1 1 1 1 

 

Adjacent 100 0.227 0.902 0.999 0.962 

 

categories 250 0.815 1 1 1 

    500 1 1 1 1 

 

For conditions 1 to 3, Table 2 illustrates power values of three logistic regression methods 

to flag the presence of non-uniform DIF in item 25 across all the levels of sample size, ability 

distribution, and magnitude of DIF. Because in condition 4 the 25
th

 item had uniform DIF, the 

values in the condition 4 column of table 2 are type I error rates for detecting non-uniform 

DIF when uniform DIF exists. Results in Table 2 showed that power rates increased from 

condition 1 through condition 3, as expected. We found that none of the logistic regression 

models had sufficient power to detect non-uniform DIF with a sample size of 100 or 250 in 

condition 1. Only the continuation ratio model provided acceptable power values with a 

sample size of 500 for groups with normal and moderately skewed ability distributions in 

condition 1. For groups with normal and moderately skewed ability distributions, sample sizes 

of 250 and 500 provided sufficient power for all the models in condition 2. For groups with 

highly skewed distribution and 500 sample size, only continuation ratio model had sufficient 

power in condition 1. In condition 3, for groups with normal and moderately skewed ability 

distributions, all the models worked well to detect non-uniform DIF in the sample sizes of 250 
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and 500. The continuation ratio model provided sufficient power in sample size of 100. For 

groups with highly skewed distribution, the cumulative logits and adjacent categories models 

had sufficient power values in sample size of 500. However, the continuation ratio model 

provided sufficient power values in sample sizes of 250 and 500. None of the models worked 

well in sample size of 100 for groups with highly skewed ability distribution in condition 3. 

Skewness of ability distribution effected power of the models for non-uniform DIF detection 

to some extent. As skewness increased, the power values decreased gradually from normal to 

highly skewed ability distribution. In general, power levels for DIF detection for groups with 

highly skewed ability distributions were not at an adequate level except for condition 3 with a 

sample size of 500. The ordinal logistic regression models performed differently than what 

was expected based on French and Miller’s (1996) results. In most of the cases, the 

continuation ratio model performed best in non-uniform DIF detection. Moreover, in some 

condition settings, the continuation ratio model was the only model that had the sufficient 

power to detect non-uniform DIF. On the other hand, the cumulative logits and the adjacent 

categories models performed similarly. In condition 4, we could not find any difference 

among the power values.  

Table 2. Power of ordinal logistic regression models to detect non-uniform DIF in item 25 

Ability 

Distribution Model Sample size Condition 1 Condition 2 Condition 3 Condition 4 

Normal Cumulative 100 0.017 0.152 0.491 0.002 

Distribution logits 250 0.088 0.659 0.964 0 

  

500 0.339 0.976 1 0.005 

 

Continuation 100 0.059 0.441 0.865 0.005 

 

ratio 250 0.254 0.961 1 0.007 

  

500 0.694 1 1 0.03 

 

Adjacent 100 0.031 0.203 0.564 0.002 

 

categories 250 0.112 0.742 1 0.003 

  

500 0.384 0.987 1 0.014 

Moderately Cumulative 100 0.034 0.189 0.524 0.128 

Skewed logits 250 0.077 0.611 0.968 0.218 

  

500 0.18 0.95 0.997 0.338 

 

Continuation 100 0.035 0.272 0.657 0.007 

 

ratio 250 0.18 0.864 0.997 0.012 

  

500 0.502 1 1 0.016 

 

Adjacent 100 0.023 0.148 0.431 0.003 

 

categories 250 0.096 0.633 0.97 0.01 

  

500 0.267 0.977 1 0.006 

Highly Cumulative 100 0.006 0.029 0.159 0.006 

Skewed logits 250 0.016 0.08 0.435 0.001 

  

500 0.028 0.318 0.823 0.002 

 

Continuation 100 0.017 0.085 0.292 0.003 

 

ratio 250 0.046 0.39 0.861 0.006 

  

500 0.134 0.857 0.998 0.004 

 

Adjacent 100 0.007 0.035 0.12 0.003 

 

categories 250 0.017 0.126 0.491 0.003 

    500 0.042 0.461 0.929 0.001 
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Table 3 illustrates percentages of flagging uniform DIF in item 25 for three logistic 

regression methods across all the levels of sample sizes and ability distributions. Item 

parameters were chosen to create non-uniform DIF in conditions 1 to 3, and uniform DIF in 

condition 4. Thus, the values in the condition 4 column of the table are power levels, but the 

values in the columns for conditions 1, 2, and 3 are Type I error rates for detecting uniform 

DIF when non-uniform DIF exists. Although conditions 1 to 3 were simulated to present non-

uniform DIF, the results in Table 3 indicate that all of the logistic regression models in 

conditions 2 and 3 detected uniform DIF in item 25 in most of the iterations. This extreme 

inflation of type I error rates leads to the conclusion that the ordinal logistic regression models 

are of limited use in distinguishing between uniform and non-uniform DIF.  Only condition 4 

was designed to create a uniform DIF item. Study results in Table 3 show that all three 

logistic regression models were powerful to detect uniform DIF in item 25 for all three 

sample size with normal or highly skewed distributions. However, we detected an unexpected 

behavior of the cumulative logistic model with the moderately skewed distribution. In 

condition 4, the power values of cumulative logits model for moderately skewed groups were 

lower than with normal or highly skewed distributions. These results were accompanied by a 

lower inflation of Type I error rates for the cumulative logits model in conditions 3.  

Table 3. Power of ordinal logistic regression models to detect uniform DIF in item 25 

Ability 

Distribution Model 

Sample 

Size Condition 1 Condition 2 Condition 3 Condition 4 

Normal Cumulative 100 0.158 0.72 0.92 0.958 

Distribution logits 250 0.748 1 0.997 1 

  

500 0.997 1 1 1 

 

Continuation 100 0.146 0.646 0.88 0.972 

 

ratio 250 0.642 0.992 0.999 1 

  

500 0.974 1 1 1 

 

Adjacent 100 0.205 0.797 0.96 0.976 

 

categories 250 0.76 0.999 1 1 

  

500 0.995 1 1 1 

Moderately Cumulative 100 0.172 0.661 0.758 0.768 

Skewed logits 250 0.767 0.902 0.653 0.73 

  

500 0.993 0.905 0.463 0.58 

 

Continuation 100 0.168 0.753 0.957 0.986 

 

ratio 250 0.709 1 1 1 

  

500 0.988 1 1 1 

 

Adjacent 100 0.217 0.842 0.98 0.986 

 

categories 250 0.796 1 1 1 

  

500 0.994 1 1 1 

Highly Cumulative 100 0.226 0.87 0.936 0.986 

Skewed logits 250 0.878 0.996 0.937 1 

  

500 0.999 0.999 0.946 1 

 

Continuation 100 0.259 0.889 0.996 0.99 

 

ratio 250 0.83 1 1 1 

  

500 0.996 1 1 1 

 

Adjacent 100 0.286 0.925 0.998 0.991 

 

categories 250 0.874 1 1 1 

    500 0.998 1 1 1 
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Tables 4 to 6 contain Type I error rates for the 24 DIF-free items. In these tables, the Type 

I error rate is considered adequate if it is under 0.002. Table 4 illustrates Type I error results 

for the test of any kind of DIF detection, no matter which type of DIF exists, with all the 

logistic regression models, sample sizes, and ability distribution levels. Table 5 presents Type 

I error rates for the test of uniform DIF detection with all the conditions. Table 6 shows Type 

I error rates for the test of non-uniform DIF detection in all conditions. At the alpha level of 

0.002, all three tables showed common features: Results indicated that only the cumulative 

logits model had Type I error rates at acceptable levels. However, it was observed that as 

sample size increased, the type I error rates of the cumulative logits model increased as well. 

Type I error rates with the continuation ratio and the adjacent categories models were mostly 

higher than the alpha level. No clear effect of skewness or sample size appeared on the Type I 

error rates with the continuation ratio and adjacent categories models.   

Table 4. Type I error rates of ordinal logistic regression models for the test for any kind of DIF in items 1 to 24 

Ability  

Distribution Model Sample size Condition 1 Condition 2 Condition 3 Condition 4 

Normal Cumulative 100 0.0005 0.0009 0.0002 0.0004 

 

logits 250 0.0009 0.0015 0.0012 0.0014 

  

 

500 0.0017 0.0021 0.0019 0.0022 

  Continuation 100 0.0034 0.0032 0.0026 0.0030 

  ratio 250 0.0020 0.0026 0.0025 0.0021 

  

 

500 0.0024 0.0023 0.0021 0.0026 

  Adjacent 100 0.0032 0.0032 0.0029 0.0031 

  categories 250 0.0017 0.0024 0.0025 0.0020 

  

 

500 0.0023 0.0023 0.0020 0.0024 

Moderately Cumulative 100 0.0009 0.0007 0 0.0003 

Skewed logits 250 0.0009 0.0011 0.0010 0.0007 

  

 

500 0.0015 0.0010 0.0010 0.0008 

  Continuation 100 0.0028 0.0034 0.0028 0.0030 

  ratio 250 0.0024 0.0022 0.0020 0.0021 

  

 

500 0.0021 0.002 0.0020 0.0015 

  Adjacent 100 0.0030 0.0036 0.0030 0.0030 

  categories 250 0.0024 0.0024 0.0020 0.0023 

  

 

500 0.0025 0.0020 0.0019 0.0017 

Highly Cumulative 100 0.0003 0.0095 0.0009 0.0011 

Skewed logits 250 0.0014 0.0015 0.0012 0.0010 

  

 

500 0.0016 0.0017 0.0014 0.0013 

  Continuation 100 0.0027 0.0030 0.0023 0.0028 

  ratio 250 0.0029 0.0022 0.0021 0.0019 

  

 

500 0.0017 0.0019 0.0020 0.0021 

  Adjacent 100 0.0027 0.0028 0.0026 0.0031 

  categories 250 0.0027 0.0023 0.0019 0.0019 

  

 

500 0.0018 0.0019 0.0019 0.0020 
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Table 5. Type I error rates for the tests of uniform DIF detection for items 1 to 24 

Ability  

Distribution Model 

Sample 

size Condition 1 Condition 2 Condition 3 Condition4 

Normal Cumulative 100 0.0011 0.0010 0.0013 0.0010 

Distribution logits 250 0.0017 0.0013 0.0017 0.0020 

  

 

500 0.0018 0.0025 0.0023 0.0016 

  Continuation 100 0.0026 0.0021 0.0025 0.0026 

  ratio 250 0.0019 0.0018 0.0020 0.0022 

  

 

500 0.0020 0.0025 0.0020 0.0018 

  Adjacent 100 0.0025 0.0023 0.0029 0.0024 

  categories 250 0.0020 0.0020 0.0019 0.0021 

  

 

500 0.0022 0.0027 0.0021 0.0015 

Moderately Cumulative 100 0.0026 0.0009 0.0013 0.0010 

Skewed logits 250 0.0010 0.0016 0.0018 0.0017 

  

 

500 0.0014 0.0020 0.0019 0.0013 

  Continuation 100 0.0026 0.0028 0.0020 0.0022 

  ratio 250 0.0017 0.0020 0.0018 0.0022 

  

 

500 0.0019 0.0020 0.0021 0.0015 

  Adjacent 100 0.0027 0.0030 0.0027 0.0024 

  categories 250 0.0017 0.0019 0.0021 0.0020 

  

 

500 0.0017 0.0020 0.0023 0.0018 

Highly Cumulative 100 0.0015 0.0013 0.0014 0.0017 

Skewed logits 250 0.0018 0.0026 0.0014 0.0015 

  

 

500 0.0019 0.0019 0.0014 0.0017 

  Continuation 100 0.0028 0.0027 0.0026 0.0025 

  ratio 250 0.0025 0.0029 0.0020 0.0020 

  

 

500 0.0018 0.0019 0.0080 0.0020 

  Adjacent 100 0.0028 0.0027 0.0025 0.0028 

  categories 250 0.0023 0.0028 0.0020 0.0022 

  

 

500 0.0019 0.0020 0.0013 0.0019 
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Table 6. Type I error rates for the tests of non-uniform DIF detection for items 1 to 24 

Ability  

Distribution Model 

Sample 

size Condition 1 Condition 2 Condition 3 Condition 4 

Normal Cumulative 100 0.0005 0.0007 0.0008 0.0002 

Distribution logits 250 0.0010 0.0010 0.0010 0.0010 

  

 

500 0.0019 0.0017 0.0015 0.0019 

  Continuation 100 0.0036 0.0035 0.0025 0.0023 

  ratio 250 0.0023 0.0027 0.0029 0.0020 

  

 

500 0.0028 0.0025 0.0019 0.0030 

  Adjacent 100 0.0035 0.0028 0.0023 0.0024 

  categories 250 0.0018 0.0022 0.0024 0.0018 

  

 

500 0.0023 0.0023 0.0019 0.0024 

Moderately Cumulative 100 0.0009 0.0007 0.0001 0.0002 

Skewed logits 250 0.0009 0.0007 0.0004 0.0004 

  

 

500 0.0015 0.0006 0.0010 0.0010 

  Continuation 100 0.0031 0.0034 0.0027 0.0035 

  ratio 250 0.0018 0.0028 0.0020 0.0020 

  

 

500 0.0020 0.0020 0.0023 0.0024 

  Adjacent 100 0.0035 0.0036 0.0030 0.0033 

  categories 250 0.0020 0.0026 0.0019 0.0020 

  

 

500 0.0022 0.0020 0.0020 0.0024 

Highly Cumulative 100 0.0005 0.0009 0.0013 0.0007 

Skewed logits 250 0.0012 0.0012 0.0016 0.0010 

  

 

500 0.0017 0.0018 0.0017 0.0014 

  Continuation 100 0.0028 0.0036 0.0033 0.0033 

  ratio 250 0.0022 0.0023 0.0025 0.0022 

  

 

500 0.0019 0.0021 0.0023 0.0021 

  Adjacent 100 0.0026 0.0031 0.0025 0.0029 

  categories 250 0.0022 0.0017 0.0023 0.0020 

  

 

500 0.0021 0.0020 0.0020 0.0018 

 

4. Discussion 

In summary, we detected that the cumulative logits model had the lowest power among the 

models in the test of any kind of DIF. Since we obtained almost perfect power when the 

magnitude of DIF increased, we could not detect any difference for the test of any kind of 

DIF, no matter which type of DIF exists. The three logistic regression models differed on 

their performances when the test for non-uniform DIF was applied as well. For a non-uniform 

DIF test, the continuation ratio model produced the most power to detect DIF, while the 

cumulative logits and the adjacent categories models did not differ. These results disagree 

with French and Miller's (1996) findings, in which cumulative logits and continuation ratio 

performed similarly, and the adjacent categories model had the lowest power compared to the 

other models.  

As the magnitude of DIF increased, the power for detecting non-uniform DIF increased as 

well. In other words, the increase in the difference between item discrimination parameters 
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made it easier to detect DIF in an item. This was an expected result, and confirmed French 

and Miller’s (1996) findings. 

DIF detection with small sample sizes was less powerful than with moderate sample sizes 

which confirmed the previous findings (French &Miller, 1996). Non-uniform DIF detection 

in groups of 250 and 500 was powerful enough with logistic regression when the difference 

between item discrimination parameters was 1.00 or above. Furthermore, in testing the 

presence of any kind of DIF, logistic regression models were powerful enough for the groups 

with sample size of 100 when the difference between the item discrimination parameters for 

the focal and the reference groups was 1.00, or larger. For the test of non-uniform DIF, 

logistic regression did not have sufficient power with a smallest sample size of 100 even if the 

magnitude of DIF was large. For the case of uniform DIF, logistic regression models were 

powerful with small sample sizes (i.e., 100 and 250). Thus, as opposed to previous studies 

(Zumbo, 1999; Scott et.al. 2009), this study's results show that logistic regression has 

sufficient power to detect uniform DIF in datasets with a sample size of 100 per group.  

However, this result is tempered by the finding of extremely large Type I error rates for the 

test of uniform DIF when only non-uniform DIF exists. Therefore, we concluded that logistic 

regression models were not able to distinguish non-uniform DIF from uniform DIF in 

polytomous items, when the test of uniform DIF was applied to an item with non-uniform 

DIF. This inference confirms French and Miller's (1996) findings.  

Logistic regression models differed on their Type I error rates. The cumulative logits 

model was the only model whose type I errors were all within the acceptable level. The Type 

I error rates with all models were found to increase as sample size increases, which disagrees 

with Herrera and Gomez's (2008) findings. The continuation ratio and the adjacent categories 

models mostly had high type I error rates given the alpha level of .002. Finally, skewness of 

ability distribution has an effect on the power of detecting non-uniform DIF with logistic 

regression, when the skewness level is as high as -1.75. 

Based on the overall results, it can be concluded that the logistic regression method is a 

powerful method to detect DIF in polytomous items, but not useful to distinguish the type of 

DIF. Sample size is a factor that affects the power of the logistic regression to detect DIF. 

However, if the difference between item discrimination parameters is equal to or larger than 

1.0, logistic regression provides sufficient power to detect DIF with small samples, such as 

100 per group.  

We found that the continuation ratio model is the most powerful logistic regression model 

to detect non-uniform DIF in polytomous items. The cumulative logits model has the lowest 

power among the models in the test of any kind of DIF. On the other hand, even though the 

cumulative logits model gives the lowest power among the models, it has the lowest type I 

error rates. The type I error rate of the cumulative logits model increases as the sample size 

increases, but it remains at acceptable levels. 

5. Conclusion 

French and Miller (1996) indicated that running separate regressions for each model was 

time consuming in logistic regression. However, recent improvements in statistical programs 

allow us to run all the separate regressions at the same time. Therefore, this is no longer a 

disadvantage for logistic regression in polytomous items. Previous research indicated that 

likelihood-ratio DIF detection test for polytomous items was not powerful for small sample 

sizes as small as 500 per group (Ankenmann, Witt & Dunbar, 1999). However, we found that 

logistic regression is powerful with sample size of 250, and even with a sample size of 100 in 

the case of large differences between item discrimination parameters. Nevertheless, the IRT-
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LR allows direct omnibus tests of DIF hypotheses for all the item parameters, which is not 

possible with logistic regression method.  

Generalized MH and logistic regression are both similarly powerful to detect uniform DIF 

in polytomous items (Kristjansson et. al, 2005). Logistic regression's capability to detect both 

uniform and non-uniform DIF makes it advantageous over MH, because the MH method is 

not able to detect non-uniform DIF. On the other hand, logistic regression with polytomous 

items is not able to distinguish nonuniform DIF from uniform DIF. Another disadvantage of 

logistic regression is that skewness of ability distributions can reduce the power of logistic 

regression for non-uniform DIF detection, but it does not affect the power of uniform DIF and 

any kind of DIF detection tests. Finally, small sample sizes reduce the power of most DIF 

methods, but logistic regression can attain sufficient power with small sample sizes if the 

difference between item parameters is large, even with a sample size as small as 100. 

The necessity of dichotomization of polytomous response categories in order to compare 

the probabilities to answer a question as correct for different groups in logistic regression 

method causes the loss of some amount of data, which makes logistic regression less 

advantageous. Nevertheless, as French and Miller (1996) point out, the separate comparisons 

of score categories in the adjacent categories model helps us to identify the location of DIF in 

polytomous items, which is a unique feature of logistic regression in polytomous items.  

The continuation ratio model is the most powerful logistic regression model to detect non-

uniform DIF in polytomous items. However, high rates of type I error occur in all the test 

results with the continuation ratio model. The cumulative logits model is the only model that 

provides acceptable type I error rates in every condition. Hence, in non-uniform DIF 

detection, the continuation ratio model can be used due to its high power to detect non-

uniform DIF. On the other hand, since the power of the models do not differ in the test of 

uniform DIF detection, the cumulative logits model is a more appropriate model for uniform 

DIF detection tests due to its low type I error rate. On the other hand, since the cumulative 

logits model performs worse than other two models in non-uniform DIF detection, using the 

continuation ratio or the adjacent categories models can be preferred to detect non-uniform 

DIF.   

As with any Monte Carlo simulation study, this study had limitations due to our particular 

choice of conditions. One limitation of this study is that only a single item was simulated 

including DIF within a test of 25 items. With multiple items showing DIF, the total score may 

be contaminated and a purification process may be necessary. Another limitation is that we 

simulated only one level of uniform DIF, which meant that the change of power levels with 

the increase of uniform DIF magnitude was not examined. Moreover, DIF conditions were 

generated by changing only one of the item parameters, and fixing the other ones to a certain 

value. There was no condition simulated in which both a and b parameters were changing. 

Another limitation of this study is that we controlled the family-wise Type I error rate using a 

Bonferroni correction of the alpha level, which tends to result in conservative tests (Kim, 

2010). An improvement in the method to control for the family-wise Type I error rate would 

be to use the Benjamini and Hochberg False Discovery Rate method (Benjamini & Hochberg, 

1995). 

We chose to focus on negatively skewed distributions, so the effect of positive skewness of 

ability distributions on DIF detection was not examined in this study. We also set the kurtosis 

to a fixed value. The combination of different kurtosis levels with different skewness levels 

might show an effect on power. Thus, future research should examine the effect of positively 

skewed ability distributions and changing kurtosis values as well. Finally, the focal and the 

reference groups were simulated with equal sample sizes, but unequal sample sizes for groups 

could produce differences between the three ordinal logistic regression models examined.  
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